Skip to main content

2014 | OriginalPaper | Buchkapitel

44. Modeling Vision with the Neocognitron

verfasst von : Kunihiko Fukushima

Erschienen in: Springer Handbook of Bio-/Neuroinformatics

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The neocognitron, which was proposed by Fukushima [44.1], is a neural network model capable of robust visual pattern recognition. It acquires the ability to recognize patterns through learning.
The neocognitron is a hierarchical network consisting of many layers of neuron-like cells. Its architecture was originally suggested from neurophysiological findings on visual systems of mammals. There are bottom-up connections between cells in adjoining layers. Some of these connections are variable and can be modified by learning. The neocognitron can acquire the ability to recognize patterns by learning. Since it has a large power of generalization, presentation of only a few typical examples of deformed patterns (or features) is enough for learning. It is not necessary to present all of the deformed versions of the patterns that might appear in the future. After learning, the neocognitron can recognize input patterns robustly, with little effect from deformation, changes in size, or shifts in location. It is even able to correctly recognize a pattern that has not been presented before, provided that it resembles one of the training patterns.
The principle of the neocognitron can be used in various kinds of pattern recognition systems, such as recognizing handwritten characters. Further extensions and modifications of the neocognitron have been proposed to endow it with a function of selective attention, an ability to recognize partly occluded patterns, and so on.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
44.1.
Zurück zum Zitat K. Fukushima: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biol. Cybern. 36, 193–202 (1980)MathSciNetCrossRefMATH K. Fukushima: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biol. Cybern. 36, 193–202 (1980)MathSciNetCrossRefMATH
44.2.
Zurück zum Zitat D.H. Hubel, T.N. Wiesel: Receptive fields, binocular interaction and functional architecture in the catʼs visual cortex, J. Physiol. (Lond.) 160, 106–154 (1962)CrossRef D.H. Hubel, T.N. Wiesel: Receptive fields, binocular interaction and functional architecture in the catʼs visual cortex, J. Physiol. (Lond.) 160, 106–154 (1962)CrossRef
44.3.
Zurück zum Zitat D.H. Hubel, T.N. Wiesel: Receptive fields and functional architecture in nonstriate areas (18 and 19) of the cat, J. Neurophysiol. 28, 229–289 (1965) D.H. Hubel, T.N. Wiesel: Receptive fields and functional architecture in nonstriate areas (18 and 19) of the cat, J. Neurophysiol. 28, 229–289 (1965)
44.4.
Zurück zum Zitat M. Ito, H. Komatsu: Representation of angles embedded within contour stimuli in area V2 of macaque monkeys, J. Neurosci. 24, 3313–3324 (2004)CrossRef M. Ito, H. Komatsu: Representation of angles embedded within contour stimuli in area V2 of macaque monkeys, J. Neurosci. 24, 3313–3324 (2004)CrossRef
44.5.
Zurück zum Zitat R. von der Hydt, E. Peterhans, G. Baumgartner: Illusory contours and cortical neuron responses, Science 224, 1260–1262 (1984)CrossRef R. von der Hydt, E. Peterhans, G. Baumgartner: Illusory contours and cortical neuron responses, Science 224, 1260–1262 (1984)CrossRef
44.6.
Zurück zum Zitat R. Desimone, S.J. Schein: Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form, J. Neurophysiol. 57, 835–868 (1987) R. Desimone, S.J. Schein: Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form, J. Neurophysiol. 57, 835–868 (1987)
44.7.
Zurück zum Zitat I. Fujita, K. Tanaka, M. Ito, K. Cheng: Columns for visual features of objects in monkey inferotemporal cortex, Nature 360, 343–346 (1992)CrossRef I. Fujita, K. Tanaka, M. Ito, K. Cheng: Columns for visual features of objects in monkey inferotemporal cortex, Nature 360, 343–346 (1992)CrossRef
44.8.
Zurück zum Zitat C.J. Bruce, R. Desimone, C.G. Gross: Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque, J. Neurophysiol. 46, 369–384 (1981) C.J. Bruce, R. Desimone, C.G. Gross: Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque, J. Neurophysiol. 46, 369–384 (1981)
44.9.
Zurück zum Zitat S. Yamane, S. Kaji, K. Kawano: What facial features activate face neurons in the inferotemporal cortex of the monkey?, Exp. Brain Res. 73, 209–214 (1988)CrossRef S. Yamane, S. Kaji, K. Kawano: What facial features activate face neurons in the inferotemporal cortex of the monkey?, Exp. Brain Res. 73, 209–214 (1988)CrossRef
44.10.
Zurück zum Zitat K. Fukushima: Neocognitron for handwritten digit recognition, Neurocomputing 51, 161–180 (2003)CrossRef K. Fukushima: Neocognitron for handwritten digit recognition, Neurocomputing 51, 161–180 (2003)CrossRef
44.11.
44.12.
Zurück zum Zitat K. Fukushima: Analysis of the process of visual pattern recognition by the neocognitron, Neural Netw. 2, 413–420 (1989)CrossRef K. Fukushima: Analysis of the process of visual pattern recognition by the neocognitron, Neural Netw. 2, 413–420 (1989)CrossRef
44.13.
Zurück zum Zitat K. Fukushima: Increasing robustness against background noise: Visual pattern recognition by a neocognitron, Neural Netw. 24, 767–778 (2011)CrossRefMATH K. Fukushima: Increasing robustness against background noise: Visual pattern recognition by a neocognitron, Neural Netw. 24, 767–778 (2011)CrossRefMATH
44.14.
Zurück zum Zitat K. Fukushima, M. Tanigawa: Use of different thresholds in learning and recognition, Neurocomputing 11, 1–17 (1996)CrossRef K. Fukushima, M. Tanigawa: Use of different thresholds in learning and recognition, Neurocomputing 11, 1–17 (1996)CrossRef
44.15.
Zurück zum Zitat K. Fukushima: Neocognitron capable of incremental learning, Neural Netw. 17, 37–46 (2004)CrossRefMATH K. Fukushima: Neocognitron capable of incremental learning, Neural Netw. 17, 37–46 (2004)CrossRefMATH
44.16.
Zurück zum Zitat D.O. Hebb: Organization of Behavior (Wiley, New York 1949) D.O. Hebb: Organization of Behavior (Wiley, New York 1949)
44.17.
Zurück zum Zitat K. Fukushima: Neocognitron trained with winner-kill-loser rule, Neural Netw. 23, 926–938 (2010)CrossRef K. Fukushima: Neocognitron trained with winner-kill-loser rule, Neural Netw. 23, 926–938 (2010)CrossRef
44.18.
Zurück zum Zitat K. Fukushima, I. Hayashi, J. Lévéillé: Neocognitron trained by winner-kill-loser with triple threshold, ICONIP 2011, Part II, Vol. 7063, ed. by B.-L. Lu, L. Zhang, J. Kwok (Springer, Berlin, Heidelberg 2011) pp. 628–637 K. Fukushima, I. Hayashi, J. Lévéillé: Neocognitron trained by winner-kill-loser with triple threshold, ICONIP 2011, Part II, Vol. 7063, ed. by B.-L. Lu, L. Zhang, J. Kwok (Springer, Berlin, Heidelberg 2011) pp. 628–637
44.19.
Zurück zum Zitat M. Riesenhuber, T. Poggio: Hierarchical models of object recognition in cortex, Nat. Neurosci. 2, 1019–1025 (1999)CrossRef M. Riesenhuber, T. Poggio: Hierarchical models of object recognition in cortex, Nat. Neurosci. 2, 1019–1025 (1999)CrossRef
44.20.
Zurück zum Zitat G.A. Walker, I. Ohzawa, R.D. Freeman: Suppression outside the classical cortical receptive field, Vis. Neurosci. 17, 369–379 (2000)CrossRef G.A. Walker, I. Ohzawa, R.D. Freeman: Suppression outside the classical cortical receptive field, Vis. Neurosci. 17, 369–379 (2000)CrossRef
44.21.
Zurück zum Zitat K. Fukushima: Interpolating vectors for robust pattern recognition, Neural Netw. 20, 904–916 (2007)CrossRefMATH K. Fukushima: Interpolating vectors for robust pattern recognition, Neural Netw. 20, 904–916 (2007)CrossRefMATH
44.22.
Zurück zum Zitat R.M. Gray: Vector quantization, IEEE ASSP Magazine 1, 4–29 (1984)CrossRef R.M. Gray: Vector quantization, IEEE ASSP Magazine 1, 4–29 (1984)CrossRef
44.23.
Zurück zum Zitat T. Kohonen: The self-organizing map, Proc. IEEE 78, 1464–1480 (1990)CrossRef T. Kohonen: The self-organizing map, Proc. IEEE 78, 1464–1480 (1990)CrossRef
44.24.
Zurück zum Zitat K. Fukushima: Neural network model for selective attention in visual pattern recognition and associative recall, Appl. Opt. 26, 4985–4992 (1987)CrossRef K. Fukushima: Neural network model for selective attention in visual pattern recognition and associative recall, Appl. Opt. 26, 4985–4992 (1987)CrossRef
44.25.
Zurück zum Zitat G.A. Carpenter, S. Grossberg: ART 2: Self-organization of stable category recognition codes for analog input patterns, Appl. Opt. 26, 4919–4930 (1987)CrossRef G.A. Carpenter, S. Grossberg: ART 2: Self-organization of stable category recognition codes for analog input patterns, Appl. Opt. 26, 4919–4930 (1987)CrossRef
44.26.
Zurück zum Zitat K. Fukushima, T. Imagawa: Recognition and segmentation of connected characters with selective attention, Neural Netw. 6, 33–41 (1993)CrossRef K. Fukushima, T. Imagawa: Recognition and segmentation of connected characters with selective attention, Neural Netw. 6, 33–41 (1993)CrossRef
44.27.
Zurück zum Zitat K. Fukushima, H. Hashimoto: Recognition and segmentation of components of a face by a multi-resolution neural network, Artificial Neural Networks – ICANN 97, Vol. 1327, ed. by W. Gerstner, A. Germond, M. Hasler, J.-D. Nicoud (Springer, Berlin, Heidelberg 1997) pp. 931–936CrossRef K. Fukushima, H. Hashimoto: Recognition and segmentation of components of a face by a multi-resolution neural network, Artificial Neural Networks – ICANN 97, Vol. 1327, ed. by W. Gerstner, A. Germond, M. Hasler, J.-D. Nicoud (Springer, Berlin, Heidelberg 1997) pp. 931–936CrossRef
44.28.
Zurück zum Zitat K. Fukushima: Recognition of partly occluded patterns: A neural network model, Biol. Cybern. 84, 251–259 (2001)CrossRef K. Fukushima: Recognition of partly occluded patterns: A neural network model, Biol. Cybern. 84, 251–259 (2001)CrossRef
44.29.
Zurück zum Zitat K. Fukushima: Restoring partly occluded patterns: A neural network model, Neural Netw. 18, 33–43 (2005)CrossRefMATH K. Fukushima: Restoring partly occluded patterns: A neural network model, Neural Netw. 18, 33–43 (2005)CrossRefMATH
44.30.
Zurück zum Zitat K. Fukushima: Neural network model for completing occluded contours, Neural Netw. 23, 465–582 (2010)CrossRef K. Fukushima: Neural network model for completing occluded contours, Neural Netw. 23, 465–582 (2010)CrossRef
Metadaten
Titel
Modeling Vision with the Neocognitron
verfasst von
Kunihiko Fukushima
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-642-30574-0_44