Skip to main content

2017 | OriginalPaper | Buchkapitel

Modeling and Hover Control of a Dual-Rotor Tail-Sitter Unmanned Aircraft

verfasst von : Jingyang Zhong, Bifeng Song, Wenqing Yang, Peng Nian

Erschienen in: Intelligent Robotics and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A tail-sitter unmanned aircraft is capable of transition between horizontal and vertical flight. This paper highlights topics of interest to developing a more accurate model to make the simulation results more reasonable. The modeling processes are presented in details. Aerodynamics of this unmanned aircraft is obtained by wind tunnel tests associated with aerodynamic estimation software. Characters of propeller slipstream are analyzed and the mathematical relationships among slipstream velocity, propeller speed, radial location and axial location of propeller plane are deduced from the experiment data. Besides, separate consideration of the propeller slipstream on wings and control surfaces gives better estimations on the dynamic pressure. Models of actuators and motors are also obtained through some tests to make the results reliable. Furthermore, a simple controller is designed to implement the hover attitude control.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen, F., Lu, F., Jiang, B.: Adaptive compensation control of the quadrotor helicopter using quantum information technology and disturbance observer. J. Franklin Inst. 351(1), 442–455 (2014)CrossRefMATH Chen, F., Lu, F., Jiang, B.: Adaptive compensation control of the quadrotor helicopter using quantum information technology and disturbance observer. J. Franklin Inst. 351(1), 442–455 (2014)CrossRefMATH
2.
Zurück zum Zitat Wang, X., Chen, Z., Yuan, Z.: Modeling and control of an agile tail-sitter aircraft. J. Franklin Inst. 352(12), 5437–5472 (2015)MathSciNetCrossRef Wang, X., Chen, Z., Yuan, Z.: Modeling and control of an agile tail-sitter aircraft. J. Franklin Inst. 352(12), 5437–5472 (2015)MathSciNetCrossRef
3.
Zurück zum Zitat Wang, X., Lin, H.: Design and control for rotor-fixed wing hybrid aircraft. Proc. Inst. Mech. Eng. Part G J. Aerospace Eng. 225(7), 831–847 (2011)CrossRef Wang, X., Lin, H.: Design and control for rotor-fixed wing hybrid aircraft. Proc. Inst. Mech. Eng. Part G J. Aerospace Eng. 225(7), 831–847 (2011)CrossRef
4.
Zurück zum Zitat Stone, R.H.: Aerodynamic modeling of the wing-propeller interaction for a tail-sitter unmanned air vehicle. J. Aircr. 45(1), 192–210 (2008)MathSciNetCrossRef Stone, R.H.: Aerodynamic modeling of the wing-propeller interaction for a tail-sitter unmanned air vehicle. J. Aircr. 45(1), 192–210 (2008)MathSciNetCrossRef
5.
Zurück zum Zitat Stone, R.H.: Control architecture for a tail-sitter unmanned air vehicle. In: 5th Asian Control Conference, pp. 736–744. IEEE, Melbourne (2004) Stone, R.H.: Control architecture for a tail-sitter unmanned air vehicle. In: 5th Asian Control Conference, pp. 736–744. IEEE, Melbourne (2004)
6.
Zurück zum Zitat Knoebel, N., Osborne, S., Snyder, D., et al.: Preliminary modeling, control, and trajectory design for miniature autonomous tailsitters. In: 2006 AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 345–356. AIAA, Keystone (2006) Knoebel, N., Osborne, S., Snyder, D., et al.: Preliminary modeling, control, and trajectory design for miniature autonomous tailsitters. In: 2006 AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 345–356. AIAA, Keystone (2006)
7.
Zurück zum Zitat Knoebel, N.B., Mclain, T.W.: Adaptive quaternion control of a miniature tailsitter UAV. In: 2008 American Control Conference, pp. 2340–2345. IEEE, Seattle (2008) Knoebel, N.B., Mclain, T.W.: Adaptive quaternion control of a miniature tailsitter UAV. In: 2008 American Control Conference, pp. 2340–2345. IEEE, Seattle (2008)
8.
Zurück zum Zitat Green, W.E., Oh, P.Y.: A hybrid MAV for ingress and egress of urban environments. IEEE Trans. Rob. 25(2), 253–263 (2009)CrossRef Green, W.E., Oh, P.Y.: A hybrid MAV for ingress and egress of urban environments. IEEE Trans. Rob. 25(2), 253–263 (2009)CrossRef
9.
Zurück zum Zitat Green, W.E., Oh, P.Y.: Autonomous hovering of a fixed-wing micro air vehicle. In: 2006 IEEE International Conference on Robotics and Automation, pp. 2164–2169. IEEE, Orlando (2006) Green, W.E., Oh, P.Y.: Autonomous hovering of a fixed-wing micro air vehicle. In: 2006 IEEE International Conference on Robotics and Automation, pp. 2164–2169. IEEE, Orlando (2006)
10.
Zurück zum Zitat Johnson, E.N., Wu, A., Neidhoefer, J.C., et al.: Flight-test results of autonomous airplane transitions between steady-level and hovering flight. J. Guid. Control Dyn. 31(2), 358–370 (2012)CrossRef Johnson, E.N., Wu, A., Neidhoefer, J.C., et al.: Flight-test results of autonomous airplane transitions between steady-level and hovering flight. J. Guid. Control Dyn. 31(2), 358–370 (2012)CrossRef
11.
Zurück zum Zitat Sun, J., Li, B., Shen, L., et al.: Dynamic modeling and hardware-in-loop simulation for a tail-sitter unmanned aerial vehicle in hovering flight. In: 2017 AIAA Modeling and Simulation Technologies Conference, pp. 874–886. AIAA, Grapevine (2017) Sun, J., Li, B., Shen, L., et al.: Dynamic modeling and hardware-in-loop simulation for a tail-sitter unmanned aerial vehicle in hovering flight. In: 2017 AIAA Modeling and Simulation Technologies Conference, pp. 874–886. AIAA, Grapevine (2017)
13.
Zurück zum Zitat Khan, W., Nahon, M.: Development and validation of a propeller slipstream model for unmanned aerial vehicles. J. Aircr. 52(6), 1985–1994 (2015)CrossRef Khan, W., Nahon, M.: Development and validation of a propeller slipstream model for unmanned aerial vehicles. J. Aircr. 52(6), 1985–1994 (2015)CrossRef
Metadaten
Titel
Modeling and Hover Control of a Dual-Rotor Tail-Sitter Unmanned Aircraft
verfasst von
Jingyang Zhong
Bifeng Song
Wenqing Yang
Peng Nian
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-65298-6_53