Skip to main content

2017 | OriginalPaper | Buchkapitel

MR Imaging via Reduced Generalized Autocalibrating Partially Parallel Acquisition Compressed Sensing

verfasst von : Sheikh Rafiul Islam, Seba Maity, Santi P. Maity, Ajoy Kumar Ray

Erschienen in: Computer Vision, Graphics, and Image Processing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetic Resonance Imaging (MRI) system in recent times demands a high rate of acceleration in data acquisition to reduce the scanning time. The data acquisition rate can be accelerated to a significant order through Parallel MRI (pMRI) approach. An additional improvement in low sensing time for data acquisition can be achieved using Compressed Sensing (CS) or Compressive Sampling that enables reconstruction of a sparse signal from sub-sample (incomplete) measurements. This paper proposes an efficient pMRI scheme by combining CS with Generalized Auto-calibrating Partially Parallel Acquisitions (GRAPPA) to produce an MR image at high data acquisition rate. A kernel of reduced size is used within GRAPPA for estimating the unobserved encoded samples. Instead of all the unobserved samples, a certain number of the same are estimated randomly. Now, an \(l_{1}\)-minimization based CS reconstruction technique is used in which the observed and the estimated unobserved samples are taken as measurements to reconstruct the final MR images. Extensive simulation results show that a significant reduction in artifacts and thereby consequent visual improvement in the reconstructed MRIs are achieved even when a high rate of acceleration factor is used. Simulation results also demonstrate that the proposed method outperforms some state-of-art pMRI methods, both in terms of subjective and objective quality assessment for the reconstructed images.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Semelka, R.C., Armao, D.M., Elias, J., Huda, W.: Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J. Magn. Reson. Imaging 25(5), 900–909 (2007)CrossRef Semelka, R.C., Armao, D.M., Elias, J., Huda, W.: Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J. Magn. Reson. Imaging 25(5), 900–909 (2007)CrossRef
3.
Zurück zum Zitat Jolesz, F.A.: Future perspectives for intraoperative MRI. Neurosurg. Clin. N. Am. 16(1), 201–213 (2005)CrossRef Jolesz, F.A.: Future perspectives for intraoperative MRI. Neurosurg. Clin. N. Am. 16(1), 201–213 (2005)CrossRef
4.
Zurück zum Zitat Sasaki, M., Ehara, S., Nakasato, T., Tamakawa, Y., Kuboya, Y., Sugisawa, M., Sato, T.: MR of the shoulder with a 0.2-t permanent-magnet unit. Am. J. Roentgenol. 154(4), 777–778 (1990)CrossRef Sasaki, M., Ehara, S., Nakasato, T., Tamakawa, Y., Kuboya, Y., Sugisawa, M., Sato, T.: MR of the shoulder with a 0.2-t permanent-magnet unit. Am. J. Roentgenol. 154(4), 777–778 (1990)CrossRef
6.
Zurück zum Zitat Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. J. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)CrossRefMATHMathSciNet Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. J. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)CrossRefMATHMathSciNet
7.
Zurück zum Zitat Baraniuk, R.G.: Compressive sensing. IEEE Sig. Process. Mag. 24(4), 118–120 (2007)CrossRef Baraniuk, R.G.: Compressive sensing. IEEE Sig. Process. Mag. 24(4), 118–120 (2007)CrossRef
8.
Zurück zum Zitat Edelman, R.R., Warach, S.: Magnetic resonance imaging. N. Engl. J. Med. 328(10), 708–716 (1993)CrossRef Edelman, R.R., Warach, S.: Magnetic resonance imaging. N. Engl. J. Med. 328(10), 708–716 (1993)CrossRef
9.
Zurück zum Zitat Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Sig. Process. Mag. 25(2), 72–82 (2008)CrossRef Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Sig. Process. Mag. 25(2), 72–82 (2008)CrossRef
10.
Zurück zum Zitat Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P., et al.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)CrossRef Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P., et al.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)CrossRef
11.
Zurück zum Zitat Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)CrossRef Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)CrossRef
12.
Zurück zum Zitat Weller, D., Polimeni, J., Grady, L., Wald, L., Adalsteinsson, E., Goyal, V.: Combining nonconvex compressed sensing and GRAPPA using the nullspace method. In: 18th Annual Meeting of ISMRM, p. 4880 (2010) Weller, D., Polimeni, J., Grady, L., Wald, L., Adalsteinsson, E., Goyal, V.: Combining nonconvex compressed sensing and GRAPPA using the nullspace method. In: 18th Annual Meeting of ISMRM, p. 4880 (2010)
13.
Zurück zum Zitat Weller, D.S., Polimeni, J.R., Grady, L., Wald, L.L., Adalsteinsson, E., Goyal, V.K.: Sparsity-promoting calibration for GRAPPA accelerated parallel MRI reconstruction. IEEE Trans. Med. Imaging 32(7), 1325–1335 (2013)CrossRef Weller, D.S., Polimeni, J.R., Grady, L., Wald, L.L., Adalsteinsson, E., Goyal, V.K.: Sparsity-promoting calibration for GRAPPA accelerated parallel MRI reconstruction. IEEE Trans. Med. Imaging 32(7), 1325–1335 (2013)CrossRef
14.
Zurück zum Zitat Xie, G., Song, Y., Shi, C., Feng, X., Zheng, H., Weng, D., Qiu, B., Liu, X.: Accelerated magnetic resonance imaging using the sparsity of multi-channel coil images. Magn. Reson. Imaging 32(2), 175–183 (2014)CrossRef Xie, G., Song, Y., Shi, C., Feng, X., Zheng, H., Weng, D., Qiu, B., Liu, X.: Accelerated magnetic resonance imaging using the sparsity of multi-channel coil images. Magn. Reson. Imaging 32(2), 175–183 (2014)CrossRef
15.
Zurück zum Zitat Schmidt, R., Baishya, B., Ben-Eliezer, N., Seginer, A., Frydman, L.: Super-resolved parallel MRI by spatiotemporal encoding. Magn. Reson. Imaging 32(1), 60–70 (2014)CrossRef Schmidt, R., Baishya, B., Ben-Eliezer, N., Seginer, A., Frydman, L.: Super-resolved parallel MRI by spatiotemporal encoding. Magn. Reson. Imaging 32(1), 60–70 (2014)CrossRef
16.
Zurück zum Zitat Zhou, J., Li, J., Gombaniro, J.C.: Combining sense and compressed sensing MRI with a fast iterative contourlet thresholding algorithm. In: 12th IEEE International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1123–1127 (2015) Zhou, J., Li, J., Gombaniro, J.C.: Combining sense and compressed sensing MRI with a fast iterative contourlet thresholding algorithm. In: 12th IEEE International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1123–1127 (2015)
17.
Zurück zum Zitat Chun, I.Y., Adcock, B., Talavage, T.M.: Efficient compressed sensing sense pMRI reconstruction with joint sparsity promotion. IEEE Trans. Med. Imaging 35(1), 354–368 (2016)CrossRef Chun, I.Y., Adcock, B., Talavage, T.M.: Efficient compressed sensing sense pMRI reconstruction with joint sparsity promotion. IEEE Trans. Med. Imaging 35(1), 354–368 (2016)CrossRef
18.
Zurück zum Zitat Fischer, A., Seiberlich, N., Blaimer, M., Jakob, P., Breuer, F., Griswold, M.: A combination of nonconvex compressed sensing and GRAPPA (CS-GRAPPA). In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 17, p. 2813 (2009) Fischer, A., Seiberlich, N., Blaimer, M., Jakob, P., Breuer, F., Griswold, M.: A combination of nonconvex compressed sensing and GRAPPA (CS-GRAPPA). In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 17, p. 2813 (2009)
19.
Zurück zum Zitat Miao, J., Guo, W., Narayan, S., Wilson, D.L.: A simple application of compressed sensing to further accelerate partially parallel imaging. Magn. Reson. Imaging 31(1), 75–85 (2013)CrossRef Miao, J., Guo, W., Narayan, S., Wilson, D.L.: A simple application of compressed sensing to further accelerate partially parallel imaging. Magn. Reson. Imaging 31(1), 75–85 (2013)CrossRef
20.
Zurück zum Zitat Chang, Y., King, K.F., Liang, D., Ying, L.: Combining compressed sensing and nonlinear GRAPPA for highly accelerated parallel MRI. In: Proceedings of the International Society for Magnetic Resonance in Medicine, p. 2219 (2012) Chang, Y., King, K.F., Liang, D., Ying, L.: Combining compressed sensing and nonlinear GRAPPA for highly accelerated parallel MRI. In: Proceedings of the International Society for Magnetic Resonance in Medicine, p. 2219 (2012)
21.
Zurück zum Zitat Yang, Z., Zhang, C., Deng, J., Lu, W.: Orthonormal expansion l1-minimization algorithms for compressed sensing. IEEE Trans. Sig. Process. 59(12), 6285–6290 (2011)CrossRef Yang, Z., Zhang, C., Deng, J., Lu, W.: Orthonormal expansion l1-minimization algorithms for compressed sensing. IEEE Trans. Sig. Process. 59(12), 6285–6290 (2011)CrossRef
22.
Zurück zum Zitat Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)CrossRefMATHMathSciNet Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)CrossRefMATHMathSciNet
23.
Zurück zum Zitat Bredies, K., Lorenz, D.A.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14(5–6), 813–837 (2008)CrossRefMATHMathSciNet Bredies, K., Lorenz, D.A.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14(5–6), 813–837 (2008)CrossRefMATHMathSciNet
Metadaten
Titel
MR Imaging via Reduced Generalized Autocalibrating Partially Parallel Acquisition Compressed Sensing
verfasst von
Sheikh Rafiul Islam
Seba Maity
Santi P. Maity
Ajoy Kumar Ray
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-68124-5_30