Skip to main content
Erschienen in: Journal of Nanoparticle Research 3/2010

01.03.2010 | Research paper

Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids

verfasst von: Ling Li, Yuwen Zhang, Hongbin Ma, Mo Yang

Erschienen in: Journal of Nanoparticle Research | Ausgabe 3/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of the molecular layering at liquid–solid interface on the thermal conductivity of the nanofluid is investigated by an equilibrium molecular dynamics simulation. By tracking the position of the nanoparticle and the liquid atoms around the spherical nanoparticle, it was found that a thin layer of liquid is formed at the interface between the nanoparticle and liquid; this thin layer will move with the Brownian motion of the nanoparticle. Through the analysis of the density distribution of the liquid near the nanoparticle, it is found that more argon atoms are attracted to form the layer around the nanoparticle when the diameter of the nanoparticle is larger, and therefore lead to the more significant enhancement of the thermal conductivity of the nanofluid.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Clarendon, Oxford Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Clarendon, Oxford
Zurück zum Zitat Assael MJ, Chen C-F, Metaxa I, Wakeham WA (2004) Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys 25:971–985CrossRef Assael MJ, Chen C-F, Metaxa I, Wakeham WA (2004) Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys 25:971–985CrossRef
Zurück zum Zitat Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transf 125:567–574CrossRef Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transf 125:567–574CrossRef
Zurück zum Zitat Das SK, Choi SUS, Patel HE (2006) Heat transfer in nanofluids—a review. Heat Transf Eng 27:3–9CrossRefADS Das SK, Choi SUS, Patel HE (2006) Heat transfer in nanofluids—a review. Heat Transf Eng 27:3–9CrossRefADS
Zurück zum Zitat Eapen J, Li J, Yip S (2002) Mechanism of thermal transport in dilute nanocolloids. Phys Rev Lett 98:028302CrossRefADS Eapen J, Li J, Yip S (2002) Mechanism of thermal transport in dilute nanocolloids. Phys Rev Lett 98:028302CrossRefADS
Zurück zum Zitat Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88:093116CrossRefADS Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88:093116CrossRefADS
Zurück zum Zitat Jang SP, Choi SUS (2006) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318CrossRefADS Jang SP, Choi SUS (2006) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318CrossRefADS
Zurück zum Zitat Keblinksi P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863CrossRef Keblinksi P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863CrossRef
Zurück zum Zitat Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588CrossRef Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588CrossRef
Zurück zum Zitat Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8:245–254CrossRef Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8:245–254CrossRef
Zurück zum Zitat Poulikakos D, Arcidiacono S, Maruyama S (2003) Molecular dynamics simulations in nanoscale heat transfer: a review. Microscale Thermophys Eng 7:181–206CrossRef Poulikakos D, Arcidiacono S, Maruyama S (2003) Molecular dynamics simulations in nanoscale heat transfer: a review. Microscale Thermophys Eng 7:181–206CrossRef
Zurück zum Zitat Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901CrossRefPubMedADS Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94:025901CrossRefPubMedADS
Zurück zum Zitat Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128:588–595CrossRef Prasher R, Bhattacharya P, Phelan PE (2006) Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. J Heat Transf 128:588–595CrossRef
Zurück zum Zitat Rapaport DC (2001) The art of molecular dynamics simulation. Cambridge University Press, Cambridge Rapaport DC (2001) The art of molecular dynamics simulation. Cambridge University Press, Cambridge
Zurück zum Zitat Sarkar S, Selvam RP (2007) Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. J Appl Phys 102:074302CrossRefADS Sarkar S, Selvam RP (2007) Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. J Appl Phys 102:074302CrossRefADS
Zurück zum Zitat Tretiakov KV, Scandolo S (2004) Thermal conductivity of solid argon from molecular dynamics simulations. J Chem Phys 120:3765–3769CrossRefPubMedADS Tretiakov KV, Scandolo S (2004) Thermal conductivity of solid argon from molecular dynamics simulations. J Chem Phys 120:3765–3769CrossRefPubMedADS
Zurück zum Zitat Vogelsang R, Hoheisel C, Ciccotti G (1987) Thermal conductivity of the Lennard-Jones liquid by molecular dynamics calculations. J Chem Phys 86:6371–6375CrossRefADS Vogelsang R, Hoheisel C, Ciccotti G (1987) Thermal conductivity of the Lennard-Jones liquid by molecular dynamics calculations. J Chem Phys 86:6371–6375CrossRefADS
Zurück zum Zitat Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002) Thermal conductivity enhancement of suspensions containing alumina particles. J Appl Phys 91:4568–4572CrossRefADS Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002) Thermal conductivity enhancement of suspensions containing alumina particles. J Appl Phys 91:4568–4572CrossRefADS
Zurück zum Zitat Xie H, Fujii M, Zhang X (2005) Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf 48:2926–2932CrossRef Xie H, Fujii M, Zhang X (2005) Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf 48:2926–2932CrossRef
Zurück zum Zitat Xue L, Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2004) Effect of liquid layering at the liquid-solid interface on thermal transport. Int J Heat Mass Transf 47:4277–4284MATHCrossRef Xue L, Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2004) Effect of liquid layering at the liquid-solid interface on thermal transport. Int J Heat Mass Transf 47:4277–4284MATHCrossRef
Zurück zum Zitat Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171CrossRef Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171CrossRef
Zurück zum Zitat Yu CJ, Richter AG, Datta A, Durbin MK, Dutta P (2000) Molecular layering in a liquid on a substrate: an X-ray reflective study. Physica B 283:27–31CrossRefADS Yu CJ, Richter AG, Datta A, Durbin MK, Dutta P (2000) Molecular layering in a liquid on a substrate: an X-ray reflective study. Physica B 283:27–31CrossRefADS
Metadaten
Titel
Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids
verfasst von
Ling Li
Yuwen Zhang
Hongbin Ma
Mo Yang
Publikationsdatum
01.03.2010
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 3/2010
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-009-9728-5

Weitere Artikel der Ausgabe 3/2010

Journal of Nanoparticle Research 3/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.