Skip to main content

2019 | OriginalPaper | Buchkapitel

Modeling of Wave-Induced Oscillation in Pohang New Harbor by Using Hybrid Finite Element Model

verfasst von : Prashant Kumar, Rupali, Rajni

Erschienen in: Advances in Mathematical Methods and High Performance Computing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Harbors are designed to provide the safe loading, unloading, and sheltering for the moored vessels as this region experiences high oscillations due to combined effect of wave refraction, diffraction, and partial reflection from the solid harbor walls. An accurate description of the mathematical model is required, to analyze the wave-induced excitation in the harbor. The fluid domain is divided into two regions as bounded and open sea region. Firstly, the mild-slope equation (MSE) is derived for both regions in terms of a potential function using the energy conservation principle. The total wave energy in the bounded region is estimated by using the hybrid finite element method (HFEM), which is used to formulate the mild-slope equation. In HFEM model, the finite element method is coupled with the analytical approximation method to solve the mild-slope equation in both regions. The present HFEM model is utilized to analyze the convergence behavior for the rectangular harbor. Further, the present numerical scheme is implemented on realistic Pohang New Harbor (PNH) situated in Pohang city (Korea) to analyze the regions of strong and weak amplification. The current numerical model is implemented on regular- and irregular-shaped ports or harbors and can be used as an efficient engineering tool for planning and designing of the artificial industrial harbor and prediction of the incident wave response under the resonance condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
This research work is supported by the Science Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, under the Project grant no. “ECR/2016/001680” at National Institute of Technology, Delhi.
 
Literatur
1.
Zurück zum Zitat JCW. Berkhoff, Computation of combined refraction diffraction, Proc. 13th Conf. Coast. Eng. Vancouver, Canada, ASCE (1972), 471–90. JCW. Berkhoff, Computation of combined refraction diffraction, Proc. 13th Conf. Coast. Eng. Vancouver, Canada, ASCE (1972), 471–90.
3.
Zurück zum Zitat Y. Toledo, T W. Hsu, A. Roland, Extended time-dependent mild-slope and wave-action equations for wave-bottom and wave-current interactions, Proc R Soc A Math Phys Eng Sci.468 (2012), 184–205.MathSciNetCrossRef Y. Toledo, T W. Hsu, A. Roland, Extended time-dependent mild-slope and wave-action equations for wave-bottom and wave-current interactions, Proc R Soc A Math Phys Eng Sci.468 (2012), 184–205.MathSciNetCrossRef
4.
Zurück zum Zitat P. Kumar, H. Zhang, IK. Kim, Y. Shi, DA. Yuen, Wave spectral modeling of multidirectional random waves in a harbor through combination of boundary integral of Helmholtz equation with Chebyshev point discretization, Comput Fluids 108 (2015),13–24.CrossRef P. Kumar, H. Zhang, IK. Kim, Y. Shi, DA. Yuen, Wave spectral modeling of multidirectional random waves in a harbor through combination of boundary integral of Helmholtz equation with Chebyshev point discretization, Comput Fluids 108 (2015),13–24.CrossRef
5.
Zurück zum Zitat A. Cerrato, JA. Gonzalez, L. Rodriguez-Tembleque, Boundary element formulation of the Mild-Slope equation for harmonic water waves propagating over unidirectional variable bathymetries, Eng Anal Bound Elem. 62 (2016), 22–34.MathSciNetCrossRef A. Cerrato, JA. Gonzalez, L. Rodriguez-Tembleque, Boundary element formulation of the Mild-Slope equation for harmonic water waves propagating over unidirectional variable bathymetries, Eng Anal Bound Elem. 62 (2016), 22–34.MathSciNetCrossRef
6.
Zurück zum Zitat P. Kumar, H. Zhang, DA. Yuen, IK. Kim, Wave field analysis in a harbor with irregular geometry through boundary integral of Helmholtz equation with corner contributions, Comput Fluids.88 (2013), 287–97.MathSciNetCrossRef P. Kumar, H. Zhang, DA. Yuen, IK. Kim, Wave field analysis in a harbor with irregular geometry through boundary integral of Helmholtz equation with corner contributions, Comput Fluids.88 (2013), 287–97.MathSciNetCrossRef
7.
Zurück zum Zitat Z Demirbilek, V. Panchang, CGWAVE: a coastal surface water wave model of mild slop equation, US army Engr., waterways experiment station, Vicksburg (1998) Tech rep. CHL-98-26. Z Demirbilek, V. Panchang, CGWAVE: a coastal surface water wave model of mild slop equation, US army Engr., waterways experiment station, Vicksburg (1998) Tech rep. CHL-98-26.
8.
Zurück zum Zitat X. Xing, Computer Modeling for Wave Oscillation Problems in Harbors and Coastal Regions, Ph.D. thesis, (2009). X. Xing, Computer Modeling for Wave Oscillation Problems in Harbors and Coastal Regions, Ph.D. thesis, (2009).
9.
Zurück zum Zitat S. Ham, K. Bathe, A finite element method enriched for wave propagation problems, Comput Struct.94 (2012),1–12.CrossRef S. Ham, K. Bathe, A finite element method enriched for wave propagation problems, Comput Struct.94 (2012),1–12.CrossRef
10.
Zurück zum Zitat S. Woo, P.L. Liu, Finite-element model for modified Boussinesq equations. II: Applications to nonlinear harbor oscillations, J Waterw PORT, Coast Ocean Eng.130 (2004),17–28.CrossRef S. Woo, P.L. Liu, Finite-element model for modified Boussinesq equations. II: Applications to nonlinear harbor oscillations, J Waterw PORT, Coast Ocean Eng.130 (2004),17–28.CrossRef
11.
Zurück zum Zitat J.A. Zelt, F. Raichlen, A Lagrangian model for wave-induced harbour oscillations, J Fluid Mech. 213 (1990), 203–25.CrossRef J.A. Zelt, F. Raichlen, A Lagrangian model for wave-induced harbour oscillations, J Fluid Mech. 213 (1990), 203–25.CrossRef
12.
Zurück zum Zitat JR. Houston, Combined refraction and diffraction of short waves using the dual-reciprocity boundary-element method, Appl Ocean Res.3 (1981), 163–70.CrossRef JR. Houston, Combined refraction and diffraction of short waves using the dual-reciprocity boundary-element method, Appl Ocean Res.3 (1981), 163–70.CrossRef
13.
Zurück zum Zitat TK. Tsay, PLF. Liu, A finite element model for wave refraction, diffraction, reflection and dissipation, Appl Ocean Res.11 (1989), 33–8.CrossRef TK. Tsay, PLF. Liu, A finite element model for wave refraction, diffraction, reflection and dissipation, Appl Ocean Res.11 (1989), 33–8.CrossRef
14.
Zurück zum Zitat CC. Mei, HS. Chen, A hybrid element method for steady linearized free-surface flows, Int J Numer Methods Eng. 10 (1976), 1153–75.CrossRef CC. Mei, HS. Chen, A hybrid element method for steady linearized free-surface flows, Int J Numer Methods Eng. 10 (1976), 1153–75.CrossRef
15.
Zurück zum Zitat G. Bellotti, R. Briganti, GM. Beltrami, L. Franco, Modal analysis of semi-enclosed basins, Coast Eng. 64 (2012),16–25.CrossRef G. Bellotti, R. Briganti, GM. Beltrami, L. Franco, Modal analysis of semi-enclosed basins, Coast Eng. 64 (2012),16–25.CrossRef
16.
Zurück zum Zitat TH. Jung, S. Son, Y. Ryu, Finite element solution of linear Waves on a sloping bottom boundary. J Coast Res. 33 (2016), 731–37.CrossRef TH. Jung, S. Son, Y. Ryu, Finite element solution of linear Waves on a sloping bottom boundary. J Coast Res. 33 (2016), 731–37.CrossRef
17.
Zurück zum Zitat G. Wang, JH. Zheng, JPY. Maa, JS. Zhang, AF. Tao, Numerical experiments on transverse oscillations induced by normal-incident waves in a rectangular harbor of constant slope, Ocean Eng. 57 (2013), 1–10.CrossRef G. Wang, JH. Zheng, JPY. Maa, JS. Zhang, AF. Tao, Numerical experiments on transverse oscillations induced by normal-incident waves in a rectangular harbor of constant slope, Ocean Eng. 57 (2013), 1–10.CrossRef
Metadaten
Titel
Modeling of Wave-Induced Oscillation in Pohang New Harbor by Using Hybrid Finite Element Model
verfasst von
Prashant Kumar
Rupali
Rajni
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-02487-1_28