Skip to main content

2011 | OriginalPaper | Buchkapitel

9. Modeling of Actuators and Sensors for SHM

verfasst von : Srinivasan Gopalakrishnan, Massimo Ruzzene, Prof. Sathyanarayana Hanagud

Erschienen in: Computational Techniques for Structural Health Monitoring

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents computational techniques for the simulation of guided wave generation in plate structures. Generation is here considered as achieved by surface mounted piezoelectric patches of various shapes and characteristics. This computationally costly task is performed through the application of semi-analytical techniques, which involve the solution of the governing elasto-dynamic equations in the frequency/wavenumber domain, and the evaluation of the structure (plate) response in the far-field. Such techniques are presented and further extended to illustrate their joint application with the Finite Element solution of the interface stress between a surface mounted patch and the structural substrate. These methodologies are subsequently applied for the analysis of directional wave generation through actuator arrays. The concept of beam steering through phase control of the array elements, and through their spatial arrangement is presented for the simple case of a linear, one-dimensional array. The basic principles are then applied to the case of a two-dimensional configuration which has the ability to generate beam steering through proper tuning of the excitation frequency. The concept of “frequency-based" steering is discussed in detail as an effective and efficient means for directional wave generation and for focusing of the acoustic energy. The chapter ends with the presentation of methodologies for wave sensing. Most of the presented procedures illustrate the reciprocity between sensing and actuation, along with the opportunity for optimal sensing/generation through proper shaping and/or spatial distribution of the patch elements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bartoli I, Marzani A, Lanza di Scalea F, Viola E (2006) Modeling wave propagation in damped waveguides of arbitrary cross-section. J Sound Vib 295(3ᾢ5):685ᾢ707CrossRef Bartoli I, Marzani A, Lanza di Scalea F, Viola E (2006) Modeling wave propagation in damped waveguides of arbitrary cross-section. J Sound Vib 295(3ᾢ5):685ᾢ707CrossRef
2.
Zurück zum Zitat Benjeddou A (2000) Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput Struct 76(1ᾢ3):347ᾢ363CrossRef Benjeddou A (2000) Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput Struct 76(1ᾢ3):347ᾢ363CrossRef
3.
Zurück zum Zitat Bruce WD, Paul DW (2006) Ultrasonic arrays for non-destructive evaluation: a review. IEEE Trans Ultrason Ferroelectr Freq Control 39:525ᾢ541 Bruce WD, Paul DW (2006) Ultrasonic arrays for non-destructive evaluation: a review. IEEE Trans Ultrason Ferroelectr Freq Control 39:525ᾢ541
4.
Zurück zum Zitat Cho YH, Rose JL (1996) A boundary element solution for a mode conversion study oil the edge reflection of Lamb waves. J Acoust Soc Am 99(4, Part 1):2097ᾢ2109CrossRef Cho YH, Rose JL (1996) A boundary element solution for a mode conversion study oil the edge reflection of Lamb waves. J Acoust Soc Am 99(4, Part 1):2097ᾢ2109CrossRef
5.
Zurück zum Zitat Cooray TMJA (2006) Complex analysis with vector calculus. Alpha Science Cooray TMJA (2006) Complex analysis with vector calculus. Alpha Science
6.
Zurück zum Zitat Crawley EF (1987) Use of piezoelectric actuators as elements of intelligent structures. AIAA J 25:1373ᾢ1385CrossRef Crawley EF (1987) Use of piezoelectric actuators as elements of intelligent structures. AIAA J 25:1373ᾢ1385CrossRef
7.
Zurück zum Zitat Cunefare KA, Collet M (2008) Modal synthesis and dynamical condensation methods for accurate piezoelectric systems impedance computation. J Int Mat Syst and Struct 19(11):1251ᾢ1271CrossRef Cunefare KA, Collet M (2008) Modal synthesis and dynamical condensation methods for accurate piezoelectric systems impedance computation. J Int Mat Syst and Struct 19(11):1251ᾢ1271CrossRef
8.
9.
Zurück zum Zitat Freitag E, Busam R (2005) Complex analysis. Springer, HeidelbergMATH Freitag E, Busam R (2005) Complex analysis. Springer, HeidelbergMATH
10.
Zurück zum Zitat Fromme P, Wilcox PD, Michael Lowe JS, Peter Cawley P (2006) On the development and testing of a guided ultrasonic wave array for structural integrity monitoring. IEEE Trans Ultrason Ferroelectr Freq Control 53(4):777ᾢ784 Fromme P, Wilcox PD, Michael Lowe JS, Peter Cawley P (2006) On the development and testing of a guided ultrasonic wave array for structural integrity monitoring. IEEE Trans Ultrason Ferroelectr Freq Control 53(4):777ᾢ784
11.
Zurück zum Zitat Giurgiutiu V, Bao J, Zhao W (2003) Piezoelectric wafer active sensor embedded ultrasonics in beams and plates. Exp Mech 42(4):428ᾢ449CrossRef Giurgiutiu V, Bao J, Zhao W (2003) Piezoelectric wafer active sensor embedded ultrasonics in beams and plates. Exp Mech 42(4):428ᾢ449CrossRef
12.
Zurück zum Zitat Giurgiutiu V (2007) Structural health monitoring: with piezoelectric wafer active sensors. Academic Press, New York Giurgiutiu V (2007) Structural health monitoring: with piezoelectric wafer active sensors. Academic Press, New York
13.
Zurück zum Zitat Giurgiutiu V (2005) Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J Intell Mater Syst Struct 16(4):291ᾢ305CrossRef Giurgiutiu V (2005) Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J Intell Mater Syst Struct 16(4):291ᾢ305CrossRef
14.
Zurück zum Zitat Graff KF (1991) Wave motion in elastic solids. Dover, New York Graff KF (1991) Wave motion in elastic solids. Dover, New York
15.
Zurück zum Zitat Li J, Rose JL (2001) Implementing guided wave mode control by use of a phased transducer array. IEEE Trans Ultrason Ferroelectr Freq Control 48(3):761ᾢ768CrossRef Li J, Rose JL (2001) Implementing guided wave mode control by use of a phased transducer array. IEEE Trans Ultrason Ferroelectr Freq Control 48(3):761ᾢ768CrossRef
16.
Zurück zum Zitat Lin B, Giurgiutiu V (2005) Review of in-situ fabrication methods of piezoelectric wafer active sensor for sensing and actuation applications. Proc SPIE Int Soc Opt Eng 5765:1033ᾢ1044 Lin B, Giurgiutiu V (2005) Review of in-situ fabrication methods of piezoelectric wafer active sensor for sensing and actuation applications. Proc SPIE Int Soc Opt Eng 5765:1033ᾢ1044
17.
Zurück zum Zitat Lin B, Giurgiutiu V (2005) PVDF and PZT piezoelectric wafer active sensors for structural health monitoring. Am Soc Mech Eng Nondestruct Eval Eng Div (Publ) NDE 26 NDE:69ᾢ76 Lin B, Giurgiutiu V (2005) PVDF and PZT piezoelectric wafer active sensors for structural health monitoring. Am Soc Mech Eng Nondestruct Eval Eng Div (Publ) NDE 26 NDE:69ᾢ76
18.
Zurück zum Zitat Matt HM, di Scalea FL (2007) Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures. Smart Mater Struct 16:1489ᾢ1499CrossRef Matt HM, di Scalea FL (2007) Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures. Smart Mater Struct 16:1489ᾢ1499CrossRef
19.
Zurück zum Zitat Raghavan A, Cesnik CES (2005) Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring. Smart Mater Struct 14:1448ᾢ1461CrossRef Raghavan A, Cesnik CES (2005) Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring. Smart Mater Struct 14:1448ᾢ1461CrossRef
20.
Zurück zum Zitat Raghavan A, Cesnik CES (2005) Finite-dimensional piezoelectric transducers modeling for guided wave based structural health monitoring. Smart Mater Struct 14:1448ᾢ1461CrossRef Raghavan A, Cesnik CES (2005) Finite-dimensional piezoelectric transducers modeling for guided wave based structural health monitoring. Smart Mater Struct 14:1448ᾢ1461CrossRef
21.
Zurück zum Zitat Rose JL, Pelts SP, Quarry MJ (1998) A comb transducer model for guided wave nde. Ultrasonics 36:163ᾢ169CrossRef Rose JL, Pelts SP, Quarry MJ (1998) A comb transducer model for guided wave nde. Ultrasonics 36:163ᾢ169CrossRef
22.
Zurück zum Zitat Staszewski WJ, Boller C, Tomlinson G (2004) Health monitoring of aerospace structures. Smart sensors and signal processing. Wiley, Chichester Staszewski WJ, Boller C, Tomlinson G (2004) Health monitoring of aerospace structures. Smart sensors and signal processing. Wiley, Chichester
23.
Zurück zum Zitat Viktorov IA (1967) Rayleigh and Lamb waves. Plenum, New York Viktorov IA (1967) Rayleigh and Lamb waves. Plenum, New York
24.
Zurück zum Zitat Wilcox PD (2003) Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structure. IEEE Trans Ultrason Ferroelectr Freq Control 50(6):699ᾢ709CrossRef Wilcox PD (2003) Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structure. IEEE Trans Ultrason Ferroelectr Freq Control 50(6):699ᾢ709CrossRef
25.
Zurück zum Zitat Yu L, Giurgiutiu V (2005) Using phased array technology and embedded ultrasonic structuralnradar for active structural health monitoring and nondestructive evaluation. Am Soc Mech Eng Nondestruct Eval Eng Div (Publ) NDE 26:53ᾢ60 Yu L, Giurgiutiu V (2005) Using phased array technology and embedded ultrasonic structuralnradar for active structural health monitoring and nondestructive evaluation. Am Soc Mech Eng Nondestruct Eval Eng Div (Publ) NDE 26:53ᾢ60
26.
Zurück zum Zitat Zhu W, Rose JL (1999) Lamb wave generation and reception with time-delay periodic linear arrays: a BEM simulation and experimental study. IEEE Trans Ultrason Ferroelectr Freq Control 46(3):654ᾢ64CrossRef Zhu W, Rose JL (1999) Lamb wave generation and reception with time-delay periodic linear arrays: a BEM simulation and experimental study. IEEE Trans Ultrason Ferroelectr Freq Control 46(3):654ᾢ64CrossRef
Metadaten
Titel
Modeling of Actuators and Sensors for SHM
verfasst von
Srinivasan Gopalakrishnan
Massimo Ruzzene
Prof. Sathyanarayana Hanagud
Copyright-Jahr
2011
Verlag
Springer London
DOI
https://doi.org/10.1007/978-0-85729-284-1_9