Skip to main content

2018 | Buch

Modeling Electrochemical Energy Storage at the Atomic Scale

insite
SUCHEN

Über dieses Buch

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.


Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.

The chapters “Assessment of Simple Models for Molecular Simulation of Ethylene Carbonate and Propylene Carbonate as Solvents for Electrolyte Solutions” and “Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes—A Review” are available open access under a CC BY 4.0 License via link.springer.com.

Inhaltsverzeichnis

Frontmatter
Fundamental Challenges for Modeling Electrochemical Energy Storage Systems at the Atomic Scale
Abstract
There is a strong need to improve the efficiency of electrochemical energy storage, but progress is hampered by significant technological and scientific challenges. This review describes the potential contribution of atomic-scale modeling to the development of more efficient batteries, with a particular focus on firstprinciples electronic structure calculations. Numerical and theoretical obstacles are discussed, along with ways to overcome them, and some recent examples are presented illustrating the insights into electrochemical energy storage that can be gained from quantum chemical studies.
Axel Groß
Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry
Abstract
Energy storage is considered a key technology for successful realization of renewable energies and electrification of the powertrain. This review discusses the lithium ion battery as the leading electrochemical storage technology, focusing on its main components, namely electrode(s) as active and electrolyte as inactive materials. State-of-the-art (SOTA) cathode and anode materials are reviewed, emphasizing viable approaches towards advancement of the overall performance and reliability of lithium ion batteries; however, existing challenges are not neglected. Liquid aprotic electrolytes for lithium ion batteries comprise a lithium ion conducting salt, a mixture of solvents and various additives. Due to its complexity and its role in a given cell chemistry, electrolyte, besides the cathode materials, is identified as most susceptible, as well as the most promising, component for further improvement of lithium ion batteries. The working principle of the most important commercial electrolyte additives is also discussed. With regard to new applications and new cell chemistries, e.g., operation at high temperature and high voltage, further improvements of both active and inactive materials are inevitable. In this regard, theoretical support by means of modeling, calculation and simulation approaches can be very helpful to ex ante pre-select and identify the aforementioned components suitable for a given cell chemistry as well as to understand degradation phenomena at the electrolyte/electrode interface. This overview highlights the advantages and limitations of SOTA lithium battery systems, aiming to encourage researchers to carry forward and strengthen the research towards advanced lithium ion batteries, tailored for specific applications.
Johannes Kasnatscheew, Ralf Wagner, Martin Winter, Isidora Cekic-Laskovic

Open Access

Assessment of Simple Models for Molecular Simulation of Ethylene Carbonate and Propylene Carbonate as Solvents for Electrolyte Solutions
Abstract
Progress in understanding liquid ethylene carbonate (EC) and propylene carbonate (PC) on the basis of molecular simulation, emphasizing simple models of interatomic forces, is reviewed. Results on the bulk liquids are examined from the perspective of anticipated applications to materials for electrical energy storage devices. Preliminary results on electrochemical double-layer capacitors based on carbon nanotube forests and on model solid-electrolyte interphase (SEI) layers of lithium ion batteries are considered as examples. The basic results discussed suggest that an empirically parameterized, non-polarizable force field can reproduce experimental structural, thermodynamic, and dielectric properties of EC and PC liquids with acceptable accuracy. More sophisticated force fields might include molecular polarizability and Buckingham-model description of inter-atomic overlap repulsions as extensions to Lennard-Jones models of van der Waals interactions. Simple approaches should be similarly successful also for applications to organic molecular ions in EC/PC solutions, but the important case of Li+ deserves special attention because of the particularly strong interactions of that small ion with neighboring solvent molecules. To treat the Li+ ions in liquid EC/PC solutions, we identify interaction models defined by empirically scaled partial charges for ion-solvent interactions. The empirical adjustments use more basic inputs, electronic structure calculations and ab initio molecular dynamics simulations, and also experimental results on Li+ thermodynamics and transport in EC/PC solutions. Application of such models to the mechanism of Li+ transport in glassy SEI models emphasizes the advantage of long time-scale molecular dynamics studies of these non-equilibrium materials.
Mangesh I. Chaudhari, Ajay Muralidharan, Lawrence R. Pratt, Susan B. Rempe

Open Access

Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes—A Review
Abstract
Fundamental molecular-level understanding of functional properties of liquid solutions provides an important basis for designing optimized electrolytes for numerous applications. In particular, exhaustive knowledge of solvation structure, stability, and transport properties is critical for developing stable electrolytes for fast-charging and high-energy-density next-generation energy storage systems. Accordingly, there is growing interest in the rational design of electrolytes for beyond lithium-ion systems by tuning the molecular-level interactions of solvate species present in the electrolytes. Here we present a review of the solvation structure of multivalent electrolytes and its impact on the electrochemical performance of these batteries. A direct correlation between solvate species present in the solution and macroscopic properties of electrolytes is sparse for multivalent electrolytes and contradictory results have been reported in the literature. This review aims to illustrate the current understanding, compare results, and highlight future needs and directions to enable the deep understanding needed for the rational design of improved multivalent electrolytes.
Nav Nidhi Rajput, Trevor J. Seguin, Brandon M. Wood, Xiaohui Qu, Kristin A. Persson
Towards Synergistic Electrode–Electrolyte Design Principles for Nonaqueous Li–O2 batteries
Abstract
One route toward sustainable land and aerial transportation is based on electrified vehicles. To enable electrification in transportation, there is a need for high-energy-density batteries, and this has led to an enormous interest in lithium–oxygen batteries. Several critical challenges remain with respect to realizing a practical lithium–oxygen battery. In this article, we present a detailed overview of theoretical efforts to formulate design principles for identifying stable electrolytes and electrodes with the desired functionality and stability. We discuss design principles relating to electrolytes and the additional stability challenges that arise at the cathode–electrolyte interface. Based on a thermodynamic analysis, we discuss two important requirements for the cathode: the ability to nucleate the desired discharge product, Li2O2, and the ability to selectively activate only this discharge product while suppressing lithium oxide, the undesired secondary discharge product. We propose preliminary guidelines for determining the chemical stability of the electrode and illustrate the challenge associated with electrode selection using the examples of carbon cathodes and transition metals. We believe that a synergistic design framework for identifying electrolyte–electrode formulations is needed to realize a practical Li–O2 battery.
Abhishek Khetan, Dilip Krishnamurthy, Venkatasubramanian Viswanathan
Metadaten
Titel
Modeling Electrochemical Energy Storage at the Atomic Scale
herausgegeben von
Dr. Martin Korth
Copyright-Jahr
2018
Electronic ISBN
978-3-030-00593-1
Print ISBN
978-3-030-00592-4
DOI
https://doi.org/10.1007/978-3-030-00593-1