Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

11.02.2020

Modified Subspace Constrained Mean Shift Algorithm

Zeitschrift:
Journal of Classification
Autoren:
Youness Aliyari Ghassabeh, Frank Rudzicz
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

A subspace constrained mean shift (SCMS) algorithm is a non-parametric iterative technique to estimate principal curves. Principal curves, as a nonlinear generalization of principal components analysis (PCA), are smooth curves (or surfaces) that pass through the middle of a data set and provide a compact low-dimensional representation of data. The SCMS algorithm combines the mean shift (MS) algorithm with a projection step to estimate principal curves and surfaces. The MS algorithm is a simple iterative method for locating modes of an unknown probability density function (pdf) obtained via a kernel density estimate. Modes of a pdf can be interpreted as zero-dimensional principal curves. These modes also can be used for clustering the input data. The SCMS algorithm generalizes the MS algorithm to estimate higher order principal curves and surfaces. Although both algorithms have been widely used in many real-world applications, their convergence for widely used kernels (e.g., Gaussian kernel) has not been sown yet. In this paper, we first introduce a modified version of the MS algorithm and then combine it with different variations of the SCMS algorithm to estimate the underlying low-dimensional principal curve, embedded in a high-dimensional space. The different variations of the SCMS algorithm are obtained via modification of the projection step in the original SCMS algorithm. We show that the modification of the MS algorithm guarantees its convergence and also implies the convergence of different variations of the SCMS algorithm. The performance and effectiveness of the proposed modified versions to successfully estimate an underlying principal curve was shown through simulations using the synthetic data.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise