Skip to main content
Erschienen in: Tribology Letters 1/2021

01.03.2021 | Original Paper

Modeling of 3D Surface Morphologies for Predicting the Mechanical Contact Behaviors and Associated Electrical Contact Resistance

verfasst von: Chao Zhang, Wanbin Ren

Erschienen in: Tribology Letters | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The accurate estimation of real contact area plays an important role in predicting the mechanical contact situation and associated electrical contact resistance for engineering rough surfaces. In this work, an improved peak identification method is proposed to reconstruct the rough surface morphologies numerically. A universal calculation process of real contact area and load force under the progressive indentation depth for rough surfaces is developed. Furthermore, a three-dimensional finite element model for analyzing the mechanical contact problem is built and the electromechanical coupling simulation results are compared with that obtained by our novel calculation method. The proposed solution is beneficial for accurate calculation of contact area, which is featured by high aspect ratio in the case of micro-contact. The relationship between electrical contact resistance and load force is also captured in the initial contact process.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. London A. 295, 300–319 (1966)CrossRef Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. London A. 295, 300–319 (1966)CrossRef
2.
Zurück zum Zitat Thomas, T.R.: Rough Surfaces. Longman Group Limited, New York (1982) Thomas, T.R.: Rough Surfaces. Longman Group Limited, New York (1982)
3.
Zurück zum Zitat Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)CrossRef Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)CrossRef
4.
Zurück zum Zitat Scaraggi, M., Carbone, G., Dini, D.: Experimental evidence of micro-EHL lubrication in rough soft contacts. Tribol. Lett. 43, 169–174 (2011)CrossRef Scaraggi, M., Carbone, G., Dini, D.: Experimental evidence of micro-EHL lubrication in rough soft contacts. Tribol. Lett. 43, 169–174 (2011)CrossRef
5.
Zurück zum Zitat Bottiglione, F., Carbone, G., Mangialardi, L., Mantriota, G.: Leakage mechanism in flat seals. J. Appl. Phys. 104902, 1–7 (2009) Bottiglione, F., Carbone, G., Mangialardi, L., Mantriota, G.: Leakage mechanism in flat seals. J. Appl. Phys. 104902, 1–7 (2009)
6.
Zurück zum Zitat Ciavarella, M., Dibello, S., Demelio, G.: Conductance of rough random profiles. Int. J. Solids Struct. 45, 879–893 (2008)CrossRef Ciavarella, M., Dibello, S., Demelio, G.: Conductance of rough random profiles. Int. J. Solids Struct. 45, 879–893 (2008)CrossRef
7.
Zurück zum Zitat Slade, P.G.: Electrical Contacts: Principles and Applications. CRC, New York (2013) Slade, P.G.: Electrical Contacts: Principles and Applications. CRC, New York (2013)
8.
Zurück zum Zitat Bahrami, M., Yovanovich, M.M., Culham, J.R.: Thermal contact resistance at low contact pressure: effect of elastic deformation. Int. J. Heat Mass Transf. 48, 3284–3293 (2005)CrossRef Bahrami, M., Yovanovich, M.M., Culham, J.R.: Thermal contact resistance at low contact pressure: effect of elastic deformation. Int. J. Heat Mass Transf. 48, 3284–3293 (2005)CrossRef
9.
Zurück zum Zitat Kalin, M.: Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review. Mater. Sci. Eng. A. 374, 390–397 (2004)CrossRef Kalin, M.: Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review. Mater. Sci. Eng. A. 374, 390–397 (2004)CrossRef
10.
Zurück zum Zitat Jackson, R.L.: A multi-scale model for contact between rough surfaces. Wear. 261, 1337–1347 (2006)CrossRef Jackson, R.L.: A multi-scale model for contact between rough surfaces. Wear. 261, 1337–1347 (2006)CrossRef
11.
Zurück zum Zitat Salgon, J.J., RobbeValloire, F., Blouet, J., Bransier, J.: A mechanical and geometrical approach to thermal contact resistance. Int. J. Heat Mass Transf. 40, 1121–1129 (1997)CrossRef Salgon, J.J., RobbeValloire, F., Blouet, J., Bransier, J.: A mechanical and geometrical approach to thermal contact resistance. Int. J. Heat Mass Transf. 40, 1121–1129 (1997)CrossRef
12.
Zurück zum Zitat Anciaux, G., Molinari, J.F.: A molecular dynamics and finite elements study of nanoscale thermal contact conductance. Int. J. Heat Mass Transf. 59, 384–392 (2013)CrossRef Anciaux, G., Molinari, J.F.: A molecular dynamics and finite elements study of nanoscale thermal contact conductance. Int. J. Heat Mass Transf. 59, 384–392 (2013)CrossRef
13.
Zurück zum Zitat Müser, M.H., Dapp, W.B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, T.A., et al.: Meeting the contact-mechanics challenge. Tribol. Lett. 65(4), 118 (2017)CrossRef Müser, M.H., Dapp, W.B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, T.A., et al.: Meeting the contact-mechanics challenge. Tribol. Lett. 65(4), 118 (2017)CrossRef
14.
Zurück zum Zitat Afferrante, L., Carbone, G., Demelio, G.: Interacting and coalescing Hertzian asperities: a new multiasperity contact model. Wear. 278, 28–33 (2012)CrossRef Afferrante, L., Carbone, G., Demelio, G.: Interacting and coalescing Hertzian asperities: a new multiasperity contact model. Wear. 278, 28–33 (2012)CrossRef
15.
Zurück zum Zitat Menga, N.: Rough frictional contact of elastic thin layers: the effect of geometrical coupling. Int. J. Solids Struct. 164, 212–220 (2019)CrossRef Menga, N.: Rough frictional contact of elastic thin layers: the effect of geometrical coupling. Int. J. Solids Struct. 164, 212–220 (2019)CrossRef
16.
Zurück zum Zitat Bhushan, B.: Springer handbook of nanotechnology. Springer, Berlin (2004)CrossRef Bhushan, B.: Springer handbook of nanotechnology. Springer, Berlin (2004)CrossRef
17.
Zurück zum Zitat Komvopoulos, K.: Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory. J. Adhes. Sci. Technol. 17(4), 477–517 (2012)CrossRef Komvopoulos, K.: Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory. J. Adhes. Sci. Technol. 17(4), 477–517 (2012)CrossRef
18.
Zurück zum Zitat Ren, W.B., Chang, C., Chen, Y., Xue, S.J.: Investigation of the surface adhesion phenomena and mechanism of gold-plated contacts at superlow making/breaking speed. IEEE Trans. Compon. Packag. Technol. 5(6), 771–778 (2015) Ren, W.B., Chang, C., Chen, Y., Xue, S.J.: Investigation of the surface adhesion phenomena and mechanism of gold-plated contacts at superlow making/breaking speed. IEEE Trans. Compon. Packag. Technol. 5(6), 771–778 (2015)
19.
Zurück zum Zitat Pau, M.: Estimation of real contact area in a wheel–rail system by means of ultrasonic waves. Tribol. Int. 36, 687–690 (2003)CrossRef Pau, M.: Estimation of real contact area in a wheel–rail system by means of ultrasonic waves. Tribol. Int. 36, 687–690 (2003)CrossRef
20.
Zurück zum Zitat Ovcharenko, A., Halperin, G., Etsion, I., Varenberg, M.: A novel test rig for in situ and real time optical measurement of the contact area evolution during presliding of a spherical contact. Tribol. Lett. 23, 55–63 (2006)CrossRef Ovcharenko, A., Halperin, G., Etsion, I., Varenberg, M.: A novel test rig for in situ and real time optical measurement of the contact area evolution during presliding of a spherical contact. Tribol. Lett. 23, 55–63 (2006)CrossRef
21.
Zurück zum Zitat Gonzalez-Valadez, M., Dwyer-Joyce, R.S.: Asperity creep measured by the reflection of ultrasound at rough surface contact. J. Tribol. 021410, 1–8 (2009) Gonzalez-Valadez, M., Dwyer-Joyce, R.S.: Asperity creep measured by the reflection of ultrasound at rough surface contact. J. Tribol. 021410, 1–8 (2009)
22.
Zurück zum Zitat Swingler, J.: The resolution dependence of measured fractal characteristics for a real un-dismantled electrical contact interface. Wear. 268, 1178–1183 (2010)CrossRef Swingler, J.: The resolution dependence of measured fractal characteristics for a real un-dismantled electrical contact interface. Wear. 268, 1178–1183 (2010)CrossRef
23.
Zurück zum Zitat Thomas, G.B., McBride, J.W.: In-situ contact surface characterization in a mems ohmic switch under low current switching. Technologies. 6(2), 47 (2018)CrossRef Thomas, G.B., McBride, J.W.: In-situ contact surface characterization in a mems ohmic switch under low current switching. Technologies. 6(2), 47 (2018)CrossRef
24.
Zurück zum Zitat Megalingam, A.: Comparative contact analysis study of finite element method based deterministic, simplified multi-asperity and modified statistical contact models. J. Tri. 014503, 1–6 (2012) Megalingam, A.: Comparative contact analysis study of finite element method based deterministic, simplified multi-asperity and modified statistical contact models. J. Tri. 014503, 1–6 (2012)
25.
Zurück zum Zitat Liu, H., McBride, J.W.: A finite-element-based contact resistance model for rough surfaces: applied to a bilayered au/MWCNT composite. IEEE Trans. Compon. Packag. Technol. 8(6), 919–926 (2018) Liu, H., McBride, J.W.: A finite-element-based contact resistance model for rough surfaces: applied to a bilayered au/MWCNT composite. IEEE Trans. Compon. Packag. Technol. 8(6), 919–926 (2018)
26.
Zurück zum Zitat Zhang, F.K., Liu, J.H., Ding, X.Y., Wang, R.L.: Experimental and finite element analyses of contact behaviors between non-transparent rough surfaces. J. Mech. Phys. Solids. 126, 87–100 (2019)CrossRef Zhang, F.K., Liu, J.H., Ding, X.Y., Wang, R.L.: Experimental and finite element analyses of contact behaviors between non-transparent rough surfaces. J. Mech. Phys. Solids. 126, 87–100 (2019)CrossRef
27.
Zurück zum Zitat Jackson, R.L., Green, I.: A statistical model of elasto-plastic asperity contact between rough surfaces. Tribol. Int. 39, 906–914 (2006)CrossRef Jackson, R.L., Green, I.: A statistical model of elasto-plastic asperity contact between rough surfaces. Tribol. Int. 39, 906–914 (2006)CrossRef
28.
Zurück zum Zitat McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear. 107, 37–60 (1986)CrossRef McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear. 107, 37–60 (1986)CrossRef
29.
Zurück zum Zitat Greenwood, J.A.: A simplified elliptical model of rough surface contact. Wear. 261, 191–200 (2006)CrossRef Greenwood, J.A.: A simplified elliptical model of rough surface contact. Wear. 261, 191–200 (2006)CrossRef
30.
Zurück zum Zitat Majumdar, A., Bhushan, B.: Fractal model of elastic-plastic contact between rough surfaces. J. Tribol. 112, 205–216 (1990)CrossRef Majumdar, A., Bhushan, B.: Fractal model of elastic-plastic contact between rough surfaces. J. Tribol. 112, 205–216 (1990)CrossRef
31.
Zurück zum Zitat Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84(7), 3617–3624 (1998)CrossRef Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84(7), 3617–3624 (1998)CrossRef
32.
Zurück zum Zitat Kogut, L., Komvopoulos, K.: Electrical contact resistance theory for conductive rough surfaces. J. Appl. Phys. 95(2), 576–585 (2004)CrossRef Kogut, L., Komvopoulos, K.: Electrical contact resistance theory for conductive rough surfaces. J. Appl. Phys. 95(2), 576–585 (2004)CrossRef
33.
Zurück zum Zitat Whitehouse, D.: Surfaces and their Measurement. Hermes Penton, London (2002) Whitehouse, D.: Surfaces and their Measurement. Hermes Penton, London (2002)
34.
Zurück zum Zitat Greenwood, J.A.: A unified theory of surface roughness. Proc. R. Soc. Lond. A. 393, 133–157 (1984)CrossRef Greenwood, J.A.: A unified theory of surface roughness. Proc. R. Soc. Lond. A. 393, 133–157 (1984)CrossRef
35.
Zurück zum Zitat Whitehouse, D.J., Phillips, M.J.: Sampling in a two-dimensional plane. J. Phys. A. 18, 2465–2477 (1985)CrossRef Whitehouse, D.J., Phillips, M.J.: Sampling in a two-dimensional plane. J. Phys. A. 18, 2465–2477 (1985)CrossRef
36.
Zurück zum Zitat Yanagi, K., Hara, S., Endoh, T.: Summit identification of anisotropic surface texture and directionality assessment based on asperity tip geometry. Int. J. Mach. Tools Manuf. 41, 1863–1871 (2001)CrossRef Yanagi, K., Hara, S., Endoh, T.: Summit identification of anisotropic surface texture and directionality assessment based on asperity tip geometry. Int. J. Mach. Tools Manuf. 41, 1863–1871 (2001)CrossRef
37.
Zurück zum Zitat Tomanik, E.: Modelling of the asperity contact area on actual 3D surfaces. SAE Technical Paper. 01, 1864 (2005) Tomanik, E.: Modelling of the asperity contact area on actual 3D surfaces. SAE Technical Paper. 01, 1864 (2005)
38.
Zurück zum Zitat Kalin, M., Pogačnik, A., Etsion, I., Raeymaekers, B.: Comparing surface topography parameters of rough surfaces obtained with spectral moments and deterministic methods. Tribol. Int. 93, 137–141 (2016)CrossRef Kalin, M., Pogačnik, A., Etsion, I., Raeymaekers, B.: Comparing surface topography parameters of rough surfaces obtained with spectral moments and deterministic methods. Tribol. Int. 93, 137–141 (2016)CrossRef
39.
Zurück zum Zitat Whitehouse, D.J.: Digital techniques. In: Thomas, T.R. (ed.) Rough surfaces. Longman, London (1982) Whitehouse, D.J.: Digital techniques. In: Thomas, T.R. (ed.) Rough surfaces. Longman, London (1982)
40.
Zurück zum Zitat Whitehouse, D.J.: Handbook of surface metrology. Institute of Physics, Bristol (1994) Whitehouse, D.J.: Handbook of surface metrology. Institute of Physics, Bristol (1994)
41.
Zurück zum Zitat Poon, C.Y., Bhushan, B.: Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler. Wear. 190(1), 76–88 (1995)CrossRef Poon, C.Y., Bhushan, B.: Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler. Wear. 190(1), 76–88 (1995)CrossRef
42.
Zurück zum Zitat Jackson, R.L., Green, I.: On the modelling of elastic contact between rough surfaces. Tribol. Trans. 54, 300–314 (2011)CrossRef Jackson, R.L., Green, I.: On the modelling of elastic contact between rough surfaces. Tribol. Trans. 54, 300–314 (2011)CrossRef
43.
Zurück zum Zitat Kalin, M., Pogačnik, A.: Criteria and properties of the asperity peaks on 3D engineering surfaces. Wear. 308, 95–104 (2013)CrossRef Kalin, M., Pogačnik, A.: Criteria and properties of the asperity peaks on 3D engineering surfaces. Wear. 308, 95–104 (2013)CrossRef
44.
Zurück zum Zitat Johnson, K.L.: Contact mechanics. Cambridge University Press, New York (1985)CrossRef Johnson, K.L.: Contact mechanics. Cambridge University Press, New York (1985)CrossRef
45.
Zurück zum Zitat Hertz, H.: Über Die Berührung Fester Elastischer Körper. J. Reine Angew. Math. 92, 156 (1882)CrossRef Hertz, H.: Über Die Berührung Fester Elastischer Körper. J. Reine Angew. Math. 92, 156 (1882)CrossRef
46.
Zurück zum Zitat Ausloos, M., Berman, D.H.: A multivariate Weierstrass-Mandelbrot function. Proc. R. Soc. Lond. A. 400(1819), 331–350 (1985)CrossRef Ausloos, M., Berman, D.H.: A multivariate Weierstrass-Mandelbrot function. Proc. R. Soc. Lond. A. 400(1819), 331–350 (1985)CrossRef
47.
Zurück zum Zitat Popov, V.L.: Contact mechanics and friction: Physical principles and applications. Springer, New York (2010)CrossRef Popov, V.L.: Contact mechanics and friction: Physical principles and applications. Springer, New York (2010)CrossRef
48.
Zurück zum Zitat Waddad, Y., Magnier, V., Dufrénoy, P., De Saxcé, G.: A multiscale method for frictionless contact mechanics of rough surfaces. Tribol. Int. 96, 109–121 (2016)CrossRef Waddad, Y., Magnier, V., Dufrénoy, P., De Saxcé, G.: A multiscale method for frictionless contact mechanics of rough surfaces. Tribol. Int. 96, 109–121 (2016)CrossRef
49.
Zurück zum Zitat Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear. 35, 87–111 (1975)CrossRef Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear. 35, 87–111 (1975)CrossRef
50.
Zurück zum Zitat Carbone, G.: A slightly corrected Greenwood and Williamson model predicts asymptotic linearity between contact area and load. J. Mech. Phys. Solids. 57(7), 1093–1102 (2009)CrossRef Carbone, G.: A slightly corrected Greenwood and Williamson model predicts asymptotic linearity between contact area and load. J. Mech. Phys. Solids. 57(7), 1093–1102 (2009)CrossRef
51.
Zurück zum Zitat Hyun, S., Pei, L., Molinari, J.F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E. 026117, 1–12 (2004) Hyun, S., Pei, L., Molinari, J.F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E. 026117, 1–12 (2004)
52.
Zurück zum Zitat Yang, C., Persson, B.N.J.: Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys. Rev. Lett. 024303, 1–4 (2008) Yang, C., Persson, B.N.J.: Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys. Rev. Lett. 024303, 1–4 (2008)
53.
Zurück zum Zitat Carbone, G., Scaraggi, M., Tartaglino, U.: Adhesive contact of rough surfaces: comparison between numerical calculations and analytical theories. Eur. Phys. J. E. 30, 65–74 (2009)CrossRef Carbone, G., Scaraggi, M., Tartaglino, U.: Adhesive contact of rough surfaces: comparison between numerical calculations and analytical theories. Eur. Phys. J. E. 30, 65–74 (2009)CrossRef
54.
Zurück zum Zitat Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: A new efficient numerical method for contact mechanics of rough surfaces. Int. J. Solids Struct. 49, 338–343 (2012)CrossRef Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: A new efficient numerical method for contact mechanics of rough surfaces. Int. J. Solids Struct. 49, 338–343 (2012)CrossRef
55.
Zurück zum Zitat Yastrebov, V.A., Anciaux, G., Molinari, J.F.: From infinitesimal to full contact between rough surfaces: evolution of the contact area. Int. J. Solids Struct. 52, 83–102 (2015)CrossRef Yastrebov, V.A., Anciaux, G., Molinari, J.F.: From infinitesimal to full contact between rough surfaces: evolution of the contact area. Int. J. Solids Struct. 52, 83–102 (2015)CrossRef
56.
Zurück zum Zitat Majumdar, A., Tien, C.L.: Fractal characterization and simulation of rough surfaces. Wear. 136, 313–327 (1990)CrossRef Majumdar, A., Tien, C.L.: Fractal characterization and simulation of rough surfaces. Wear. 136, 313–327 (1990)CrossRef
Metadaten
Titel
Modeling of 3D Surface Morphologies for Predicting the Mechanical Contact Behaviors and Associated Electrical Contact Resistance
verfasst von
Chao Zhang
Wanbin Ren
Publikationsdatum
01.03.2021
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 1/2021
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-020-01392-9

Weitere Artikel der Ausgabe 1/2021

Tribology Letters 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.