Skip to main content

2018 | OriginalPaper | Buchkapitel

Modularity Index for Optimal Sensor Placement in WDNs

verfasst von : Antonietta Simone, Daniele Laucelli, Luigi Berardi, Orazio Giustolisi

Erschienen in: Advances in Hydroinformatics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The division of water distribution networks (WDNs) in districts/modules for optimal placement of flow/pressure observations is a relevant issue for different management tasks. In fact, the division of hydraulic systems in districts allows simplifying technical tasks related to analysis and planning activities. Starting from the modularity index, i.e., the most used metric to measure the propensity of the network to be divided into modules, the optimal monitoring design proposes scenarios of optimal placement of flow and pressure meters. This way, each module results bounded by a subset of observations, guarantying the information about flow (i.e., mass balance) and pressure (i.e., energy balance) at the boundary cuts/nodes of each district of the network. Starting from the infrastructure segmentation-oriented modularity index as metric for WDN segmentation and the infrastructure sampling-oriented modularity index as metric for the sampling design, an integrated planning strategy for WDNs monitoring is here proposed, in order to increase service reliability and quality. The strategy is based on a multi-objective optimization that minimizes the number of devices, flow or pressure meters, and maximizes a specific tailoring modularity index, for segmentation and sampling design, respectively. The strategy allows dividing the network into integrated district and pressure monitoring areas, and flexibility is implemented by searching for nested districts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Laucelli, D., Simone, A., Berardi, L., & Giustolisi, O. (2017). Optimal design of district metering areas for the reduction of leakages. Journal of Water Resources Planning and Management, 143, 04017017-1–0401701712.CrossRef Laucelli, D., Simone, A., Berardi, L., & Giustolisi, O. (2017). Optimal design of district metering areas for the reduction of leakages. Journal of Water Resources Planning and Management, 143, 04017017-1–0401701712.CrossRef
2.
Zurück zum Zitat Yang, S.-L., Hsu, N.-S., Loule, P. W. F., & Yeh, W. W.-G. (1996). Water distribution network reliability: Connectivity analysis. Journal of Infrastructure Systems, 2, 54–64.CrossRef Yang, S.-L., Hsu, N.-S., Loule, P. W. F., & Yeh, W. W.-G. (1996). Water distribution network reliability: Connectivity analysis. Journal of Infrastructure Systems, 2, 54–64.CrossRef
3.
Zurück zum Zitat Walski, T. M. (1983). Technique for calibrating network models. Journal of Water Resources Planning and Management, 109, 360–372.CrossRef Walski, T. M. (1983). Technique for calibrating network models. Journal of Water Resources Planning and Management, 109, 360–372.CrossRef
4.
Zurück zum Zitat Davidson, J., Bouchart, F., Cavill, S., & Jowitt, P. (2005). Real-time connectivity modelling of water distribution networks to predict contamination spread. Journal of Computing in Civil Engineering, 19, 377–386.CrossRef Davidson, J., Bouchart, F., Cavill, S., & Jowitt, P. (2005). Real-time connectivity modelling of water distribution networks to predict contamination spread. Journal of Computing in Civil Engineering, 19, 377–386.CrossRef
5.
Zurück zum Zitat Deuerlein, J. W. (2008). Decomposition model of a general water supply network graph. Journal of Hydraulic Engineering, 134, 822–832.CrossRef Deuerlein, J. W. (2008). Decomposition model of a general water supply network graph. Journal of Hydraulic Engineering, 134, 822–832.CrossRef
6.
Zurück zum Zitat Perelman, L., & Ostfeld, A. (2011). Topological clustering for water distribution systems analysis. Environmental Modelling & Software, 26, 969–972.CrossRef Perelman, L., & Ostfeld, A. (2011). Topological clustering for water distribution systems analysis. Environmental Modelling & Software, 26, 969–972.CrossRef
7.
Zurück zum Zitat Alvisi, S., & Franchini, M. (2014). A heuristic procedure for the automatic creation of district metered areas in water distribution systems. Urban Water Journal, 11, 137–159.CrossRef Alvisi, S., & Franchini, M. (2014). A heuristic procedure for the automatic creation of district metered areas in water distribution systems. Urban Water Journal, 11, 137–159.CrossRef
8.
Zurück zum Zitat Scibetta, M., Boano, F., Revelli, R., & Ridolfi, L. (2013). Community detection as a tool for complex pipe network clustering. EPL, 103, 48001.CrossRef Scibetta, M., Boano, F., Revelli, R., & Ridolfi, L. (2013). Community detection as a tool for complex pipe network clustering. EPL, 103, 48001.CrossRef
9.
Zurück zum Zitat Diao, K., Zhou, Y., & Rauch, W. (2013). Automated Creation of District Metered Area Boundaries in Water Distribution Systems. Journal of Water Resources Planning and Management, 139, 184–190.CrossRef Diao, K., Zhou, Y., & Rauch, W. (2013). Automated Creation of District Metered Area Boundaries in Water Distribution Systems. Journal of Water Resources Planning and Management, 139, 184–190.CrossRef
10.
Zurück zum Zitat Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026113.CrossRef Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026113.CrossRef
11.
Zurück zum Zitat Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69, 066133.CrossRef Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69, 066133.CrossRef
12.
14.
Zurück zum Zitat Newman M. E. J. (2010). Networks: An introduction. UK: Oxford University Press. Newman M. E. J. (2010). Networks: An introduction. UK: Oxford University Press.
15.
Zurück zum Zitat Simone, A., Giustolisi, O., & Laucelli, D. B. (2016). A proposal of optimal sampling design using a modularity strategy. Water Resources Research, 52, 6171–6185.CrossRef Simone, A., Giustolisi, O., & Laucelli, D. B. (2016). A proposal of optimal sampling design using a modularity strategy. Water Resources Research, 52, 6171–6185.CrossRef
17.
Zurück zum Zitat Giustolisi, O., & Ridolfi, L. (2014). A new modularity-based approach to segmentation of water distribution network. Journal of Hydraulic Engineering, 140, 1–14.CrossRef Giustolisi, O., & Ridolfi, L. (2014). A new modularity-based approach to segmentation of water distribution network. Journal of Hydraulic Engineering, 140, 1–14.CrossRef
18.
Zurück zum Zitat Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences of the United States of America, 104, 36–41.CrossRef Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences of the United States of America, 104, 36–41.CrossRef
19.
Zurück zum Zitat Giustolisi, O., & Ridolfi, L. (2014). A novel infrastructure modularity index for the segmentation of water distribution networks. Water Resources Research, 50, 7648–7661.CrossRef Giustolisi, O., & Ridolfi, L. (2014). A novel infrastructure modularity index for the segmentation of water distribution networks. Water Resources Research, 50, 7648–7661.CrossRef
20.
Zurück zum Zitat Giustolisi, O., Ridolfi, L., & Berardi, L. (2015). General metrics for segmenting infrastructure networks. Journal of Hydroinformatics, 17, 505–517.CrossRef Giustolisi, O., Ridolfi, L., & Berardi, L. (2015). General metrics for segmenting infrastructure networks. Journal of Hydroinformatics, 17, 505–517.CrossRef
Metadaten
Titel
Modularity Index for Optimal Sensor Placement in WDNs
verfasst von
Antonietta Simone
Daniele Laucelli
Luigi Berardi
Orazio Giustolisi
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7218-5_31