Skip to main content

2017 | OriginalPaper | Buchkapitel

Models of Turbulent Flows and Particle Dynamics

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Salient features of single-phase turbulent flow modelling are recalled first, including the closure problem, the statistical RANS models, the Lagrangian stochastic approach (one-point PDF method) together with its extension for near-wall turbulence, and the basics of Large-Eddy simulation (LES). In the second part of the chapter, two-phase dispersed turbulent flows in the Eulerian-Lagrangian approach are addressed. The issue of turbulent dispersion in RANS is succintly presented. Then, the subfilter dispersion in LES is discussed at length; functional and structural models are described, and some recent ideas about closures in terms of stochastic diffusion processes are discussed. Examples of computational results are presented for homogeneous isotropic and wall-bounded turbulence. At last, a specific modelling study of particle-laden channel flow is recalled where a low-order dynamical system with a reduced number of fluid velocity modes is constructed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aidun, C. K., & Clausen, J. R. (2010). Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics, 42, 439–472.MathSciNetCrossRefMATH Aidun, C. K., & Clausen, J. R. (2010). Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics, 42, 439–472.MathSciNetCrossRefMATH
Zurück zum Zitat Allery, C., Béghein, C., Wacławczyk, M., & Pozorski, J. (2014). Application of POD-based dynamical systems to dispersion and deposition of particles in turbulent channel flow. International Journal of Multiphase Flow, 58, 97–113.CrossRef Allery, C., Béghein, C., Wacławczyk, M., & Pozorski, J. (2014). Application of POD-based dynamical systems to dispersion and deposition of particles in turbulent channel flow. International Journal of Multiphase Flow, 58, 97–113.CrossRef
Zurück zum Zitat Apte, S. V., Mahesh, K., Moin, P., & Oefelein, J. C. (2003). Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor. International Journal of Multiphase Flow, 29, 1311–1331.CrossRefMATH Apte, S. V., Mahesh, K., Moin, P., & Oefelein, J. C. (2003). Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor. International Journal of Multiphase Flow, 29, 1311–1331.CrossRefMATH
Zurück zum Zitat Armenio, V., Piomelli, U., & Fiorotto, V. (1999). Effect of the subgrid scales on particle motion. Physics of Fluids, 11, 3030–3042.CrossRefMATH Armenio, V., Piomelli, U., & Fiorotto, V. (1999). Effect of the subgrid scales on particle motion. Physics of Fluids, 11, 3030–3042.CrossRefMATH
Zurück zum Zitat Aubry, N., Holmes, P., Lumley, J. L., & Stone, E. (1988). The dynamics of coherent structures in the wall region of turbulent boundary layer. Journal of Fluid Mechanics, 192, 115–173.MathSciNetCrossRefMATH Aubry, N., Holmes, P., Lumley, J. L., & Stone, E. (1988). The dynamics of coherent structures in the wall region of turbulent boundary layer. Journal of Fluid Mechanics, 192, 115–173.MathSciNetCrossRefMATH
Zurück zum Zitat Babler, M. U., Biferale, L., Brandt, L., Feudel, U., Guseva, K., Lanotte, A.S., et al. (2015). Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows. Journal of Fluid Mechanics, 766, 104–128. Babler, M. U., Biferale, L., Brandt, L., Feudel, U., Guseva, K., Lanotte, A.S., et al. (2015). Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows. Journal of Fluid Mechanics, 766, 104–128.
Zurück zum Zitat Balachandar, S., & Eaton, J. (2010). Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42, 111–133.CrossRefMATH Balachandar, S., & Eaton, J. (2010). Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42, 111–133.CrossRefMATH
Zurück zum Zitat Bianco, F., Chibbaro, S., Marchioli, C., Salvetti, M. V., & Soldati, A. (2012). Intrinsic filtering errors of Lagrangian particle tracking in LES flow fields. Physics of Fluids, 24, art. 045103. Bianco, F., Chibbaro, S., Marchioli, C., Salvetti, M. V., & Soldati, A. (2012). Intrinsic filtering errors of Lagrangian particle tracking in LES flow fields. Physics of Fluids, 24, art. 045103.
Zurück zum Zitat Brennen, C. E. (2005). Fundamentals of multiphase flow. Cambridge: Cambridge University Press.CrossRefMATH Brennen, C. E. (2005). Fundamentals of multiphase flow. Cambridge: Cambridge University Press.CrossRefMATH
Zurück zum Zitat Burton, G. C., & Dahm, W. J. A. (2005). Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing. Physics of Fluids, 17, art. 075111. Burton, G. C., & Dahm, W. J. A. (2005). Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing. Physics of Fluids, 17, art. 075111.
Zurück zum Zitat Casey, M., & Wintergerste, T. (Eds.). (2000). Best practice guidelines: quality and trust in industrial CFD, ERCOFTAC. Casey, M., & Wintergerste, T. (Eds.). (2000). Best practice guidelines: quality and trust in industrial CFD, ERCOFTAC.
Zurück zum Zitat Colucci, P. J., Jaberi, F. A., Givi, P., & Pope, S. B. (1998). The filtered density function for large-eddy simulation of turbulent reactive flows. Physics of Fluids, 10, 499–515.MathSciNetCrossRefMATH Colucci, P. J., Jaberi, F. A., Givi, P., & Pope, S. B. (1998). The filtered density function for large-eddy simulation of turbulent reactive flows. Physics of Fluids, 10, 499–515.MathSciNetCrossRefMATH
Zurück zum Zitat Crowe, C., Sommerfeld, M., & Tsuji, T. (1998). Multiphase flows with droplets and particles. New York: CRC Press. Crowe, C., Sommerfeld, M., & Tsuji, T. (1998). Multiphase flows with droplets and particles. New York: CRC Press.
Zurück zum Zitat Dreeben, T. D., & Pope, S. B. (1997). Wall-function treatment in PDF methods for turbulent flows. Physics of Fluids, 9, 2692–2703.MathSciNetCrossRefMATH Dreeben, T. D., & Pope, S. B. (1997). Wall-function treatment in PDF methods for turbulent flows. Physics of Fluids, 9, 2692–2703.MathSciNetCrossRefMATH
Zurück zum Zitat Dreeben, T. D., & Pope, S. B. (1998). PDF/Monte Carlo simulation of near-wall turbulent flows. Journal of Fluid Mechanics, 357, 141–166.MathSciNetCrossRefMATH Dreeben, T. D., & Pope, S. B. (1998). PDF/Monte Carlo simulation of near-wall turbulent flows. Journal of Fluid Mechanics, 357, 141–166.MathSciNetCrossRefMATH
Zurück zum Zitat Duan, G., & Chen, B. (2015). Large Eddy Simulation by particle method coupled with Sub-Particle-Scale model and application to mixing layer flow. Applied Mathematical Modelling, 39, 3135–3149.MathSciNetCrossRef Duan, G., & Chen, B. (2015). Large Eddy Simulation by particle method coupled with Sub-Particle-Scale model and application to mixing layer flow. Applied Mathematical Modelling, 39, 3135–3149.MathSciNetCrossRef
Zurück zum Zitat Eaton, J., & Fessler, J.R. (1994). Preferential concentration of particles by turbulence. International Journal of Multiphase Flow, 20, Suppl., 169–209. Eaton, J., & Fessler, J.R. (1994). Preferential concentration of particles by turbulence. International Journal of Multiphase Flow, 20, Suppl., 169–209.
Zurück zum Zitat Ernst, M., Dietzel, M., & Sommerfeld, M. (2013). LBM for simulating transport and agglomeration of resolved particles. Acta Mechanica, 224, 2425.MathSciNetCrossRefMATH Ernst, M., Dietzel, M., & Sommerfeld, M. (2013). LBM for simulating transport and agglomeration of resolved particles. Acta Mechanica, 224, 2425.MathSciNetCrossRefMATH
Zurück zum Zitat Fede, P., & Simonin, O. (2006). Numerical study of the subgrid turbulence effects on the statistics of heavy colliding particles. Physics of Fluids, 17, art. 045103. Fede, P., & Simonin, O. (2006). Numerical study of the subgrid turbulence effects on the statistics of heavy colliding particles. Physics of Fluids, 17, art. 045103.
Zurück zum Zitat Fede, P., Simonin, O., Villedieu, P., & Squires, K. D. (2006). Stochastic modelling of the turbulent subgrid fluid velocity along inertial particle trajectories. In Proceedings of the Summer Program: Center for Turbulence Research, Stanford University, (pp. 247–258). Fede, P., Simonin, O., Villedieu, P., & Squires, K. D. (2006). Stochastic modelling of the turbulent subgrid fluid velocity along inertial particle trajectories. In Proceedings of the Summer Program: Center for Turbulence Research, Stanford University, (pp. 247–258).
Zurück zum Zitat Gardiner, C. W. (1990). Handbook of stochastic methods for physics, chemistry and the natural sciences (2nd ed.). Berlin: Springer.MATH Gardiner, C. W. (1990). Handbook of stochastic methods for physics, chemistry and the natural sciences (2nd ed.). Berlin: Springer.MATH
Zurück zum Zitat Gatski, T. B., Hussaini, M. Y., & Lumley, J. L. (Eds.). (1996). Simulation and modeling of turbulent flows. Oxford University Press. Gatski, T. B., Hussaini, M. Y., & Lumley, J. L. (Eds.). (1996). Simulation and modeling of turbulent flows. Oxford University Press.
Zurück zum Zitat Geurts, B. J., & Kuerten, J. G. M. (2012). Ideal stochastic forcing for the motion of particles in large-eddy simulation extracted from direct numerical simulation of turbulent channel flow. Physics of Fluids, 24, art. 081702. Geurts, B. J., & Kuerten, J. G. M. (2012). Ideal stochastic forcing for the motion of particles in large-eddy simulation extracted from direct numerical simulation of turbulent channel flow. Physics of Fluids, 24, art. 081702.
Zurück zum Zitat Gicquel, L. Y. M., Givi, P., Jaberi, F. A., & Pope, S. B. (2002). Velocity filtered density function for large eddy simulation of turbulent flows. Physics of Fluids, 14, 1196–1213.MathSciNetCrossRefMATH Gicquel, L. Y. M., Givi, P., Jaberi, F. A., & Pope, S. B. (2002). Velocity filtered density function for large eddy simulation of turbulent flows. Physics of Fluids, 14, 1196–1213.MathSciNetCrossRefMATH
Zurück zum Zitat Grabowski, W. W., & Wang, L.-P. (2013). Growth of cloud droplets in a turbulent environment. Annual Review of Fluid Mechanics, 45, 293–324.MathSciNetCrossRefMATH Grabowski, W. W., & Wang, L.-P. (2013). Growth of cloud droplets in a turbulent environment. Annual Review of Fluid Mechanics, 45, 293–324.MathSciNetCrossRefMATH
Zurück zum Zitat Guha, A. (2008). Transport and deposition of particles in turbulent and laminar flow. Annual Review of Fluid Mechanics, 40, 311–341.MathSciNetCrossRefMATH Guha, A. (2008). Transport and deposition of particles in turbulent and laminar flow. Annual Review of Fluid Mechanics, 40, 311–341.MathSciNetCrossRefMATH
Zurück zum Zitat Gustavsson, K., & Mehlig, B. (2016). Statistical models for spatial patterns of heavy particles in turbulence. Advances in Physics, 65, 1–57. Gustavsson, K., & Mehlig, B. (2016). Statistical models for spatial patterns of heavy particles in turbulence. Advances in Physics, 65, 1–57.
Zurück zum Zitat Haworth, D. C. (2010). Progress in probability density function methods for turbulent reacting flows. Progress in Energy and Combustion Science, 36, 168–259.CrossRef Haworth, D. C. (2010). Progress in probability density function methods for turbulent reacting flows. Progress in Energy and Combustion Science, 36, 168–259.CrossRef
Zurück zum Zitat Henry, C., Minier, J.-P., Mohaupt, M., Profeta, C., Pozorski, J., & Tanière, A. (2014). A stochastic approach for the simulation of collisions between colloidal particles at large time steps. International Journal of Multiphase Flow, 61, 94–107.CrossRef Henry, C., Minier, J.-P., Mohaupt, M., Profeta, C., Pozorski, J., & Tanière, A. (2014). A stochastic approach for the simulation of collisions between colloidal particles at large time steps. International Journal of Multiphase Flow, 61, 94–107.CrossRef
Zurück zum Zitat Hoyas, S., & Jimenez, J. (2006). Scaling of the velocity fluctuations in turbulent channels up to \(Re_\tau =2003\). Physics of Fluids, 18, art. 011702. Hoyas, S., & Jimenez, J. (2006). Scaling of the velocity fluctuations in turbulent channels up to \(Re_\tau =2003\). Physics of Fluids, 18, art. 011702.
Zurück zum Zitat Jenny, P., Roekaerts, D., & Beishuizen, N. (2012). Modeling of turbulent dilute spray combustion. Progress in Energy and Combustion Science, 38, 846–887.CrossRef Jenny, P., Roekaerts, D., & Beishuizen, N. (2012). Modeling of turbulent dilute spray combustion. Progress in Energy and Combustion Science, 38, 846–887.CrossRef
Zurück zum Zitat Jin, B., Potts, I., & Reeks, M. W. (2015). A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers. Physics of Fluids, 27, art. 053305. Jin, B., Potts, I., & Reeks, M. W. (2015). A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers. Physics of Fluids, 27, art. 053305.
Zurück zum Zitat Johansson, A. V. (2002). Engineering turbulence models and their development. In Oberlack, M., & Busse, F. H. (Eds.) Theories of Turbulence. CISM Courses and Lectures (Vol. 442). Springer. Johansson, A. V. (2002). Engineering turbulence models and their development. In Oberlack, M., & Busse, F. H. (Eds.) Theories of Turbulence. CISM Courses and Lectures (Vol. 442). Springer.
Zurück zum Zitat Kajzer, A., Pozorski, J., & Szewc, K. (2014). Large-eddy simulations of 3D Taylor-Green vortex: Comparison of smoothed particle hydrodynamics, lattice Boltzmann and finite volume methods. Journal of Physics: Conference Series, 530, art. 012019. Kajzer, A., Pozorski, J., & Szewc, K. (2014). Large-eddy simulations of 3D Taylor-Green vortex: Comparison of smoothed particle hydrodynamics, lattice Boltzmann and finite volume methods. Journal of Physics: Conference Series, 530, art. 012019.
Zurück zum Zitat Karlin, S. (1966). A first course in stochastic processes. New York: Academic Press. Karlin, S. (1966). A first course in stochastic processes. New York: Academic Press.
Zurück zum Zitat Khan, M. A. I., Luo, X. Y., Nicolleau, F. C. G. A., Tucker, P. G., & Lo, Iacono G. (2010). Effects of LES sub-grid flow structure on particle deposition in a plane channel with a ribbed wall. International Journal for Numerical Methods in Biomedical Engineering, 26, 999–1015. Khan, M. A. I., Luo, X. Y., Nicolleau, F. C. G. A., Tucker, P. G., & Lo, Iacono G. (2010). Effects of LES sub-grid flow structure on particle deposition in a plane channel with a ribbed wall. International Journal for Numerical Methods in Biomedical Engineering, 26, 999–1015.
Zurück zum Zitat Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133–166. Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133–166.
Zurück zum Zitat Kloeden, P. E., & Platen, E. (1992). Numerical solution of stochastic differential equations. Springer. Kloeden, P. E., & Platen, E. (1992). Numerical solution of stochastic differential equations. Springer.
Zurück zum Zitat Knorps, M., & Pozorski, J. (2015). An inhomogeneous stochastic subgrid scale model for particle dispersion in Large-Eddy Simulation. In Fröhlich, J. et al. (Eds.) Direct and Large-Eddy simulation (Vol IX, pp. 671–678). Springer. Knorps, M., & Pozorski, J. (2015). An inhomogeneous stochastic subgrid scale model for particle dispersion in Large-Eddy Simulation. In Fröhlich, J. et al. (Eds.) Direct and Large-Eddy simulation (Vol IX, pp. 671–678). Springer.
Zurück zum Zitat Kuerten, J. G. M. (2006). Subgrid modeling in particle-laden channel flows. Physics of Fluids, 18, art. 025108. Kuerten, J. G. M. (2006). Subgrid modeling in particle-laden channel flows. Physics of Fluids, 18, art. 025108.
Zurück zum Zitat Launder, B. E., & Sandham, N. D. (Eds.). (2002). Closure strategies for turbulent and transitional flows. Cambridge University Press. Launder, B. E., & Sandham, N. D. (Eds.). (2002). Closure strategies for turbulent and transitional flows. Cambridge University Press.
Zurück zum Zitat Lovecchio, S., Zonta, F., & Soldati, A. (2014). Influence of thermal stratification on the surfacing and clustering of floaters in free surface turbulence. Advances in Water Resources, 72, 22–31.CrossRef Lovecchio, S., Zonta, F., & Soldati, A. (2014). Influence of thermal stratification on the surfacing and clustering of floaters in free surface turbulence. Advances in Water Resources, 72, 22–31.CrossRef
Zurück zum Zitat Lozano-Duran, A., & Jimenez, J. (2014). Effect of the computational domain on direct simulations of turbulent channels up to \(Re_\tau =4200\). Physics of Fluids, 26, art. 011702. Lozano-Duran, A., & Jimenez, J. (2014). Effect of the computational domain on direct simulations of turbulent channels up to \(Re_\tau =4200\). Physics of Fluids, 26, art. 011702.
Zurück zum Zitat Lundgren, T. S. (1967). Distribution functions in the statistical theory of turbulence. Physics of Fluids, 10, 969–975.CrossRef Lundgren, T. S. (1967). Distribution functions in the statistical theory of turbulence. Physics of Fluids, 10, 969–975.CrossRef
Zurück zum Zitat Łuniewski, M., Kotula, P., & Pozorski, J. (2012). Large-eddy simulations of particle-laden turbulent jets. TASK Quarterly, 16, 33–51. Łuniewski, M., Kotula, P., & Pozorski, J. (2012). Large-eddy simulations of particle-laden turbulent jets. TASK Quarterly, 16, 33–51.
Zurück zum Zitat Manceau, R. (2015). Recent progress in the development of the Elliptic Blending Reynolds-stress model. International Journal of Heat and Fluid Flow, 51, 195–220.CrossRef Manceau, R. (2015). Recent progress in the development of the Elliptic Blending Reynolds-stress model. International Journal of Heat and Fluid Flow, 51, 195–220.CrossRef
Zurück zum Zitat Manceau, R., & Hanjalić, K. (2002). Elliptic blending model: a new near-wall Reynolds-stress turbulence closure. Physics of Fluids, 14, 744–754.CrossRefMATH Manceau, R., & Hanjalić, K. (2002). Elliptic blending model: a new near-wall Reynolds-stress turbulence closure. Physics of Fluids, 14, 744–754.CrossRefMATH
Zurück zum Zitat Marchioli, C., Armenio, V., & Soldati, A. (2007). Simple and accurate scheme for fluid velocity interpolation for Eulerian-Lagrangian computation of dispersed flows in 3D curvilinear grids. Computers & Fluids, 36, 1187–1198.CrossRefMATH Marchioli, C., Armenio, V., & Soldati, A. (2007). Simple and accurate scheme for fluid velocity interpolation for Eulerian-Lagrangian computation of dispersed flows in 3D curvilinear grids. Computers & Fluids, 36, 1187–1198.CrossRefMATH
Zurück zum Zitat Marchioli, C., Salvetti, M. V., & Soldati, A. (2008). Appraisal of energy recovering sub-grid scale models for large-eddy simulation of turbulent dispersed flows. Acta Mechanica, 201, 277–296.CrossRefMATH Marchioli, C., Salvetti, M. V., & Soldati, A. (2008). Appraisal of energy recovering sub-grid scale models for large-eddy simulation of turbulent dispersed flows. Acta Mechanica, 201, 277–296.CrossRefMATH
Zurück zum Zitat Marchioli, C., & Soldati, A. (2002). Mechanisms for particle transfer and segregation in turbulent boundary layer. Journal of Fluid Mechanics, 468, 283–315.CrossRefMATH Marchioli, C., & Soldati, A. (2002). Mechanisms for particle transfer and segregation in turbulent boundary layer. Journal of Fluid Mechanics, 468, 283–315.CrossRefMATH
Zurück zum Zitat Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Tanière, A., Goldensoph, G., et al. (2008). Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test. International Journal of Multiphase Flow, 34, 879–893.CrossRef Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Tanière, A., Goldensoph, G., et al. (2008). Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test. International Journal of Multiphase Flow, 34, 879–893.CrossRef
Zurück zum Zitat Maxey, M. R. (1987). The motion of small spherical particles in a cellular flow field. Physics of Fluids, 30, 1915–1928.CrossRef Maxey, M. R. (1987). The motion of small spherical particles in a cellular flow field. Physics of Fluids, 30, 1915–1928.CrossRef
Zurück zum Zitat Maxey, M. R., & Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26, 883–889.CrossRefMATH Maxey, M. R., & Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26, 883–889.CrossRefMATH
Zurück zum Zitat Mayrhofer, A., Laurence, D., Rogers, B. D., & Violeau, D. (2015). DNS and LES of 3-D wall-bounded turbulence using Smoothed Particle Hydrodynamics. International Journal of Heat and Fluid Flow, 51, 195–220.MathSciNetCrossRef Mayrhofer, A., Laurence, D., Rogers, B. D., & Violeau, D. (2015). DNS and LES of 3-D wall-bounded turbulence using Smoothed Particle Hydrodynamics. International Journal of Heat and Fluid Flow, 51, 195–220.MathSciNetCrossRef
Zurück zum Zitat McComb, W. D. (1990). The physics of fluid turbulence. Oxford: Clarendon Press.MATH McComb, W. D. (1990). The physics of fluid turbulence. Oxford: Clarendon Press.MATH
Zurück zum Zitat Michałek, W. R., Kuerten, J. G. M., Liew, R., Zeegers, C. H., Pozorski, J., & Geurts, B. J. (2013). A hybrid deconvolution stochastic model for LES of particle-laden flow. Physics of Fluids, 25, art. 123202. Michałek, W. R., Kuerten, J. G. M., Liew, R., Zeegers, C. H., Pozorski, J., & Geurts, B. J. (2013). A hybrid deconvolution stochastic model for LES of particle-laden flow. Physics of Fluids, 25, art. 123202.
Zurück zum Zitat Minier, J.-P. (2015). On Lagrangian stochastic methods for turbulent polydisperse two-phase reactive flows. Progress in Energy and Combustion Science, 50, 1–62.CrossRef Minier, J.-P. (2015). On Lagrangian stochastic methods for turbulent polydisperse two-phase reactive flows. Progress in Energy and Combustion Science, 50, 1–62.CrossRef
Zurück zum Zitat Minier, J.-P., & Chibbaro, S., (Eds.). (2014). Stochastic methods in fluid mechanics. CISM Courses and Lectures (Vol. 548). Springer. Minier, J.-P., & Chibbaro, S., (Eds.). (2014). Stochastic methods in fluid mechanics. CISM Courses and Lectures (Vol. 548). Springer.
Zurück zum Zitat Minier, J.-P., Chibbaro, S., & Pope, S.B. (2014). Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Physics of Fluids, 26, art. 113303. Minier, J.-P., Chibbaro, S., & Pope, S.B. (2014). Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Physics of Fluids, 26, art. 113303.
Zurück zum Zitat Minier, J.-P., & Peirano, E. (2001). The PDF approach to turbulent polydispersed two-phase flows. Physics Reports, 352, 1–214.MathSciNetCrossRefMATH Minier, J.-P., & Peirano, E. (2001). The PDF approach to turbulent polydispersed two-phase flows. Physics Reports, 352, 1–214.MathSciNetCrossRefMATH
Zurück zum Zitat Minier, J.-P., & Pozorski, J. (1997). Propositions for a PDF model based on fluid particle acceleration. In Hanjalić, K., & Peeters, T. W. J. (Eds.) Turbulence, Heat and Mass Transfer (Vol. 2, pp. 771–778). Delft University Press. Minier, J.-P., & Pozorski, J. (1997). Propositions for a PDF model based on fluid particle acceleration. In Hanjalić, K., & Peeters, T. W. J. (Eds.) Turbulence, Heat and Mass Transfer (Vol. 2, pp. 771–778). Delft University Press.
Zurück zum Zitat Minier, J.-P., & Pozorski, J. (1999). Wall boundary conditions in PDF methods and application to a turbulent channel flow. Physics of Fluids, 11, 2632–2644.CrossRefMATH Minier, J.-P., & Pozorski, J. (1999). Wall boundary conditions in PDF methods and application to a turbulent channel flow. Physics of Fluids, 11, 2632–2644.CrossRefMATH
Zurück zum Zitat Minier, J.-P., & Profeta, C. (2015). Kinetic and dynamic probability-density-function descriptions of disperse two-phase turbulent flows. Physical Review E, 92, art. 53020. Minier, J.-P., & Profeta, C. (2015). Kinetic and dynamic probability-density-function descriptions of disperse two-phase turbulent flows. Physical Review E, 92, art. 53020.
Zurück zum Zitat Monchaux, R., Bourgoin, M., & Cartellier, A. (2012). Analyzing preferential concentration and clustering of inertial particles in turbulence. International Journal of Multiphase Flow, 40, 1–18.CrossRef Monchaux, R., Bourgoin, M., & Cartellier, A. (2012). Analyzing preferential concentration and clustering of inertial particles in turbulence. International Journal of Multiphase Flow, 40, 1–18.CrossRef
Zurück zum Zitat Moser, R. D., Kim, J., & Mansour, N. N. (1999). Direct numerical simulation of turbulent channel flow up to \(Re_\tau =590\). Physics of Fluids, 11, 943–945.CrossRefMATH Moser, R. D., Kim, J., & Mansour, N. N. (1999). Direct numerical simulation of turbulent channel flow up to \(Re_\tau =590\). Physics of Fluids, 11, 943–945.CrossRefMATH
Zurück zum Zitat Peirano, E., Chibbaro, S., Pozorski, J., & Minier, J.-P. (2006). Mean-field/PDF numerical approach for polydispersed turbulent two-phase flows. Progress in Energy and Combustion Science, 32, 315–371.CrossRef Peirano, E., Chibbaro, S., Pozorski, J., & Minier, J.-P. (2006). Mean-field/PDF numerical approach for polydispersed turbulent two-phase flows. Progress in Energy and Combustion Science, 32, 315–371.CrossRef
Zurück zum Zitat Piomelli, U., & Balaras, E. (2002). Wall-layer models for Large-Eddy Simulations. Annual Review of Fluid Mechanics, 34, 349–374.MathSciNetCrossRefMATH Piomelli, U., & Balaras, E. (2002). Wall-layer models for Large-Eddy Simulations. Annual Review of Fluid Mechanics, 34, 349–374.MathSciNetCrossRefMATH
Zurück zum Zitat Pope, S. B. (2000). Turbulent flows. Cambridge University Press. Pope, S. B. (2000). Turbulent flows. Cambridge University Press.
Zurück zum Zitat Pozorski, J. (2004). Stochastic modelling of turbulent flows. Zeszyty Naukowe IMP PAN 536/1495, Gdańsk. Pozorski, J. (2004). Stochastic modelling of turbulent flows. Zeszyty Naukowe IMP PAN 536/1495, Gdańsk.
Zurück zum Zitat Pozorski, J., & Apte, S. V. (2009). Filtered particle tracking in isotropic turbulence and stochastic modelling of subgrid-scale dispersion. International Journal of Multiphase Flow, 35, 118–128.CrossRef Pozorski, J., & Apte, S. V. (2009). Filtered particle tracking in isotropic turbulence and stochastic modelling of subgrid-scale dispersion. International Journal of Multiphase Flow, 35, 118–128.CrossRef
Zurück zum Zitat Pozorski, J., Knorps, M., & Łuniewski, M. (2011). Effects of subfilter velocity modelling on dispersed phase in LES of heated channel flow. Journal of Physics: Conference Series, 333, art. 012014. Pozorski, J., Knorps, M., & Łuniewski, M. (2011). Effects of subfilter velocity modelling on dispersed phase in LES of heated channel flow. Journal of Physics: Conference Series, 333, art. 012014.
Zurück zum Zitat Pozorski, J., Knorps, M., Minier, J.-P., & Kuerten, J. G. M. (2012). Anisotropic stochastic dispersion model for LES of particle-laden turbulent flows. Engineering Turbulence Modelling and Measurements, 9. Thessaloniki, Greece, June 6–8. Pozorski, J., Knorps, M., Minier, J.-P., & Kuerten, J. G. M. (2012). Anisotropic stochastic dispersion model for LES of particle-laden turbulent flows. Engineering Turbulence Modelling and Measurements, 9. Thessaloniki, Greece, June 6–8.
Zurück zum Zitat Pozorski, J., & Łuniewski, M. (2008). Analysis of SGS particle dispersion model in LES of channel flow. In Meyers, J., Geurts, B., & Sagaut, P. (Eds.), Quality and Reliability of Large-Eddy Simulations (pp. 331–342). Springer. Pozorski, J., & Łuniewski, M. (2008). Analysis of SGS particle dispersion model in LES of channel flow. In Meyers, J., Geurts, B., & Sagaut, P. (Eds.), Quality and Reliability of Large-Eddy Simulations (pp. 331–342). Springer.
Zurück zum Zitat Pozorski, J., & Minier, J.-P. (1998). On the Lagrangian turbulent dispersion models based on the Langevin equation. International Journal of Multiphase Flow, 24, 913–945.CrossRefMATH Pozorski, J., & Minier, J.-P. (1998). On the Lagrangian turbulent dispersion models based on the Langevin equation. International Journal of Multiphase Flow, 24, 913–945.CrossRefMATH
Zurück zum Zitat Pozorski, J., & Minier, J.-P. (1999). PDF modeling of dispersed two-phase turbulent flows. Physical Review E, 59, 855–863.CrossRef Pozorski, J., & Minier, J.-P. (1999). PDF modeling of dispersed two-phase turbulent flows. Physical Review E, 59, 855–863.CrossRef
Zurück zum Zitat Pozorski, J., & Minier, J.-P. (2006). Stochastic modelling of conjugate heat transfer in near-wall turbulence. International Journal of Heat and Fluid Flow, 27, 867–877.CrossRef Pozorski, J., & Minier, J.-P. (2006). Stochastic modelling of conjugate heat transfer in near-wall turbulence. International Journal of Heat and Fluid Flow, 27, 867–877.CrossRef
Zurück zum Zitat Pozorski, J., Sazhin, S., Wacławczyk, M., Crua, C., Kennaird, D., & Heikal, M. (2002). Spray penetration in a turbulent flow. Flow Turbulence and Combustion, 68, 153–165.CrossRefMATH Pozorski, J., Sazhin, S., Wacławczyk, M., Crua, C., Kennaird, D., & Heikal, M. (2002). Spray penetration in a turbulent flow. Flow Turbulence and Combustion, 68, 153–165.CrossRefMATH
Zurück zum Zitat Reeks, M. W. (1991). On a kinetic equation for the transport of particles in turbulent flows. Physics of Fluids A, 3, 446–456.CrossRefMATH Reeks, M. W. (1991). On a kinetic equation for the transport of particles in turbulent flows. Physics of Fluids A, 3, 446–456.CrossRefMATH
Zurück zum Zitat Reeks, M. W. (1992). On the continuum equations for dispersed particles in nonuniform flows. Physics of Fluids A, 4, 1290–1303.CrossRefMATH Reeks, M. W. (1992). On the continuum equations for dispersed particles in nonuniform flows. Physics of Fluids A, 4, 1290–1303.CrossRefMATH
Zurück zum Zitat Rosa, B., Parishani, H., Ayala, O., Wang, L.-P., & Grabowski, W. W. (2013). Kinematic and dynamic collision statistics of cloud droplets from high-resolution simulations. New Journal of Physics, 15, art. 045032. Rosa, B., Parishani, H., Ayala, O., Wang, L.-P., & Grabowski, W. W. (2013). Kinematic and dynamic collision statistics of cloud droplets from high-resolution simulations. New Journal of Physics, 15, art. 045032.
Zurück zum Zitat Rosa, B., & Pozorski, J. (2016). Analysis of subfilter effects on inertial particles in forced isotropic turbulence. 9th International Conference on Multiphase Flow. Firenze, Italy, May 22–27. Rosa, B., & Pozorski, J. (2016). Analysis of subfilter effects on inertial particles in forced isotropic turbulence. 9th International Conference on Multiphase Flow. Firenze, Italy, May 22–27.
Zurück zum Zitat Scotti, A., & Meneveau, C. (1999). A fractal interpolation model for large eddy simulation of turbulent flows. Physica D, 127, 198–232.MathSciNetCrossRefMATH Scotti, A., & Meneveau, C. (1999). A fractal interpolation model for large eddy simulation of turbulent flows. Physica D, 127, 198–232.MathSciNetCrossRefMATH
Zurück zum Zitat Sobczyk, K. (1991). Stochastic differential equations. Kluwer Academic Publishers. Sobczyk, K. (1991). Stochastic differential equations. Kluwer Academic Publishers.
Zurück zum Zitat Soldati, A., & Marchioli, C. (2009). Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study. International Journal of Multiphase Flow, 35, 827–839.CrossRef Soldati, A., & Marchioli, C. (2009). Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study. International Journal of Multiphase Flow, 35, 827–839.CrossRef
Zurück zum Zitat Squires, K. D. (2007). Point-particle methods for disperse flows. In Prosperetti, A., & Tryggvason, G. (Eds.) Computational Methods for Multiphase Flow. Cambridge: Cambridge University Press. Squires, K. D. (2007). Point-particle methods for disperse flows. In Prosperetti, A., & Tryggvason, G. (Eds.) Computational Methods for Multiphase Flow. Cambridge: Cambridge University Press.
Zurück zum Zitat Squires, K. D., & Eaton, J. K. (1991). Preferential concentration of particles by turbulence. Physics of Fluids A, 3, 1169–1178.CrossRef Squires, K. D., & Eaton, J. K. (1991). Preferential concentration of particles by turbulence. Physics of Fluids A, 3, 1169–1178.CrossRef
Zurück zum Zitat Subramanian, S. (2013). Lagrangian-Eulerian methods for multiphase flows. Progress in Energy and Combustion Science, 39, 215–245.CrossRef Subramanian, S. (2013). Lagrangian-Eulerian methods for multiphase flows. Progress in Energy and Combustion Science, 39, 215–245.CrossRef
Zurück zum Zitat Tanière, A., Arcen, B., Oesterlé, B., & Pozorski, J. (2010). Study on Langevin model parameters of velocity in turbulent shear flows. Physics of Fluids, 22, art. 115101. Tanière, A., Arcen, B., Oesterlé, B., & Pozorski, J. (2010). Study on Langevin model parameters of velocity in turbulent shear flows. Physics of Fluids, 22, art. 115101.
Zurück zum Zitat Tenneti, S., & Subramanian, S. (2014). Particle-resolved direct numerical simulation for gas-solid flow model development. Annual Review of Fluid Mechanics, 46, 199–230.MathSciNetCrossRefMATH Tenneti, S., & Subramanian, S. (2014). Particle-resolved direct numerical simulation for gas-solid flow model development. Annual Review of Fluid Mechanics, 46, 199–230.MathSciNetCrossRefMATH
Zurück zum Zitat Traczyk, M., & Knorps, M. (2012). Private communication. Traczyk, M., & Knorps, M. (2012). Private communication.
Zurück zum Zitat Violeau, D. (2012). Fluid mechanics and the SPH method. Oxford University Press. Violeau, D. (2012). Fluid mechanics and the SPH method. Oxford University Press.
Zurück zum Zitat Voßkuhle, M., Pumir, A., Lévêque, E., & Wilkinson, M. (2014). Collision rate for suspensions at large Stokes numbers—comparing Navier-Stokes and synthetic turbulence. Journal of Turbulence, 16, 15–25.CrossRef Voßkuhle, M., Pumir, A., Lévêque, E., & Wilkinson, M. (2014). Collision rate for suspensions at large Stokes numbers—comparing Navier-Stokes and synthetic turbulence. Journal of Turbulence, 16, 15–25.CrossRef
Zurück zum Zitat Wacławczyk, M., & Pozorski, J. (2002). Two-point velocity statistics and the POD analysis of the near-wall region in a turbulent channel flow. Journal of Theoretical and Applied Mechanics, 40, 895–916. Wacławczyk, M., & Pozorski, J. (2002). Two-point velocity statistics and the POD analysis of the near-wall region in a turbulent channel flow. Journal of Theoretical and Applied Mechanics, 40, 895–916.
Zurück zum Zitat Wacławczyk, M., & Pozorski, J. (2007). Modelling of near-wall turbulence with large-eddy velocity modes. Journal of Theoretical and Applied Mechanics, 45, 705–724. Wacławczyk, M., & Pozorski, J. (2007). Modelling of near-wall turbulence with large-eddy velocity modes. Journal of Theoretical and Applied Mechanics, 45, 705–724.
Zurück zum Zitat Wacławczyk, M., Pozorski, J., & Minier, J.-P. (2004). PDF computation of turbulent flows with a new near-wall model. Physics of Fluids, 16, 1410–1422.CrossRefMATH Wacławczyk, M., Pozorski, J., & Minier, J.-P. (2004). PDF computation of turbulent flows with a new near-wall model. Physics of Fluids, 16, 1410–1422.CrossRefMATH
Zurück zum Zitat Wacławczyk, M., Pozorski, J., & Minier, J.-P. (2008). New molecular transport model for FDF/LES of turbulence with passive scalar. Flow Turbulence and Combustion, 81, 235–260.CrossRefMATH Wacławczyk, M., Pozorski, J., & Minier, J.-P. (2008). New molecular transport model for FDF/LES of turbulence with passive scalar. Flow Turbulence and Combustion, 81, 235–260.CrossRefMATH
Zurück zum Zitat Wang, L.-P., & Maxey, M. R. (1993). Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. Journal of Fluid Mechanics, 256, 27–68.CrossRef Wang, L.-P., & Maxey, M. R. (1993). Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. Journal of Fluid Mechanics, 256, 27–68.CrossRef
Zurück zum Zitat Yu, W., Vinkovic, I., & Buffat, M. (2016). Acceleration statistics of finite-size particles in turbulent channel flow in the absence of gravity. Flow Turbulence and Combustion, 96, 183–205.CrossRef Yu, W., Vinkovic, I., & Buffat, M. (2016). Acceleration statistics of finite-size particles in turbulent channel flow in the absence of gravity. Flow Turbulence and Combustion, 96, 183–205.CrossRef
Zurück zum Zitat Zamansky, R., Vinkovic, I., & Gorokhovski, M. (2013). Acceleration in turbulent channel flow: Universalities in statistics, subgrid stochasticmodels and application. Journal of Fluid Mechanics, 721, 627–668. Zamansky, R., Vinkovic, I., & Gorokhovski, M. (2013). Acceleration in turbulent channel flow: Universalities in statistics, subgrid stochasticmodels and application. Journal of Fluid Mechanics, 721, 627–668.
Metadaten
Titel
Models of Turbulent Flows and Particle Dynamics
verfasst von
Jacek Pozorski
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-41567-3_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.