Skip to main content
Erschienen in: Experiments in Fluids 1/2018

01.01.2018 | Research Article

Modeling of a pitching and plunging airfoil using experimental flow field and load measurements

verfasst von: Victor Troshin, Avraham Seifert

Erschienen in: Experiments in Fluids | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main goal of the current paper is to outline a low-order modeling procedure of a heaving airfoil in a still fluid using experimental measurements. Due to its relative simplicity, the proposed procedure is applicable for the analysis of flow fields within complex and unsteady geometries and it is suitable for analyzing the data obtained by experimentation. Currently, this procedure is used to model and predict the flow field evolution using a small number of low profile load sensors and flow field measurements. A time delay neural network is used to estimate the flow field. The neural network estimates the amplitudes of the most energetic modes using four sensory inputs. The modes are calculated using proper orthogonal decomposition of the flow field data obtained experimentally by time-resolved, phase-locked particle imaging velocimetry. To permit the use of proper orthogonal decomposition, the measured flow field is mapped onto a stationary domain using volume preserving transformation. The analysis performed by the model showed good estimation quality within the parameter range used in the training procedure. However, the performance deteriorates for cases out of this range. This situation indicates that, to improve the robustness of the model, both the decomposition and the training data sets must be diverse in terms of input parameter space. In addition, the results suggest that the property of volume preservation of the mapping does not affect the model quality as long as the model is not based on the Galerkin approximation. Thus, it may be relaxed for cases with more complex geometry and kinematics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahuja S, Rowley CW (2010) Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators. J Fluid Mech 645:447–478MathSciNetCrossRefMATH Ahuja S, Rowley CW (2010) Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators. J Fluid Mech 645:447–478MathSciNetCrossRefMATH
Zurück zum Zitat Dawson ST, Schiavone NK, Rowley CW, Williams DR (2015) A data-driven modeling framework for predicting forces and pressures on a rapidly pitching airfoil. In: 45th AIAA fluid dynamics conference. AIAA AVIATION Forum. American Institute of Aeronautics Astronautics. https://doi.org/10.2514/6.2015-2767 Dawson ST, Schiavone NK, Rowley CW, Williams DR (2015) A data-driven modeling framework for predicting forces and pressures on a rapidly pitching airfoil. In: 45th AIAA fluid dynamics conference. AIAA AVIATION Forum. American Institute of Aeronautics Astronautics. https://​doi.​org/​10.​2514/​6.​2015-2767
Zurück zum Zitat Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef
Zurück zum Zitat Engelbrecht AP (2007) Computational intelligence: an introduction. Wiley, OxfordCrossRef Engelbrecht AP (2007) Computational intelligence: an introduction. Wiley, OxfordCrossRef
Zurück zum Zitat Fumitaka I, San-Mou J, Kelly C (2010) Proper orthogonal decomposition and Fourier analysis on the energy release rate dynamics. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2010-22 Fumitaka I, San-Mou J, Kelly C (2010) Proper orthogonal decomposition and Fourier analysis on the energy release rate dynamics. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Aerospace Sciences Meetings. American Institute of Aeronautics and Astronautics. https://​doi.​org/​10.​2514/​6.​2010-22
Zurück zum Zitat Gordon WJ, Thiel LC (1982) Transfinite mappings and their application to grid generation. Appl Math Comput 10:171–233MathSciNetMATH Gordon WJ, Thiel LC (1982) Transfinite mappings and their application to grid generation. Appl Math Comput 10:171–233MathSciNetMATH
Zurück zum Zitat Graham W, Peraire J, Tang K (1999) Optimal control of vortex shedding using low-order models. Part I—open-loop model development. Int J Numer Methods Eng 44:945–972CrossRefMATH Graham W, Peraire J, Tang K (1999) Optimal control of vortex shedding using low-order models. Part I—open-loop model development. Int J Numer Methods Eng 44:945–972CrossRefMATH
Zurück zum Zitat Hassoun MH (1995) Fundamentals of artificial neural networks. MIT Press, MassachusettsMATH Hassoun MH (1995) Fundamentals of artificial neural networks. MIT Press, MassachusettsMATH
Zurück zum Zitat Holmes P, Lumley JL, Berkooz G (1998) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, CambridgeMATH Holmes P, Lumley JL, Berkooz G (1998) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Kotecki K, Hausa H, Nowak M, Stankiewicz W, Roszak R, Morzyński M (2015) Deformation of curvilinear meshes for aeroelastic analysis. In: Kroll N, Hirsch C, Bassi F, Johnston C, Hillewaert K (eds) IDIHOM: industrialization of high-order methods—a top-down approach: results of a collaborative research Project Funded by the European Union, 2010–2014. Springer, Cham, pp 125–131. https://doi.org/10.1007/978-3-319-12886-3_7 Kotecki K, Hausa H, Nowak M, Stankiewicz W, Roszak R, Morzyński M (2015) Deformation of curvilinear meshes for aeroelastic analysis. In: Kroll N, Hirsch C, Bassi F, Johnston C, Hillewaert K (eds) IDIHOM: industrialization of high-order methods—a top-down approach: results of a collaborative research Project Funded by the European Union, 2010–2014. Springer, Cham, pp 125–131. https://​doi.​org/​10.​1007/​978-3-319-12886-3_​7
Zurück zum Zitat Lehmann FO (2009) Wing–wake interaction reduces power consumption in insect tandem wings. Exp Fluids 46:765–775CrossRef Lehmann FO (2009) Wing–wake interaction reduces power consumption in insect tandem wings. Exp Fluids 46:765–775CrossRef
Zurück zum Zitat Lehmann F-O (2012) Wake Structure and vortex development in flight of fruit flies using high-speed particle image velocimetry nature-inspired. Fluid Mech:65–79 Lehmann F-O (2012) Wake Structure and vortex development in flight of fruit flies using high-speed particle image velocimetry nature-inspired. Fluid Mech:65–79
Zurück zum Zitat MacKay DJ (1992) A practical Bayesian framework for backpropagation networks. Neural Comput 4:448–472CrossRef MacKay DJ (1992) A practical Bayesian framework for backpropagation networks. Neural Comput 4:448–472CrossRef
Zurück zum Zitat Noack BR, Afanasiev K, Morzynski M, Tadmor G, Thiele F (2003) A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J Fluid Mech 497:335–363MathSciNetCrossRefMATH Noack BR, Afanasiev K, Morzynski M, Tadmor G, Thiele F (2003) A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J Fluid Mech 497:335–363MathSciNetCrossRefMATH
Zurück zum Zitat Noack BR, Papas P, Monkewitz PA (2005) The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J Fluid Mech 523:339–365MathSciNetCrossRefMATH Noack BR, Papas P, Monkewitz PA (2005) The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J Fluid Mech 523:339–365MathSciNetCrossRefMATH
Zurück zum Zitat Noack BR, Morzynski M, Tadmor G (2011) Reduced-order modelling for flow control. Springer, WienCrossRefMATH Noack BR, Morzynski M, Tadmor G (2011) Reduced-order modelling for flow control. Springer, WienCrossRefMATH
Zurück zum Zitat Ol MV, Bernal L, Kang CK, Shyy W (2009) Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp Fluids 46:883–901CrossRef Ol MV, Bernal L, Kang CK, Shyy W (2009) Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp Fluids 46:883–901CrossRef
Zurück zum Zitat Shyy W, Berg M, Ljungqvist D (1999) Flapping and flexible wings for biological and micro air vehicles. Prog Aerosp Sci 35:455–505CrossRef Shyy W, Berg M, Ljungqvist D (1999) Flapping and flexible wings for biological and micro air vehicles. Prog Aerosp Sci 35:455–505CrossRef
Zurück zum Zitat Shyy W et al (2008) Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mech Sin 24:351–373CrossRefMATH Shyy W et al (2008) Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mech Sin 24:351–373CrossRefMATH
Zurück zum Zitat Shyy W, Aono H, Chimakurthi S, Trizila P, Kang CK, Cesnik C, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Progress Aerosp Sci 46:284–327CrossRef Shyy W, Aono H, Chimakurthi S, Trizila P, Kang CK, Cesnik C, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Progress Aerosp Sci 46:284–327CrossRef
Zurück zum Zitat Shyy W, Aono H, Kang C-k, Liu H (2013) An introduction to flapping wing aerodynamics, vol 37. Cambridge University Press, CambridgeCrossRef Shyy W, Aono H, Kang C-k, Liu H (2013) An introduction to flapping wing aerodynamics, vol 37. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Siegel S (2011) Feedback flow control in experiment and simulation using global neural network based models. Springer, BerlinCrossRefMATH Siegel S (2011) Feedback flow control in experiment and simulation using global neural network based models. Springer, BerlinCrossRefMATH
Zurück zum Zitat Siegel SG, SEIDEL J, Fagley C, Luchtenburg D, Cohen K, Mclaughlin T (2008) Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition. J Fluid Mech 610:1–42MathSciNetCrossRefMATH Siegel SG, SEIDEL J, Fagley C, Luchtenburg D, Cohen K, Mclaughlin T (2008) Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition. J Fluid Mech 610:1–42MathSciNetCrossRefMATH
Zurück zum Zitat Sirovich L (1987) Turbulence and the dynamics of coherent structures. I—Coherent structures. II—Symmetries and transformations. III—Dynamics scaling Q Appl Math 45:561–571MathSciNetCrossRefMATH Sirovich L (1987) Turbulence and the dynamics of coherent structures. I—Coherent structures. II—Symmetries and transformations. III—Dynamics scaling Q Appl Math 45:561–571MathSciNetCrossRefMATH
Zurück zum Zitat Stankiewicz W, Roszak R, Morzyński M (2013) Arbitrary Lagrangian–Eulerian approach in reduced order modeling of a flow with a moving boundary. In: Progress in flight physics. EDP Sciences, Les Ulis, pp 109–124 Stankiewicz W, Roszak R, Morzyński M (2013) Arbitrary Lagrangian–Eulerian approach in reduced order modeling of a flow with a moving boundary. In: Progress in flight physics. EDP Sciences, Les Ulis, pp 109–124
Zurück zum Zitat Tadmor G, Lehmann O, Noack BR, Morzyński M (2011) Galerkin models enhancements for flow control reduced-order modelling for flow control, pp 151–252 Tadmor G, Lehmann O, Noack BR, Morzyński M (2011) Galerkin models enhancements for flow control reduced-order modelling for flow control, pp 151–252
Zurück zum Zitat Usherwood JR, Lehmann FO (2008) Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. J R Soc Interface 5:1303–1307CrossRef Usherwood JR, Lehmann FO (2008) Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. J R Soc Interface 5:1303–1307CrossRef
Zurück zum Zitat Waibel A, Hanazawa T, Hinton G, Shikano K, Lang KJ (1989) Phoneme recognition using time-delay neural networks. IEEE Trans Acoust Speech Signal Process 37:328–339CrossRef Waibel A, Hanazawa T, Hinton G, Shikano K, Lang KJ (1989) Phoneme recognition using time-delay neural networks. IEEE Trans Acoust Speech Signal Process 37:328–339CrossRef
Zurück zum Zitat Wakeling J, Ellington C (1997) Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight. J Exp Biol 200:557–582 Wakeling J, Ellington C (1997) Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight. J Exp Biol 200:557–582
Zurück zum Zitat Willcox K, Megretski A (2003) Fourier series for accurate, stable, reduced-order models for linear CFD applications. In: 16th AIAA Computational Fluid Dynamics Conference. Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics Astronautics. https://doi.org/10.2514/6.2003-4235 Willcox K, Megretski A (2003) Fourier series for accurate, stable, reduced-order models for linear CFD applications. In: 16th AIAA Computational Fluid Dynamics Conference. Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics Astronautics. https://​doi.​org/​10.​2514/​6.​2003-4235
Metadaten
Titel
Modeling of a pitching and plunging airfoil using experimental flow field and load measurements
verfasst von
Victor Troshin
Avraham Seifert
Publikationsdatum
01.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 1/2018
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-017-2462-3

Weitere Artikel der Ausgabe 1/2018

Experiments in Fluids 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.