Skip to main content

2018 | OriginalPaper | Buchkapitel

Modeling Brain Networks with Artificial Neural Networks

verfasst von : Baran Baris Kivilcim, Itir Onal Ertugrul, Fatos T. Yarman Vural

Erschienen in: Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we propose a neural network approach to capture the functional connectivities among anatomic brain regions. The suggested approach estimates a set of brain networks, each of which represents the connectivity patterns of a cognitive process. We employ two different architectures of neural networks to extract directed and undirected brain networks from functional Magnetic Resonance Imaging (fMRI) data. Then, we use the edge weights of the estimated brain networks to train a classifier, namely, Support Vector Machines (SVM) to label the underlying cognitive process. We compare our brain network models with popular models, which generate similar functional brain networks. We observe that both undirected and directed brain networks surpass the performances of the network models used in the fMRI literature. We also observe that directed brain networks offer more discriminative features compared to the undirected ones for recognizing the cognitive processes. The representation power of the suggested brain networks are tested in a task-fMRI dataset of Human Connectome Project and a Complex Problem Solving dataset.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alchihabi, A., Kivilicim, B.B., Ekmekci, O., Newman, S.D., Vural, F.T.Y.: Decoding cognitive subtasks of complex problem solving using fMRI signals. In: 2018 26th Signal Processing and Communications Applications Conference (SIU). IEEE (2018) Alchihabi, A., Kivilicim, B.B., Ekmekci, O., Newman, S.D., Vural, F.T.Y.: Decoding cognitive subtasks of complex problem solving using fMRI signals. In: 2018 26th Signal Processing and Communications Applications Conference (SIU). IEEE (2018)
2.
Zurück zum Zitat Alchihabi, A., Kivilicim, B.B., Newman, S.D., Vural, F.T.Y.: A dynamic network representation of fMRI for modeling and analyzing the problem solving task. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 114–117. IEEE (2018) Alchihabi, A., Kivilicim, B.B., Newman, S.D., Vural, F.T.Y.: A dynamic network representation of fMRI for modeling and analyzing the problem solving task. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 114–117. IEEE (2018)
3.
Zurück zum Zitat Calhoun, V.D., Adali, T., Hansen, L.K., Larsen, J., Pekar, J.J.: ICA of functional MRI data: an overview. In: Proceedings of the International Workshop on Independent Component Analysis and Blind Signal Separation. Citeseer (2003) Calhoun, V.D., Adali, T., Hansen, L.K., Larsen, J., Pekar, J.J.: ICA of functional MRI data: an overview. In: Proceedings of the International Workshop on Independent Component Analysis and Blind Signal Separation. Citeseer (2003)
4.
Zurück zum Zitat Calhoun, V.D., Liu, J., Adalı, T.: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(1), S163–S172 (2009)CrossRef Calhoun, V.D., Liu, J., Adalı, T.: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage 45(1), S163–S172 (2009)CrossRef
5.
Zurück zum Zitat Ertugrul, I.O., Ozay, M., Vural, F.T.Y.: Hierarchical multi-resolution mesh networks for brain decoding. Brain Imaging Behav. 1–17 (2016) Ertugrul, I.O., Ozay, M., Vural, F.T.Y.: Hierarchical multi-resolution mesh networks for brain decoding. Brain Imaging Behav. 1–17 (2016)
6.
Zurück zum Zitat Fırat, O., Özay, M., Önal, I., Öztekiny, İ., Vural, F.T.Y.: Functional mesh learning for pattern analysis of cognitive processes. In: 2013 12th IEEE International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 161–167. IEEE (2013) Fırat, O., Özay, M., Önal, I., Öztekiny, İ., Vural, F.T.Y.: Functional mesh learning for pattern analysis of cognitive processes. In: 2013 12th IEEE International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 161–167. IEEE (2013)
7.
Zurück zum Zitat Firat, O., Oztekin, L., Vural, F.T.Y.: Deep learning for brain decoding. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 2784–2788. IEEE (2014) Firat, O., Oztekin, L., Vural, F.T.Y.: Deep learning for brain decoding. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 2784–2788. IEEE (2014)
8.
Zurück zum Zitat Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2017)CrossRef Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2017)CrossRef
9.
Zurück zum Zitat Koyamada, S., Shikauchi, Y., Nakae, K., Koyama, M., Ishii, S.: Deep learning of fMRI big data: a novel approach to subject-transfer decoding. arXiv preprint arXiv:1502.00093 (2015) Koyamada, S., Shikauchi, Y., Nakae, K., Koyama, M., Ishii, S.: Deep learning of fMRI big data: a novel approach to subject-transfer decoding. arXiv preprint arXiv:​1502.​00093 (2015)
11.
Zurück zum Zitat Lynall, M.E., et al.: Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30(28), 9477–9487 (2010)CrossRef Lynall, M.E., et al.: Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30(28), 9477–9487 (2010)CrossRef
12.
Zurück zum Zitat McKeown, M.J., Sejnowski, T.J.: Independent component analysis of fMRI data: examining the assumptions. Hum. Brain Mapp. 6(5–6), 368–372 (1998)CrossRef McKeown, M.J., Sejnowski, T.J.: Independent component analysis of fMRI data: examining the assumptions. Hum. Brain Mapp. 6(5–6), 368–372 (1998)CrossRef
13.
Zurück zum Zitat Menon, V.: Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15(10), 483–506 (2011)CrossRef Menon, V.: Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15(10), 483–506 (2011)CrossRef
14.
Zurück zum Zitat Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C., Thirion, B.: A supervised clustering approach for fMRI-based inference of brain states. Pattern Recogn. 45(6), 2041–2049 (2012)CrossRef Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C., Thirion, B.: A supervised clustering approach for fMRI-based inference of brain states. Pattern Recogn. 45(6), 2041–2049 (2012)CrossRef
15.
Zurück zum Zitat Mitchell, T.M., et al.: Learning to decode cognitive states from brain images. Mach. Learn. 57(1–2), 145–175 (2004)CrossRef Mitchell, T.M., et al.: Learning to decode cognitive states from brain images. Mach. Learn. 57(1–2), 145–175 (2004)CrossRef
16.
Zurück zum Zitat Newman, S.D., Greco, J.A., Lee, D.: An fMRI study of the tower of London: a look at problem structure differences. Brain Res. 1286, 123–132 (2009)CrossRef Newman, S.D., Greco, J.A., Lee, D.: An fMRI study of the tower of London: a look at problem structure differences. Brain Res. 1286, 123–132 (2009)CrossRef
17.
Zurück zum Zitat Onal, I., Ozay, M., Mizrak, E., Oztekin, I., Vural, F.T.Y.: A new representation of fMRI signal by a set of local meshes for brain decoding. IEEE Trans. Sig. Inf. Process. Netw. 3(4), 683–694 (2017)MathSciNet Onal, I., Ozay, M., Mizrak, E., Oztekin, I., Vural, F.T.Y.: A new representation of fMRI signal by a set of local meshes for brain decoding. IEEE Trans. Sig. Inf. Process. Netw. 3(4), 683–694 (2017)MathSciNet
18.
Zurück zum Zitat Onal, I., Ozay, M., Vural, F.T.Y.: Modeling voxel connectivity for brain decoding. In: 2015 International Workshop on Pattern Recognition in NeuroImaging (PRNI), pp. 5–8. IEEE (2015) Onal, I., Ozay, M., Vural, F.T.Y.: Modeling voxel connectivity for brain decoding. In: 2015 International Workshop on Pattern Recognition in NeuroImaging (PRNI), pp. 5–8. IEEE (2015)
19.
Zurück zum Zitat Ozay, M., Öztekin, I., Öztekin, U., Vural, F.T.Y.: Mesh learning for classifying cognitive processes. arXiv preprint arXiv:1205.2382 (2012) Ozay, M., Öztekin, I., Öztekin, U., Vural, F.T.Y.: Mesh learning for classifying cognitive processes. arXiv preprint arXiv:​1205.​2382 (2012)
20.
Zurück zum Zitat Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45(1), S199–S209 (2009)CrossRef Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45(1), S199–S209 (2009)CrossRef
21.
Zurück zum Zitat Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., Van De Ville, D.: Decoding brain states from fMRI connectivity graphs. Neuroimage 56(2), 616–626 (2011)CrossRef Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., Van De Ville, D.: Decoding brain states from fMRI connectivity graphs. Neuroimage 56(2), 616–626 (2011)CrossRef
22.
Zurück zum Zitat Smith, S.M., Hyvärinen, A., Varoquaux, G., Miller, K.L., Beckmann, C.F.: Group-PCA for very large fMRI datasets. Neuroimage 101, 738–749 (2014)CrossRef Smith, S.M., Hyvärinen, A., Varoquaux, G., Miller, K.L., Beckmann, C.F.: Group-PCA for very large fMRI datasets. Neuroimage 101, 738–749 (2014)CrossRef
23.
Zurück zum Zitat Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)CrossRef Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)CrossRef
24.
Zurück zum Zitat Vaidyanathan, P.: The theory of linear prediction. Synth. Lect. Sig. Process. 2(1), 181–184 (2007) Vaidyanathan, P.: The theory of linear prediction. Synth. Lect. Sig. Process. 2(1), 181–184 (2007)
25.
Zurück zum Zitat Wang, X., Hutchinson, R., Mitchell, T.M.: Training fMRI classifiers to detect cognitive states across multiple human subjects. In: Advances in Neural Information Processing Systems, pp. 709–716 (2004) Wang, X., Hutchinson, R., Mitchell, T.M.: Training fMRI classifiers to detect cognitive states across multiple human subjects. In: Advances in Neural Information Processing Systems, pp. 709–716 (2004)
26.
Zurück zum Zitat Zhou, Z., Ding, M., Chen, Y., Wright, P., Lu, Z., Liu, Y.: Detecting directional influence in fMRI connectivity analysis using PCA based granger causality. Brain Res. 1289, 22–29 (2009)CrossRef Zhou, Z., Ding, M., Chen, Y., Wright, P., Lu, Z., Liu, Y.: Detecting directional influence in fMRI connectivity analysis using PCA based granger causality. Brain Res. 1289, 22–29 (2009)CrossRef
Metadaten
Titel
Modeling Brain Networks with Artificial Neural Networks
verfasst von
Baran Baris Kivilcim
Itir Onal Ertugrul
Fatos T. Yarman Vural
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-00689-1_5