Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

Modern TCSPC Electronics: Principles and Acquisition Modes

verfasst von : Michael Wahl

Erschienen in: Advanced Photon Counting

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Time-correlated single-photon counting (TCSPC) is an extraordinarily versatile and sensitive technique. While it was initially used almost only to measure excited state lifetimes, it can today be used much more flexibly, embracing and combining experimental methods that in the past required separate instrumentation. This has become possible by time-tagged event recording and modern time measurement circuitry. This chapter shows how such technologies operate with regard to electronics, data processing, and applications. Some implementation details will be exemplified by state-of-the-art TCSPC instruments and a recent software package for TCSPC data acquisition and analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
This naming convention appears a little arbitrary because it has evolved historically. See the related footnote on T3 mode for the original historical meaning.
 
2
As outlined in the footnote on T2 mode, this nomenclature is somewhat arbitrary and only explicable in historical context. The abbreviation T3 stems from T3R which in turn stands for time-tagged-time-resolved (TTTR). This was essentially an ad hoc term to adequately describe our first implementation of early time-tagged TCSPC by an extension of the classical stopwatch scheme by a lower-resolution time tag [27]. The idea was originally conceived for the purpose of single molecule detection in capillary flow [28] but had not been widely recognized then. Other early implementers of the concept (Becker & Hickl GmbH, unpublished at the time) and related publications [29] referred to it only from a specialized application or implementation perspective, using the terms burst-integrated fluorescence lifetime (BIFL) or FIFO mode. Today it is more common to speak of TTTR or time tagging as the overall method with T2 and T3 modes as its variants. T3 mode was called T3 mode because it is close to the historical T3R scheme.
 
Literatur
1.
Zurück zum Zitat Bollinger LM, Thomas GE (1961) Measurement of the time dependence of scintillation intensity by a delayed coincidence method. Rev Sci Instrum 32:1044–1050CrossRef Bollinger LM, Thomas GE (1961) Measurement of the time dependence of scintillation intensity by a delayed coincidence method. Rev Sci Instrum 32:1044–1050CrossRef
2.
Zurück zum Zitat Connor DVO, Phillips D (1984) Time-correlated single photon counting. Academic Press, London Connor DVO, Phillips D (1984) Time-correlated single photon counting. Academic Press, London
3.
Zurück zum Zitat Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science + Business Media, New YorkCrossRef Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science + Business Media, New YorkCrossRef
4.
Zurück zum Zitat Bülter A (2014) Single-photon counting detectors for the visible range between 300 nm and 1000 nm. In: Kapusta P et al. (eds) Advanced photon counting: applications, methods, instrumentation. Springer series on fluorescence. Springer International Publishing, doi: 10.1007/4243_2014_63 Bülter A (2014) Single-photon counting detectors for the visible range between 300 nm and 1000 nm. In: Kapusta P et al. (eds) Advanced photon counting: applications, methods, instrumentation. Springer series on fluorescence. Springer International Publishing, doi: 10.​1007/​4243_​2014_​63
5.
Zurück zum Zitat Buller GS, Collins RJ (2014) Single-photon detectors for infrared wavelengths in the range 1 to 1.7 μm. In: Kapusta P et al. (eds) Advanced photon counting: applications, methods, instrumentation. Springer series on fluorescence. Springer International Publishing, doi: 10.1007/4243_2014_64 Buller GS, Collins RJ (2014) Single-photon detectors for infrared wavelengths in the range 1 to 1.7 μm. In: Kapusta P et al. (eds) Advanced photon counting: applications, methods, instrumentation. Springer series on fluorescence. Springer International Publishing, doi: 10.​1007/​4243_​2014_​64
6.
Zurück zum Zitat Becker W (2005) Advanced time-correlated single photon counting techniques. Springer, BerlinCrossRef Becker W (2005) Advanced time-correlated single photon counting techniques. Springer, BerlinCrossRef
7.
Zurück zum Zitat Rossi B, Nereson N (1946) Experimental arrangement for the measurement of small time intervals between the discharges of Geiger-Müller counters. Rev Sci Instrum 17:65–71CrossRef Rossi B, Nereson N (1946) Experimental arrangement for the measurement of small time intervals between the discharges of Geiger-Müller counters. Rev Sci Instrum 17:65–71CrossRef
8.
Zurück zum Zitat Kalisz J (2004) Review of methods for time interval measurements with picosecond resolution. Metrologia 41:17–32CrossRef Kalisz J (2004) Review of methods for time interval measurements with picosecond resolution. Metrologia 41:17–32CrossRef
9.
Zurück zum Zitat Roberts GW, Ali-Bakhshian M (2010) A brief introduction to time-to-digital and digital-to-time converters. IEEE Transact Circ Syst II Expr Briefs 57:153–157CrossRef Roberts GW, Ali-Bakhshian M (2010) A brief introduction to time-to-digital and digital-to-time converters. IEEE Transact Circ Syst II Expr Briefs 57:153–157CrossRef
10.
Zurück zum Zitat Henzler S (2010) Time-to-digital converters. Springer, Dordrecht/Heidelberg/London/New YorkCrossRef Henzler S (2010) Time-to-digital converters. Springer, Dordrecht/Heidelberg/London/New YorkCrossRef
11.
Zurück zum Zitat Heinemann B et al. (2010) SiGe HBT technology with fT/fmax of 300 GHz/500 GHz and 2.0 ps CML gate delay. Technical digest, IEEE international electron device meeting (IEDM), San Francisco, 06–08 Dec 2010, pp 688–691 Heinemann B et al. (2010) SiGe HBT technology with fT/fmax of 300 GHz/500 GHz and 2.0 ps CML gate delay. Technical digest, IEEE international electron device meeting (IEDM), San Francisco, 06–08 Dec 2010, pp 688–691
12.
Zurück zum Zitat Wahl M, Röhlicke T, Rahn HJ, Erdmann R, Kell G, Ahlrichs A, Kernbach M, Schell AW, Benson O (2013) Integrated multichannel photon timing instrument with very short dead time and high throughput. Rev Sci Instrum 084:043102CrossRef Wahl M, Röhlicke T, Rahn HJ, Erdmann R, Kell G, Ahlrichs A, Kernbach M, Schell AW, Benson O (2013) Integrated multichannel photon timing instrument with very short dead time and high throughput. Rev Sci Instrum 084:043102CrossRef
13.
Zurück zum Zitat Elson E, Magde D (1974) Fluorescence correlation spectroscopy. I conceptual basis and theory. Biopolymers 13:1–27CrossRef Elson E, Magde D (1974) Fluorescence correlation spectroscopy. I conceptual basis and theory. Biopolymers 13:1–27CrossRef
14.
Zurück zum Zitat Thompson NL, Lieto AM, Allen NW (2002) Recent advances in fluorescence correlation spectroscopy. Curr Opin Struc Biol 12:634–641CrossRef Thompson NL, Lieto AM, Allen NW (2002) Recent advances in fluorescence correlation spectroscopy. Curr Opin Struc Biol 12:634–641CrossRef
15.
Zurück zum Zitat Dertinger T, Rüttinger S (2014) Advanced FCS: an introduction to fluorescence lifetime correlation spectroscopy and dual-focus FCS. In: Kapusta P et al. (eds) Advanced photon counting: applications, methods, instrumentation. Springer series on fluorescence. Springer International Publishing, doi: 10.1007/4243_2014_72 Dertinger T, Rüttinger S (2014) Advanced FCS: an introduction to fluorescence lifetime correlation spectroscopy and dual-focus FCS. In: Kapusta P et al. (eds) Advanced photon counting: applications, methods, instrumentation. Springer series on fluorescence. Springer International Publishing, doi: 10.​1007/​4243_​2014_​72
16.
Zurück zum Zitat Böhmer M, Wahl M, Rahn HJ, Erdmann R, Enderlein J (2002) Time-resolved fluorescence correlation spectroscopy. Chem Phys Lett 353:439–445CrossRef Böhmer M, Wahl M, Rahn HJ, Erdmann R, Enderlein J (2002) Time-resolved fluorescence correlation spectroscopy. Chem Phys Lett 353:439–445CrossRef
17.
Zurück zum Zitat Enderlein J, Gregor I (2005) Using fluorescence lifetime for discriminating detector after-pulsing in fluorescence-correlation spectroscopy. Rev Sci Instrum 76:033102CrossRef Enderlein J, Gregor I (2005) Using fluorescence lifetime for discriminating detector after-pulsing in fluorescence-correlation spectroscopy. Rev Sci Instrum 76:033102CrossRef
18.
Zurück zum Zitat Felekyan S, Kalinin S, Valeri A, Seidel CAM (2009) Filtered FCS and species cross correlation function. In: Periasamy A, So PTC (eds) Multiphoton microscopy in the biomedical sciences IX; Proceedings of SPIE 7183:71830D:1–71830D:12 Felekyan S, Kalinin S, Valeri A, Seidel CAM (2009) Filtered FCS and species cross correlation function. In: Periasamy A, So PTC (eds) Multiphoton microscopy in the biomedical sciences IX; Proceedings of SPIE 7183:71830D:1–71830D:12
19.
Zurück zum Zitat Felekyan S, Kalinin S, Sanabria H, Valeri A, Seidel CAM (2012) Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. Chem Phys Chem 13:1036–1053 Felekyan S, Kalinin S, Sanabria H, Valeri A, Seidel CAM (2012) Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. Chem Phys Chem 13:1036–1053
20.
Zurück zum Zitat Eggeling C, Berger S, Brand L, Fries JR, Schaffer J, Volkmer A, Seidel CAM (2001) Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J Biotechnol 86:163–180CrossRef Eggeling C, Berger S, Brand L, Fries JR, Schaffer J, Volkmer A, Seidel CAM (2001) Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J Biotechnol 86:163–180CrossRef
21.
Zurück zum Zitat Ishii K, Tahara T (2010) Resolving inhomogeneity using lifetime-weighted fluorescence correlation spectroscopy. J Phys Chem B 114:12383–12391CrossRef Ishii K, Tahara T (2010) Resolving inhomogeneity using lifetime-weighted fluorescence correlation spectroscopy. J Phys Chem B 114:12383–12391CrossRef
22.
Zurück zum Zitat Ishii K, Tahara T (2013) Two-dimensional fluorescence lifetime correlation spectroscopy. J Phys Chem B 117:11414–11432CrossRef Ishii K, Tahara T (2013) Two-dimensional fluorescence lifetime correlation spectroscopy. J Phys Chem B 117:11414–11432CrossRef
23.
Zurück zum Zitat Otosu T, Tahara T (2014) Lifetime-weighted FCS and 2D FLCS: advanced application of time-tagged TCSPC. In: Kapusta P et al. (eds) Advanced photon counting: applications, methods, instrumentation. Springer series on fluorescence. Springer International Publishing, doi: 10.1007/4243_2014_65 Otosu T, Tahara T (2014) Lifetime-weighted FCS and 2D FLCS: advanced application of time-tagged TCSPC. In: Kapusta P et al. (eds) Advanced photon counting: applications, methods, instrumentation. Springer series on fluorescence. Springer International Publishing, doi: 10.​1007/​4243_​2014_​65
24.
Zurück zum Zitat Grußmayer KS, Herten D-P (2014) Photon Antibunching in Single Molecule Fluorescence Spectroscopy. In: Kapusta P et al. (eds) Advanced photon counting: applications, methods, instrumentation. Springer series on fluorescence. Springer International Publishing, doi: 10.1007/4243_2014_71 Grußmayer KS, Herten D-P (2014) Photon Antibunching in Single Molecule Fluorescence Spectroscopy. In: Kapusta P et al. (eds) Advanced photon counting: applications, methods, instrumentation. Springer series on fluorescence. Springer International Publishing, doi: 10.​1007/​4243_​2014_​71
25.
Zurück zum Zitat Wahl M, Rahn HJ, Röhlicke T, Kell G, Nettels D, Hillger F, Schuler B, Erdmann R (2008) Scalable time-correlated photon counting system with multiple independent input channels. Rev Sci Instrum 79:123113CrossRef Wahl M, Rahn HJ, Röhlicke T, Kell G, Nettels D, Hillger F, Schuler B, Erdmann R (2008) Scalable time-correlated photon counting system with multiple independent input channels. Rev Sci Instrum 79:123113CrossRef
26.
Zurück zum Zitat Birch DSJ, McLoskey D, Sanderson A, Suhling K, Holmes AS (1994) Multiplexed time-correlated single-photon counting. J Fluoresc 04:91–102CrossRef Birch DSJ, McLoskey D, Sanderson A, Suhling K, Holmes AS (1994) Multiplexed time-correlated single-photon counting. J Fluoresc 04:91–102CrossRef
27.
Zurück zum Zitat Wahl M, Erdmann R, Lauritsen K, Rahn HJ (1998) Hardware solution for continuous time-resolved burst detection of single molecules in flow. Proc SPIE 3259:173–178 Wahl M, Erdmann R, Lauritsen K, Rahn HJ (1998) Hardware solution for continuous time-resolved burst detection of single molecules in flow. Proc SPIE 3259:173–178
28.
Zurück zum Zitat Wilkerson CW Jr, Goodwin PM, Ambrose WP, Martin JC, Keller RA (1993) Detection and lifetime measurement of single molecules in flowing sample streams by laser-induced fluorescence. Appl Phys Lett 062:2030–2033CrossRef Wilkerson CW Jr, Goodwin PM, Ambrose WP, Martin JC, Keller RA (1993) Detection and lifetime measurement of single molecules in flowing sample streams by laser-induced fluorescence. Appl Phys Lett 062:2030–2033CrossRef
29.
Zurück zum Zitat Eggeling C, Fries JR, Brand L, Gunther R, Seidel CAM (1998) Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc Natl Acad Sci U S A 95:1556–1561CrossRef Eggeling C, Fries JR, Brand L, Gunther R, Seidel CAM (1998) Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc Natl Acad Sci U S A 95:1556–1561CrossRef
30.
Zurück zum Zitat Wahl M, Röhlicke T, Rahn HJ, Buschmann V, Bertone N, Kell G (2013) High speed multichannel time-correlated single photon counting electronics based on SiGe integrated time-to-digital converters. Proc SPIE 8727:87270W Wahl M, Röhlicke T, Rahn HJ, Buschmann V, Bertone N, Kell G (2013) High speed multichannel time-correlated single photon counting electronics based on SiGe integrated time-to-digital converters. Proc SPIE 8727:87270W
32.
Zurück zum Zitat Koberling F, Wahl M, Patting M, Rahn HJ, Kapusta P, Erdmann R (2003) Two channel fluorescence lifetime microscope with two colour laser excitation, single-molecule sensitivity and submicrometer resolution. Proc SPIE 5143:181–192 Koberling F, Wahl M, Patting M, Rahn HJ, Kapusta P, Erdmann R (2003) Two channel fluorescence lifetime microscope with two colour laser excitation, single-molecule sensitivity and submicrometer resolution. Proc SPIE 5143:181–192
33.
Zurück zum Zitat Ortmann U, Dertinger T, Wahl M, Rahn HJ, Patting M, Erdmann R (2004) Compact TCSPC upgrade package for laser scanning microscopes based on 375 to 470 nm picosecond diode lasers. Proc SPIE 5325:179–186 Ortmann U, Dertinger T, Wahl M, Rahn HJ, Patting M, Erdmann R (2004) Compact TCSPC upgrade package for laser scanning microscopes based on 375 to 470 nm picosecond diode lasers. Proc SPIE 5325:179–186
34.
Zurück zum Zitat Li LQ, Davis LM (1995) Rapid and efficient detection of single chromophore molecules in aqueous solution. Appl Opt 34(18):3208–3217CrossRef Li LQ, Davis LM (1995) Rapid and efficient detection of single chromophore molecules in aqueous solution. Appl Opt 34(18):3208–3217CrossRef
35.
Zurück zum Zitat Davis LM, Williams PE, Ball DA, Swift KM, Matayoshi ED (2003) Data reduction methods for application of fluorescence correlation spectroscopy to pharmaceutical drug discovery. Curr Pharm Biotechnol 04:451–462CrossRef Davis LM, Williams PE, Ball DA, Swift KM, Matayoshi ED (2003) Data reduction methods for application of fluorescence correlation spectroscopy to pharmaceutical drug discovery. Curr Pharm Biotechnol 04:451–462CrossRef
36.
Zurück zum Zitat Schätzel K (1985) New concepts in correlator design. In: Institute of Physics conference series, vol 77. Hilger, London, pp 175–184 Schätzel K (1985) New concepts in correlator design. In: Institute of Physics conference series, vol 77. Hilger, London, pp 175–184
37.
Zurück zum Zitat Wahl M, Gregor I, Patting M, Enderlein J (2003) Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt Express 11:03583–03591CrossRef Wahl M, Gregor I, Patting M, Enderlein J (2003) Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt Express 11:03583–03591CrossRef
38.
Zurück zum Zitat Yang H, Xie XS (2002) Probing single molecule dynamics photon by photon. J Chem Phys 117:10965–10979CrossRef Yang H, Xie XS (2002) Probing single molecule dynamics photon by photon. J Chem Phys 117:10965–10979CrossRef
39.
Zurück zum Zitat Yang H, Luo G, Karnchanaphanurach P, Louie TM, Rech I, Cova S, Xun L, Xie XS (2003) Protein conformational dynamics probed by single-molecule electron transfer. Science 302(5643):262–266CrossRef Yang H, Luo G, Karnchanaphanurach P, Louie TM, Rech I, Cova S, Xun L, Xie XS (2003) Protein conformational dynamics probed by single-molecule electron transfer. Science 302(5643):262–266CrossRef
Metadaten
Titel
Modern TCSPC Electronics: Principles and Acquisition Modes
verfasst von
Michael Wahl
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/4243_2014_62

Neuer Inhalt