Skip to main content

2022 | OriginalPaper | Buchkapitel

7. Molecular Oxygen in Photoresponsive Organic Materials

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The presence of molecular oxygen in organic materials designed for use in photoresponsive devices (e.g., solar cells, photon up-converters) can adversely influence the performance of the device in several ways. The most important of these is arguably through reactions that oxygenate and/or oxidize the organic components and thereby change properties relevant for a functioning device. The ground electronic state of molecular oxygen is a spin triplet, O2(X3Σg ). As such, it behaves as a biradical in its chemical reactions, trapping adventitious organic free radicals to yield reactive peroxyl radicals. The lowest excited electronic state of molecular oxygen is a spin singlet, O2(a1Δg), and can be formed in appreciable yield by energy transfer from a photoexcited organic molecule to O2(X3Σg ). Functional groups common to molecules used in photoresponsive materials (e.g., double bonds, sulfides) can react with O2(a1Δg) to form peroxides, which likewise are reactive and propagate disruption. The quenching of an excited-state organic component by O2(X3Σg ) also points to other ways in which oxygen can influence device performance. For example, the oxygen-mediated deactivation of comparatively long-lived triplet states can adversely influence the energy fusion process essential for some up-conversion devices. Likewise, electron transfer from an excited-state organic molecule to O2(X3Σg ) and/or O2(a1Δg) can not only interfere with desired charge movement (e.g., in a photovoltaic device), but it will also produce the superoxide radical ion that, in turn, can contribute to oxygenation reactions. Thus, to exploit fully the functional capabilities of photoresponsive organic materials and to prolong device longevity, and in lieu of completely excluding oxygen, it is necessary to monitor, understand, and ultimately control the behavior of oxygen in such systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Ahmad, K. Bazaka, L.J. Anderson, R.D. White, M.V. Jacob, Materials and methods for encapsulation of OPV: a review. Renew. Sust. Energ. Rev. 27, 104–117 (2013)CrossRef J. Ahmad, K. Bazaka, L.J. Anderson, R.D. White, M.V. Jacob, Materials and methods for encapsulation of OPV: a review. Renew. Sust. Energ. Rev. 27, 104–117 (2013)CrossRef
2.
Zurück zum Zitat M.A. Filatov, S. Baluschev, K. Landfester, Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen. Chem. Soc. Rev. 45, 4668–4689 (2016)CrossRef M.A. Filatov, S. Baluschev, K. Landfester, Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen. Chem. Soc. Rev. 45, 4668–4689 (2016)CrossRef
3.
Zurück zum Zitat I.E. Jacobs, F. Wang, Z.I.B. Valdez, A.N.A. Oviedo, D.J. Bilsky, A.J. Moule, Photoinduced degradation from trace 1,8-diiodooctane in organic photovoltaics. J. Mater. Chem. C 6, 219–225 (2018)CrossRef I.E. Jacobs, F. Wang, Z.I.B. Valdez, A.N.A. Oviedo, D.J. Bilsky, A.J. Moule, Photoinduced degradation from trace 1,8-diiodooctane in organic photovoltaics. J. Mater. Chem. C 6, 219–225 (2018)CrossRef
4.
Zurück zum Zitat P.R. Ogilby, Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 39, 3181–3209 (2010)CrossRef P.R. Ogilby, Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 39, 3181–3209 (2010)CrossRef
5.
Zurück zum Zitat M.T. Fontana, H. Kang, P.Y. Yee, Z. Fan, S.A. Hawks, L.T. Schelhas, S. Subramaniyan, Y.-J. Hwang, S.A. Jenekhe, S.H. Tolbert, B.J. Schwartz, Low-vapor-pressure solvent additives function as polymer swelling agents in bulk heterojunction organic photovoltaics. J. Phys. Chem. C 122, 16574–16588 (2018)CrossRef M.T. Fontana, H. Kang, P.Y. Yee, Z. Fan, S.A. Hawks, L.T. Schelhas, S. Subramaniyan, Y.-J. Hwang, S.A. Jenekhe, S.H. Tolbert, B.J. Schwartz, Low-vapor-pressure solvent additives function as polymer swelling agents in bulk heterojunction organic photovoltaics. J. Phys. Chem. C 122, 16574–16588 (2018)CrossRef
6.
Zurück zum Zitat C. Yan, S. Barlow, Z. Wang, H. Yan, A.K.-Y. Jen, S.R. Marder, X. Zhan, Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018)CrossRef C. Yan, S. Barlow, Z. Wang, H. Yan, A.K.-Y. Jen, S.R. Marder, X. Zhan, Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018)CrossRef
7.
Zurück zum Zitat T.W. Schmidt, F.N. Castellano, Photochemical upconversion: the primacy of kinetics. J. Phys. Chem. Lett. 5, 4062–4072 (2014)CrossRef T.W. Schmidt, F.N. Castellano, Photochemical upconversion: the primacy of kinetics. J. Phys. Chem. Lett. 5, 4062–4072 (2014)CrossRef
8.
Zurück zum Zitat T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet-triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010)CrossRef T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet-triplet annihilation. Coord. Chem. Rev. 254, 2560–2573 (2010)CrossRef
9.
Zurück zum Zitat P. Klán, J. Wirz, Photochemistry of Organic Compounds (Wiley, Chichester, 2009)CrossRef P. Klán, J. Wirz, Photochemistry of Organic Compounds (Wiley, Chichester, 2009)CrossRef
10.
Zurück zum Zitat M.J. Paterson, O. Christiansen, F. Jensen, P.R. Ogilby, Overview of theoretical and computational methods applied to the oxygen-organic molecule photosystem. Photochem. Photobiol. 82, 1136–1160 (2006)CrossRef M.J. Paterson, O. Christiansen, F. Jensen, P.R. Ogilby, Overview of theoretical and computational methods applied to the oxygen-organic molecule photosystem. Photochem. Photobiol. 82, 1136–1160 (2006)CrossRef
11.
Zurück zum Zitat C. Walling, in Active Oxygen in Chemistry, ed. by C. S. Foote, J. S. Valentine, A. Greenberg, J. F. Liebman, (Blackie Academic and Professional, Glasgow, 1995), pp. 24–65CrossRef C. Walling, in Active Oxygen in Chemistry, ed. by C. S. Foote, J. S. Valentine, A. Greenberg, J. F. Liebman, (Blackie Academic and Professional, Glasgow, 1995), pp. 24–65CrossRef
12.
Zurück zum Zitat P.R. Ogilby, Solvent effects on the radiative transitions of singlet oxygen. Acc. Chem. Res. 32, 512–519 (1999)CrossRef P.R. Ogilby, Solvent effects on the radiative transitions of singlet oxygen. Acc. Chem. Res. 32, 512–519 (1999)CrossRef
13.
Zurück zum Zitat C. Schweitzer, R. Schmidt, Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1757 (2003)CrossRef C. Schweitzer, R. Schmidt, Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1757 (2003)CrossRef
14.
Zurück zum Zitat M. Bregnhøj, M. Westberg, B.F. Minaev, P.R. Ogilby, Singlet oxygen photophysics in liquid solvents: converging on a unified picture. Acc. Chem. Res. 50, 1920–1927 (2017)CrossRef M. Bregnhøj, M. Westberg, B.F. Minaev, P.R. Ogilby, Singlet oxygen photophysics in liquid solvents: converging on a unified picture. Acc. Chem. Res. 50, 1920–1927 (2017)CrossRef
15.
Zurück zum Zitat M. Montalti, A. Credi, L. Prodi, M.T. Gandolfi, Handbook of Photochemistry (CRC Press, Boca Raton, 2006)CrossRef M. Montalti, A. Credi, L. Prodi, M.T. Gandolfi, Handbook of Photochemistry (CRC Press, Boca Raton, 2006)CrossRef
16.
Zurück zum Zitat E.L. Clennan, A. Pace, Advances in singlet oxygen chemistry. Tetrahedron 61, 6665–6691 (2005)CrossRef E.L. Clennan, A. Pace, Advances in singlet oxygen chemistry. Tetrahedron 61, 6665–6691 (2005)CrossRef
17.
Zurück zum Zitat R.D. Scurlock, B. Wang, P.R. Ogilby, J.R. Sheats, R.L. Clough, Singlet oxygen as a reactive intermediate in the photodegradation of an electroluminescent polymer. J. Am. Chem. Soc. 117, 10194–10202 (1995)CrossRef R.D. Scurlock, B. Wang, P.R. Ogilby, J.R. Sheats, R.L. Clough, Singlet oxygen as a reactive intermediate in the photodegradation of an electroluminescent polymer. J. Am. Chem. Soc. 117, 10194–10202 (1995)CrossRef
18.
Zurück zum Zitat Y.W. Soon, H. Cho, J. Low, H. Bronstein, I. McCulloch, J.R. Durrant, Correlating triplet yield, singlet oxygen generation and photochemical stability in polymer/fullerene blend films. Chem. Commun. 49, 1291–1293 (2013)CrossRef Y.W. Soon, H. Cho, J. Low, H. Bronstein, I. McCulloch, J.R. Durrant, Correlating triplet yield, singlet oxygen generation and photochemical stability in polymer/fullerene blend films. Chem. Commun. 49, 1291–1293 (2013)CrossRef
19.
Zurück zum Zitat A. Perthue, I.F. Dominguez, P. Verstappen, W. Maes, O.J. Duatel, G. Wantz, A. Rivaton, An efficient and simple tool for assessing singlet oxygen involvement in the photo-oxidation of conjugated materials. Sol. Energy Mater. Sol. Cells 176, 336–339 (2018)CrossRef A. Perthue, I.F. Dominguez, P. Verstappen, W. Maes, O.J. Duatel, G. Wantz, A. Rivaton, An efficient and simple tool for assessing singlet oxygen involvement in the photo-oxidation of conjugated materials. Sol. Energy Mater. Sol. Cells 176, 336–339 (2018)CrossRef
20.
Zurück zum Zitat R.D. Scurlock, B. Wang, P.R. Ogilby, Chemical reactivity of singlet sigma oxygen (b1Σg+) in solution. J. Am. Chem. Soc. 118, 388–392 (1996)CrossRef R.D. Scurlock, B. Wang, P.R. Ogilby, Chemical reactivity of singlet sigma oxygen (b1Σg+) in solution. J. Am. Chem. Soc. 118, 388–392 (1996)CrossRef
21.
Zurück zum Zitat W.R. Ware, Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J. Phys. Chem. 66, 455–458 (1962)CrossRef W.R. Ware, Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J. Phys. Chem. 66, 455–458 (1962)CrossRef
22.
Zurück zum Zitat L. Lüer, H.-J. Egelhaaf, D. Oelkrug, G. Cerullo, G. Lanzani, B.-H. Huisman, D. de Leeuw, Oxygen-induced quenching of photoexcited states in polythiophene films. Org. Electron. 5, 83–89 (2004)CrossRef L. Lüer, H.-J. Egelhaaf, D. Oelkrug, G. Cerullo, G. Lanzani, B.-H. Huisman, D. de Leeuw, Oxygen-induced quenching of photoexcited states in polythiophene films. Org. Electron. 5, 83–89 (2004)CrossRef
23.
Zurück zum Zitat F.M. Cabrerizo, J. Arnbjerg, M.P. Denofrio, R. Erra-Balsells, P.R. Ogilby, Fluorescence quenching by oxygen: “debunking” a classic rule. ChemPhysChem 11, 796–798 (2010)CrossRef F.M. Cabrerizo, J. Arnbjerg, M.P. Denofrio, R. Erra-Balsells, P.R. Ogilby, Fluorescence quenching by oxygen: “debunking” a classic rule. ChemPhysChem 11, 796–798 (2010)CrossRef
24.
Zurück zum Zitat C.S. Parmenter, J.D. Rau, Fluorescence quenching in aromatic hydrocarbons by oxygen. J. Chem. Phys. 51, 2242–2246 (1969)CrossRef C.S. Parmenter, J.D. Rau, Fluorescence quenching in aromatic hydrocarbons by oxygen. J. Chem. Phys. 51, 2242–2246 (1969)CrossRef
25.
Zurück zum Zitat R. Potashnik, C.R. Goldschmidt, M. Ottolenghi, Triplet state formation in the quenching of fluorescence by molecular oxygen. Chem. Phys. Lett. 9, 424–425 (1971)CrossRef R. Potashnik, C.R. Goldschmidt, M. Ottolenghi, Triplet state formation in the quenching of fluorescence by molecular oxygen. Chem. Phys. Lett. 9, 424–425 (1971)CrossRef
26.
Zurück zum Zitat L. Poulsen, P.R. Ogilby, Oxygen diffusion in glassy polymer films: effects of other gases and changes in pressure. J. Phys. Chem. A 104, 2573–2580 (2000)CrossRef L. Poulsen, P.R. Ogilby, Oxygen diffusion in glassy polymer films: effects of other gases and changes in pressure. J. Phys. Chem. A 104, 2573–2580 (2000)CrossRef
27.
Zurück zum Zitat G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950) G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand Reinhold, New York, 1950)
28.
Zurück zum Zitat M. Bregnhøj, A. Blázquez-Castro, M. Westberg, T. Breitenbach, P.R. Ogilby, Direct 765 nm optical excitation of molecular oxygen in solution and in single mammalian cells. J. Phys. Chem. B 119, 5422–5429 (2015). (See correction: J. Phys. Chem. B 123, 10569 (2019))CrossRef M. Bregnhøj, A. Blázquez-Castro, M. Westberg, T. Breitenbach, P.R. Ogilby, Direct 765 nm optical excitation of molecular oxygen in solution and in single mammalian cells. J. Phys. Chem. B 119, 5422–5429 (2015). (See correction: J. Phys. Chem. B 123, 10569 (2019))CrossRef
29.
Zurück zum Zitat M. Bregnhøj, M.V. Krægpøth, R.J. Sørensen, M. Westberg, P.R. Ogilby, Solvent and heavy-atom effects on the O2(X3Σg -) - O2(b1Σg +) absorption transition. J. Phys. Chem. A 120, 8285–8296 (2016) M. Bregnhøj, M.V. Krægpøth, R.J. Sørensen, M. Westberg, P.R. Ogilby, Solvent and heavy-atom effects on the O2(X3Σg -) - O2(b1Σg +) absorption transition. J. Phys. Chem. A 120, 8285–8296 (2016)
30.
Zurück zum Zitat M. Bregnhøj, M. Westberg, F. Jensen, P.R. Ogilby, Solvent-dependent singlet oxygen lifetimes: temperature effects implicate tunneling and charge-transfer interactions. Phys. Chem. Chem. Phys. 18, 22946–22961 (2016)CrossRef M. Bregnhøj, M. Westberg, F. Jensen, P.R. Ogilby, Solvent-dependent singlet oxygen lifetimes: temperature effects implicate tunneling and charge-transfer interactions. Phys. Chem. Chem. Phys. 18, 22946–22961 (2016)CrossRef
31.
Zurück zum Zitat M. Westberg, M. Bregnhøj, C. Banerjee, A. Blázquez-Castro, T. Breitenbach, P.R. Ogilby, Exerting better control and specificity with singlet oxygen experiments in live mammalian cells. Methods 109, 81–91 (2016)CrossRef M. Westberg, M. Bregnhøj, C. Banerjee, A. Blázquez-Castro, T. Breitenbach, P.R. Ogilby, Exerting better control and specificity with singlet oxygen experiments in live mammalian cells. Methods 109, 81–91 (2016)CrossRef
32.
Zurück zum Zitat F. Anquez, I.E. Yazidi-Belkoura, S. Randoux, P. Suret, E. Courtade, Cancerous cell death from sensitizer free photoactivation of singlet oxygen. Photochem. Photobiol. 88, 167–174 (2012)CrossRef F. Anquez, I.E. Yazidi-Belkoura, S. Randoux, P. Suret, E. Courtade, Cancerous cell death from sensitizer free photoactivation of singlet oxygen. Photochem. Photobiol. 88, 167–174 (2012)CrossRef
33.
Zurück zum Zitat A.A. Krasnovsky, Y.V. Roumbal, A.A. Strizhakov, Rates of 1O2 (1Δg) production upon direct excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions. Chem. Phys. Lett. 458, 195–199 (2008)CrossRef A.A. Krasnovsky, Y.V. Roumbal, A.A. Strizhakov, Rates of 1O2 (1Δg) production upon direct excitation of molecular oxygen by 1270 nm laser radiation in air-saturated alcohols and micellar aqueous dispersions. Chem. Phys. Lett. 458, 195–199 (2008)CrossRef
34.
Zurück zum Zitat A. Blázquez-Castro, Direct 1O2 optical excitation: a tool for redox biology. Redox Biol. 13, 39–59 (2017)CrossRef A. Blázquez-Castro, Direct 1O2 optical excitation: a tool for redox biology. Redox Biol. 13, 39–59 (2017)CrossRef
35.
Zurück zum Zitat H. Tsubomura, R.S. Mulliken, Molecular complexes and their spectra. XII. Ultraviolet absorption spectra caused by the interaction of oxygen with organic molecules. J. Am. Chem. Soc. 82, 5966–5974 (1960)CrossRef H. Tsubomura, R.S. Mulliken, Molecular complexes and their spectra. XII. Ultraviolet absorption spectra caused by the interaction of oxygen with organic molecules. J. Am. Chem. Soc. 82, 5966–5974 (1960)CrossRef
36.
Zurück zum Zitat P.R. Ogilby, M. Kristiansen, R.L. Clough, Singlet oxygen formation in a solid organic polymer upon irradiation of the oxygen-polymer charge-transfer band. Macromolecules 23, 2698–2704 (1990)CrossRef P.R. Ogilby, M. Kristiansen, R.L. Clough, Singlet oxygen formation in a solid organic polymer upon irradiation of the oxygen-polymer charge-transfer band. Macromolecules 23, 2698–2704 (1990)CrossRef
37.
Zurück zum Zitat M. Bregnhøj, P.R. Ogilby, Two-photon excitation of neat aerated solvents with visible light produces singlet oxygen. J. Phys. Chem. A 123, 7567–7575 (2019)CrossRef M. Bregnhøj, P.R. Ogilby, Two-photon excitation of neat aerated solvents with visible light produces singlet oxygen. J. Phys. Chem. A 123, 7567–7575 (2019)CrossRef
38.
Zurück zum Zitat R.D. Scurlock, P.R. Ogilby, Singlet molecular oxygen (a1Δg) formation upon irradiation of an oxygen (X3Σg −)-organic molecule charge-transfer absorption band. J. Phys. Chem. 93, 5493–5500 (1989) R.D. Scurlock, P.R. Ogilby, Singlet molecular oxygen (a1Δg) formation upon irradiation of an oxygen (X3Σg )-organic molecule charge-transfer absorption band. J. Phys. Chem. 93, 5493–5500 (1989)
39.
Zurück zum Zitat P.-G. Jensen, J. Arnbjerg, L.P. Tolbod, R. Toftegaard, P.R. Ogilby, Influence of an intermolecular charge-transfer state on excited-state relaxation dynamics: solvent effect on the methylnaphthalene-oxygen system and its significance for singlet oxygen production. J. Phys. Chem. A 113, 9965–9973 (2009)CrossRef P.-G. Jensen, J. Arnbjerg, L.P. Tolbod, R. Toftegaard, P.R. Ogilby, Influence of an intermolecular charge-transfer state on excited-state relaxation dynamics: solvent effect on the methylnaphthalene-oxygen system and its significance for singlet oxygen production. J. Phys. Chem. A 113, 9965–9973 (2009)CrossRef
40.
Zurück zum Zitat K. Onodera, G. Furusawa, M. Kojima, M. Tsuchiya, S. Aihara, R. Akaba, H. Sakuragi, K. Tokumaru, Mechanistic considerations on photoreaction of organic compounds via excitation of contact charge transfer complexes with oxygen. Tetrahedron 41, 2215–2220 (1985)CrossRef K. Onodera, G. Furusawa, M. Kojima, M. Tsuchiya, S. Aihara, R. Akaba, H. Sakuragi, K. Tokumaru, Mechanistic considerations on photoreaction of organic compounds via excitation of contact charge transfer complexes with oxygen. Tetrahedron 41, 2215–2220 (1985)CrossRef
41.
Zurück zum Zitat J.A. Howard, K.U. Ingold, The self-reaction of sec-butylperoxy radicals. Confirmation of the Russell mechanism. J. Am. Chem. Soc. 90, 1056–1058 (1968)CrossRef J.A. Howard, K.U. Ingold, The self-reaction of sec-butylperoxy radicals. Confirmation of the Russell mechanism. J. Am. Chem. Soc. 90, 1056–1058 (1968)CrossRef
42.
Zurück zum Zitat Q. Niu, G.D. Mendenhall, Structural effects on the yields of singlet molecular oxygen (1ΔgO2) from alkylperoxyl radical recombination. J. Am. Chem. Soc. 112, 1656–1657 (1990)CrossRef Q. Niu, G.D. Mendenhall, Structural effects on the yields of singlet molecular oxygen (1ΔgO2) from alkylperoxyl radical recombination. J. Am. Chem. Soc. 112, 1656–1657 (1990)CrossRef
43.
Zurück zum Zitat J.M. Aubry, C. Pierlot, J. Rigaudy, R. Schmidt, Reversible binding of oxygen to aromatic compounds. Acc. Chem. Res. 36, 668–675 (2003)CrossRef J.M. Aubry, C. Pierlot, J. Rigaudy, R. Schmidt, Reversible binding of oxygen to aromatic compounds. Acc. Chem. Res. 36, 668–675 (2003)CrossRef
44.
Zurück zum Zitat N.J. Turro, M.-F. Chow, J. Rigaudy, Mechanism of thermolysis of endoperoxides of aromatic compounds. Activation parameters, magnetic field, and magnetic isotope effects. J. Am. Chem. Soc. 103, 7218–7224 (1981)CrossRef N.J. Turro, M.-F. Chow, J. Rigaudy, Mechanism of thermolysis of endoperoxides of aromatic compounds. Activation parameters, magnetic field, and magnetic isotope effects. J. Am. Chem. Soc. 103, 7218–7224 (1981)CrossRef
45.
Zurück zum Zitat S. Wilsey, F. Bernardi, M. Olivucci, M.A. Robb, S. Murphy, W. Adam, The thermal decomposition of 1,2-dioxetane revisited. J. Phys. Chem. A 103, 1669–1677 (1999)CrossRef S. Wilsey, F. Bernardi, M. Olivucci, M.A. Robb, S. Murphy, W. Adam, The thermal decomposition of 1,2-dioxetane revisited. J. Phys. Chem. A 103, 1669–1677 (1999)CrossRef
46.
Zurück zum Zitat C.S. Foote, T.R. Darling, Decomposition of dioxetanes: a unique probe into mechanism and energy transfer processes. Pure Appl. Chem. 41, 495–506 (1975)CrossRef C.S. Foote, T.R. Darling, Decomposition of dioxetanes: a unique probe into mechanism and energy transfer processes. Pure Appl. Chem. 41, 495–506 (1975)CrossRef
47.
Zurück zum Zitat W. Fudickar, T. Linker, in Singlet Oxygen: Applications in Biosciences and Nanosciences, ed. by S. Nonell, C. Flors, (Royal Society of Chemistry, Cambridge, 2016), pp. 431–446CrossRef W. Fudickar, T. Linker, in Singlet Oxygen: Applications in Biosciences and Nanosciences, ed. by S. Nonell, C. Flors, (Royal Society of Chemistry, Cambridge, 2016), pp. 431–446CrossRef
48.
Zurück zum Zitat F. Wilkinson, W.P. Helman, A.B. Ross, Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J. Phys. Chem. Ref. Data 24, 663–1021 (1995)CrossRef F. Wilkinson, W.P. Helman, A.B. Ross, Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J. Phys. Chem. Ref. Data 24, 663–1021 (1995)CrossRef
49.
Zurück zum Zitat A.A. Ghogare, A. Greer, Using singlet oxygen to synthesize natural products and drugs. Chem. Rev. 116, 9994–10034 (2016)CrossRef A.A. Ghogare, A. Greer, Using singlet oxygen to synthesize natural products and drugs. Chem. Rev. 116, 9994–10034 (2016)CrossRef
50.
Zurück zum Zitat R.D. Scurlock, M. Kristiansen, P.R. Ogilby, V.L. Taylor, R.L. Clough, Singlet oxygen reactions in a glassy polystyrene matrix. Polym. Degrad. Stab. 60, 145–159 (1998)CrossRef R.D. Scurlock, M. Kristiansen, P.R. Ogilby, V.L. Taylor, R.L. Clough, Singlet oxygen reactions in a glassy polystyrene matrix. Polym. Degrad. Stab. 60, 145–159 (1998)CrossRef
51.
Zurück zum Zitat P.F. Conn, W. Schalch, T.G. Truscott, The singlet oxygen and carotenoid interaction. J. Photochem. Photobiol. B Biol. 11, 41–47 (1991)CrossRef P.F. Conn, W. Schalch, T.G. Truscott, The singlet oxygen and carotenoid interaction. J. Photochem. Photobiol. B Biol. 11, 41–47 (1991)CrossRef
52.
Zurück zum Zitat D. Yu, Y.-Q. Yang, Z. Chen, Y. Tao, Y.-F. Liu, Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt. Commun. 362, 43–49 (2016)CrossRef D. Yu, Y.-Q. Yang, Z. Chen, Y. Tao, Y.-F. Liu, Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt. Commun. 362, 43–49 (2016)CrossRef
53.
Zurück zum Zitat S.H.C. Askes, S. Bonnet, Solving the oxygen sensitivity of sensitized photon upconversion in life science applications. Nat. Rev. 2, 437–452 (2018) S.H.C. Askes, S. Bonnet, Solving the oxygen sensitivity of sensitized photon upconversion in life science applications. Nat. Rev. 2, 437–452 (2018)
54.
Zurück zum Zitat M. Tsushima, K. Tokuda, T. Ohsaka, Use of hydrodynamic chronocoulometry for simultaneous determination of diffusion coefficients and concentrations of dioxygen in various media. Anal. Chem. 66, 4551–4556 (1994)CrossRef M. Tsushima, K. Tokuda, T. Ohsaka, Use of hydrodynamic chronocoulometry for simultaneous determination of diffusion coefficients and concentrations of dioxygen in various media. Anal. Chem. 66, 4551–4556 (1994)CrossRef
55.
Zurück zum Zitat R. Edge, D.J. McGarvey, T.G. Truscott, The carotenoids as anti-oxidants: a review. J. Photochem. Photobiol. B Biol. 41, 189–200 (1997)CrossRef R. Edge, D.J. McGarvey, T.G. Truscott, The carotenoids as anti-oxidants: a review. J. Photochem. Photobiol. B Biol. 41, 189–200 (1997)CrossRef
56.
Zurück zum Zitat R. Edge, T.G. Truscott, Singlet oxygen and free radical reactions of retinoids and carotenoids—a review. Antioxidants 7, 5 (2018)CrossRef R. Edge, T.G. Truscott, Singlet oxygen and free radical reactions of retinoids and carotenoids—a review. Antioxidants 7, 5 (2018)CrossRef
57.
Zurück zum Zitat P.R. Ogilby, M.P. Dillon, M. Kristiansen, R.L. Clough, Quenching of singlet oxygen in solid organic polymers. Macromolecules 25, 3399–3405 (1992)CrossRef P.R. Ogilby, M.P. Dillon, M. Kristiansen, R.L. Clough, Quenching of singlet oxygen in solid organic polymers. Macromolecules 25, 3399–3405 (1992)CrossRef
58.
Zurück zum Zitat R.D. Scurlock, D.O. Mártire, P.R. Ogilby, V.L. Taylor, R.L. Clough, Quantum yield of photosensitized singlet oxygen (a1Δg) production in solid polystyrene. Macromolecules 27, 4787–4794 (1994)CrossRef R.D. Scurlock, D.O. Mártire, P.R. Ogilby, V.L. Taylor, R.L. Clough, Quantum yield of photosensitized singlet oxygen (a1Δg) production in solid polystyrene. Macromolecules 27, 4787–4794 (1994)CrossRef
59.
Zurück zum Zitat Y. Gao, A.M. Baca, B. Wang, P.R. Ogilby, Activation barriers for oxygen diffusion in polystyrene and polycarbonate glasses: effects of low molecular weight additives. Macromolecules 27, 7041–7048 (1994)CrossRef Y. Gao, A.M. Baca, B. Wang, P.R. Ogilby, Activation barriers for oxygen diffusion in polystyrene and polycarbonate glasses: effects of low molecular weight additives. Macromolecules 27, 7041–7048 (1994)CrossRef
60.
Zurück zum Zitat R.L. Jensen, J. Arnbjerg, P.R. Ogilby, Temperature effects on the solvent-dependent deactivation of singlet oxygen. J. Am. Chem. Soc. 132, 8098–8105 (2010)CrossRef R.L. Jensen, J. Arnbjerg, P.R. Ogilby, Temperature effects on the solvent-dependent deactivation of singlet oxygen. J. Am. Chem. Soc. 132, 8098–8105 (2010)CrossRef
61.
Zurück zum Zitat B. Fückel, D.A. Roberts, Y.Y. Cheng, R.G.C.R. Clady, R.B. Piper, N.J. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, Singlet oxygen mediated photochemical upconversion of NIR light. J. Phys. Chem. Lett. 2, 966–971 (2011)CrossRef B. Fückel, D.A. Roberts, Y.Y. Cheng, R.G.C.R. Clady, R.B. Piper, N.J. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, Singlet oxygen mediated photochemical upconversion of NIR light. J. Phys. Chem. Lett. 2, 966–971 (2011)CrossRef
62.
Zurück zum Zitat R.D. Scurlock, K.-K. Iu, P.R. Ogilby, Luminescence from optical elements commonly used in near infrared spectroscopic studies: the photosensitized formation of singlet molecular oxygen (1ΔgO2) in solution. J. Photochem. 37, 247–255 (1987)CrossRef R.D. Scurlock, K.-K. Iu, P.R. Ogilby, Luminescence from optical elements commonly used in near infrared spectroscopic studies: the photosensitized formation of singlet molecular oxygen (1ΔgO2) in solution. J. Photochem. 37, 247–255 (1987)CrossRef
63.
Zurück zum Zitat M. Bregnhøj, S. Rodal-Cedeira, I. Pastoriza-Santos, P.R. Ogilby, Light scattering versus plasmon effects: optical transitions in molecular oxygen near a metal nanoparticle. J. Phys. Chem. C 122, 15625–15634 (2018)CrossRef M. Bregnhøj, S. Rodal-Cedeira, I. Pastoriza-Santos, P.R. Ogilby, Light scattering versus plasmon effects: optical transitions in molecular oxygen near a metal nanoparticle. J. Phys. Chem. C 122, 15625–15634 (2018)CrossRef
64.
Zurück zum Zitat M. Bregnhøj, M. Prete, V. Turkovic, A.U. Petersen, M.B. Nielsen, M. Madsen, P.R. Ogilby, Oxygen-dependent photophysics and photochemistry of prototypical compounds for organic photovoltaics: inhibiting degradation initiated by singlet oxygen at a molecular level. Methods Appl. Fluoresc. 8, 014001 (2020)CrossRef M. Bregnhøj, M. Prete, V. Turkovic, A.U. Petersen, M.B. Nielsen, M. Madsen, P.R. Ogilby, Oxygen-dependent photophysics and photochemistry of prototypical compounds for organic photovoltaics: inhibiting degradation initiated by singlet oxygen at a molecular level. Methods Appl. Fluoresc. 8, 014001 (2020)CrossRef
65.
Zurück zum Zitat J.W. Snyder, E. Skovsen, J.D.C. Lambert, L. Poulsen, P.R. Ogilby, Optical detection of singlet oxygen from single cells. Phys. Chem. Chem. Phys. 8, 4280–4293 (2006)CrossRef J.W. Snyder, E. Skovsen, J.D.C. Lambert, L. Poulsen, P.R. Ogilby, Optical detection of singlet oxygen from single cells. Phys. Chem. Chem. Phys. 8, 4280–4293 (2006)CrossRef
66.
Zurück zum Zitat K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, T. Nagano, Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen. J. Am. Chem. Soc. 123, 2530–2536 (2001)CrossRef K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, T. Nagano, Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen. J. Am. Chem. Soc. 123, 2530–2536 (2001)CrossRef
67.
Zurück zum Zitat B. Song, G. Wang, M. Tan, J. Yuan, A Europium(III) complex as an efficient singlet oxygen luminescence probe. J. Am. Chem. Soc. 128, 13442–13450 (2006)CrossRef B. Song, G. Wang, M. Tan, J. Yuan, A Europium(III) complex as an efficient singlet oxygen luminescence probe. J. Am. Chem. Soc. 128, 13442–13450 (2006)CrossRef
68.
Zurück zum Zitat S. Kim, M. Fujitsuka, T. Majima, Photochemistry of singlet oxygen sensor green. J. Phys. Chem. B 117, 13985–13992 (2013)CrossRef S. Kim, M. Fujitsuka, T. Majima, Photochemistry of singlet oxygen sensor green. J. Phys. Chem. B 117, 13985–13992 (2013)CrossRef
69.
Zurück zum Zitat S.K. Pedersen, J. Holmehave, F.H. Blaikie, A. Gollmer, T. Breitenbach, H.H. Jensen, P.R. Ogilby, Aarhus sensor green: a fluorescent probe for singlet oxygen. J. Org. Chem. 79, 3079–3087 (2014)CrossRef S.K. Pedersen, J. Holmehave, F.H. Blaikie, A. Gollmer, T. Breitenbach, H.H. Jensen, P.R. Ogilby, Aarhus sensor green: a fluorescent probe for singlet oxygen. J. Org. Chem. 79, 3079–3087 (2014)CrossRef
70.
Zurück zum Zitat R. Ruiz-Gonzalez, A.L. Zanocco, in Singlet Oxygen: Applications in Biosciences and Nanosciences, ed. by S. Nonell, C. Flors, (Royal Society of Chemistry, Cambridge, 2016), pp. 103–120CrossRef R. Ruiz-Gonzalez, A.L. Zanocco, in Singlet Oxygen: Applications in Biosciences and Nanosciences, ed. by S. Nonell, C. Flors, (Royal Society of Chemistry, Cambridge, 2016), pp. 103–120CrossRef
71.
Zurück zum Zitat M. Manceau, A. Rivaton, J.-L. Gardette, Involvement of singlet oxygen in the solid-state photochemistry of P3HT. Macromol. Rapid Commun. 29, 1823–1827 (2008)CrossRef M. Manceau, A. Rivaton, J.-L. Gardette, Involvement of singlet oxygen in the solid-state photochemistry of P3HT. Macromol. Rapid Commun. 29, 1823–1827 (2008)CrossRef
72.
Zurück zum Zitat M. Yan, L.J. Rothberg, F. Papadimitrakopoulos, M.E. Galvin, T.M. Miller, Defect quenching of conjugated polymer luminescence. Phys. Rev. Lett. 73, 744–747 (1994)CrossRef M. Yan, L.J. Rothberg, F. Papadimitrakopoulos, M.E. Galvin, T.M. Miller, Defect quenching of conjugated polymer luminescence. Phys. Rev. Lett. 73, 744–747 (1994)CrossRef
73.
Zurück zum Zitat B.H. Cumpston, I.D. Parker, K.F. Jensen, In situ characterization of the oxidative degradation of a polymeric light emitting device. J. Appl. Phys. 81, 3716–3720 (1997)CrossRef B.H. Cumpston, I.D. Parker, K.F. Jensen, In situ characterization of the oxidative degradation of a polymeric light emitting device. J. Appl. Phys. 81, 3716–3720 (1997)CrossRef
74.
Zurück zum Zitat C.A. Davis, K. McNeill, E.M.-L. Janssen, Non-singlet oxygen kinetic solvent isotope effects in aquatic photochemistry. Environ. Sci. Technol. 52, 9908–9916 (2018)CrossRef C.A. Davis, K. McNeill, E.M.-L. Janssen, Non-singlet oxygen kinetic solvent isotope effects in aquatic photochemistry. Environ. Sci. Technol. 52, 9908–9916 (2018)CrossRef
75.
Zurück zum Zitat I. Kraljic, L. Lindqvist, Laser photolysis study of triplet eosin and thionine reactions in photosensitized oxidations. Photochem. Photobiol. 20, 351–355 (1974)CrossRef I. Kraljic, L. Lindqvist, Laser photolysis study of triplet eosin and thionine reactions in photosensitized oxidations. Photochem. Photobiol. 20, 351–355 (1974)CrossRef
76.
Zurück zum Zitat M. Bregnhøj, L. Dichmann, C.K. McLoughlin, M. Westberg, P.R. Ogilby, Uric acid: a less-than-perfect probe for singlet oxygen. Photochem. Photobiol. 95, 202–210 (2019)CrossRef M. Bregnhøj, L. Dichmann, C.K. McLoughlin, M. Westberg, P.R. Ogilby, Uric acid: a less-than-perfect probe for singlet oxygen. Photochem. Photobiol. 95, 202–210 (2019)CrossRef
77.
Zurück zum Zitat N. Dam, R.D. Scurlock, B. Wang, L. Ma, M. Sundahl, P.R. Ogilby, Singlet oxygen as a reactive intermediate in the photodegradation of phenylenevinylene oligomers. Chem. Mater. 11, 1302–1305 (1999)CrossRef N. Dam, R.D. Scurlock, B. Wang, L. Ma, M. Sundahl, P.R. Ogilby, Singlet oxygen as a reactive intermediate in the photodegradation of phenylenevinylene oligomers. Chem. Mater. 11, 1302–1305 (1999)CrossRef
78.
Zurück zum Zitat M. Westberg, M. Etzerodt, P.R. Ogilby, Rational design of genetically encoded singlet oxygen photosensitizing proteins. Curr. Opin. Struct. Biol. 57, 56–62 (2019)CrossRef M. Westberg, M. Etzerodt, P.R. Ogilby, Rational design of genetically encoded singlet oxygen photosensitizing proteins. Curr. Opin. Struct. Biol. 57, 56–62 (2019)CrossRef
79.
Zurück zum Zitat C.S. Foote, R.W. Denny, Chemistry of singlet oxygen. VII. Quenching by β-carotene. J. Am. Chem. Soc. 90, 6233–6235 (1968)CrossRef C.S. Foote, R.W. Denny, Chemistry of singlet oxygen. VII. Quenching by β-carotene. J. Am. Chem. Soc. 90, 6233–6235 (1968)CrossRef
80.
Zurück zum Zitat A. Farmilo, F. Wilkinson, On the mechanism of quenching of singlet oxygen in solution. Photochem. Photobiol. 18, 447–450 (1973)CrossRef A. Farmilo, F. Wilkinson, On the mechanism of quenching of singlet oxygen in solution. Photochem. Photobiol. 18, 447–450 (1973)CrossRef
81.
Zurück zum Zitat R. Schmidt, Deactivation of O2(1Δg) singlet oxygen by carotenoids: internal conversion of excited encounter complexes. J. Phys. Chem. A 108, 5509–5513 (2004)CrossRef R. Schmidt, Deactivation of O2(1Δg) singlet oxygen by carotenoids: internal conversion of excited encounter complexes. J. Phys. Chem. A 108, 5509–5513 (2004)CrossRef
82.
Zurück zum Zitat V. Turkovic, M. Prete, M. Bregnhøj, L. Inasaridze, D. Volyniuk, F.A. Obrezkov, J.V. Grazulevicius, S. Engmann, H.-G. Rubahn, P.A. Troshin, P.R. Ogilby, M. Madsen, Biomimetic approach to inhibition of photooxidation in organic solar cells using beta-carotene as an additive. ACS Appl. Mater. Interfaces 11, 41570–41579 (2019)CrossRef V. Turkovic, M. Prete, M. Bregnhøj, L. Inasaridze, D. Volyniuk, F.A. Obrezkov, J.V. Grazulevicius, S. Engmann, H.-G. Rubahn, P.A. Troshin, P.R. Ogilby, M. Madsen, Biomimetic approach to inhibition of photooxidation in organic solar cells using beta-carotene as an additive. ACS Appl. Mater. Interfaces 11, 41570–41579 (2019)CrossRef
83.
Zurück zum Zitat D.J. Carlsson, G.D. Mendenhall, T. Suprunchuk, D.M. Wiles, Singlet oxygen (1Δg) quenching in the liquid phase by metal(II) chelates. J. Am. Chem. Soc. 94, 8960–8962 (1972)CrossRef D.J. Carlsson, G.D. Mendenhall, T. Suprunchuk, D.M. Wiles, Singlet oxygen (1Δg) quenching in the liquid phase by metal(II) chelates. J. Am. Chem. Soc. 94, 8960–8962 (1972)CrossRef
84.
Zurück zum Zitat A. Adamczyk, F. Wilkinson, Quenching of triplet states by schiff base nickel(II) complexes. J. Chem. Soc. Faraday Trans. 2. 68, 2031–2041 (1972)CrossRef A. Adamczyk, F. Wilkinson, Quenching of triplet states by schiff base nickel(II) complexes. J. Chem. Soc. Faraday Trans. 2. 68, 2031–2041 (1972)CrossRef
85.
Zurück zum Zitat N. Grassie, G. Scott, Polymer Degradation and Stabilisation (Cambridge University Press, Cambridge, 1985) N. Grassie, G. Scott, Polymer Degradation and Stabilisation (Cambridge University Press, Cambridge, 1985)
86.
Zurück zum Zitat M. Salvador, N. Gasparini, J.D. Perea, S.H. Paleti, A. Distler, L.N. Inasaridze, P.A. Troshin, L. Luer, H.-J. Egelhaaf, C. Brabec, Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 2005–2016 (2017)CrossRef M. Salvador, N. Gasparini, J.D. Perea, S.H. Paleti, A. Distler, L.N. Inasaridze, P.A. Troshin, L. Luer, H.-J. Egelhaaf, C. Brabec, Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 2005–2016 (2017)CrossRef
87.
Zurück zum Zitat M.E. Diaz Garcia, A. Sanz-Medel, Fast chemical deoxygenation of micellar solutions for room temperature phosphorescence. Anal. Chem. 58, 1436–1440 (1986)CrossRef M.E. Diaz Garcia, A. Sanz-Medel, Fast chemical deoxygenation of micellar solutions for room temperature phosphorescence. Anal. Chem. 58, 1436–1440 (1986)CrossRef
88.
Zurück zum Zitat R. Battino, T.R. Rettich, T. Tominaga, The solubility of oxygen and ozone in liquids. J. Phys. Chem. Ref. Data 12, 163–178 (1983)CrossRef R. Battino, T.R. Rettich, T. Tominaga, The solubility of oxygen and ozone in liquids. J. Phys. Chem. Ref. Data 12, 163–178 (1983)CrossRef
89.
Zurück zum Zitat N.J. Turro, G.S. Cox, X. Li, Remarkable inhibition of oxygen quenching of phosphorescence by complexation with cyclodextrins. Photochem. Photobiol. 37, 149–153 (1983)CrossRef N.J. Turro, G.S. Cox, X. Li, Remarkable inhibition of oxygen quenching of phosphorescence by complexation with cyclodextrins. Photochem. Photobiol. 37, 149–153 (1983)CrossRef
90.
Zurück zum Zitat J. Lopez-Gejo, A.A. Marti, M. Ruzzi, S. Jockusch, K. Komatsu, F. Tanabe, Y. Murata, N.J. Turro, Can H2 inside C60 communicate with the outside world? J. Am. Chem. Soc. 129, 14554–14555 (2007)CrossRef J. Lopez-Gejo, A.A. Marti, M. Ruzzi, S. Jockusch, K. Komatsu, F. Tanabe, Y. Murata, N.J. Turro, Can H2 inside C60 communicate with the outside world? J. Am. Chem. Soc. 129, 14554–14555 (2007)CrossRef
91.
Zurück zum Zitat C.C. Page, C.C. Moser, X. Chen, P.L. Dutton, Natural engineering principles of electron tunneling in biological oxidation-reduction. Nature 402, 47–52 (1999)CrossRef C.C. Page, C.C. Moser, X. Chen, P.L. Dutton, Natural engineering principles of electron tunneling in biological oxidation-reduction. Nature 402, 47–52 (1999)CrossRef
92.
Zurück zum Zitat C. Shih, A.K. Museth, M. Abrahamsson, A.M. Blaco-Rodriguez, A.J. Di Bilio, J. Sudhamsu, B.R. Crane, K.L. Ronayne, M. Towrie, A. Vlcek, J.H. Richards, J.R. Winkler, H.B. Gray, Tryptophan-accelerated electron flow through proteins. Science 320, 1760–1762 (2008)CrossRef C. Shih, A.K. Museth, M. Abrahamsson, A.M. Blaco-Rodriguez, A.J. Di Bilio, J. Sudhamsu, B.R. Crane, K.L. Ronayne, M. Towrie, A. Vlcek, J.H. Richards, J.R. Winkler, H.B. Gray, Tryptophan-accelerated electron flow through proteins. Science 320, 1760–1762 (2008)CrossRef
93.
Zurück zum Zitat R. L. Clough, N. C. Billingham, K. T. Gillen (eds.), Polymer Durability: Degradation, Stabilization, and Lifetime Protection (ACS, Washington, 1996) R. L. Clough, N. C. Billingham, K. T. Gillen (eds.), Polymer Durability: Degradation, Stabilization, and Lifetime Protection (ACS, Washington, 1996)
94.
Zurück zum Zitat C.S. Foote, Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54, 659 (1991)CrossRef C.S. Foote, Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54, 659 (1991)CrossRef
95.
Zurück zum Zitat D.T. Sawyer, J.S. Valentine, How super is superoxide? Acc. Chem. Res. 14, 393–400 (1981)CrossRef D.T. Sawyer, J.S. Valentine, How super is superoxide? Acc. Chem. Res. 14, 393–400 (1981)CrossRef
96.
Zurück zum Zitat D. Sawyer, T. Oxygen, Chemistry (Oxford University Press, New York, 1991) D. Sawyer, T. Oxygen, Chemistry (Oxford University Press, New York, 1991)
97.
Zurück zum Zitat B. Bielski, D. Cabelli, R. Arudi, A. Ross, Reactivity of HO2/O2 radicals in aqueous solutions. J. Phys. Chem. Ref. Data 14, 1041–1101 (1985) CrossRef B. Bielski, D. Cabelli, R. Arudi, A. Ross, Reactivity of HO2/O2 radicals in aqueous solutions. J. Phys. Chem. Ref. Data 14, 1041–1101 (1985) CrossRef
Metadaten
Titel
Molecular Oxygen in Photoresponsive Organic Materials
verfasst von
Mikkel Bregnhøj
Peter R. Ogilby
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-70358-5_7

Neuer Inhalt