Skip to main content

2022 | OriginalPaper | Buchkapitel

Multi-factor Optimization for Joining of Polylactic Acid-Hydroxyapatite-Chitosan Based Scaffolds by Rapid Joining Process

verfasst von : N. Ranjan, R. Singh, I. P. S. Ahuja

Erschienen in: Numerical Modelling and Optimization in Advanced Manufacturing Processes

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In past two decades no. of studies has been reported on rapid joining process using 3-dimensional (3D) printed substrate and tool materials. Also, significant work has been reported on optimizing tensile, flexural, compressive and other mechanical properties of 3D printed polymer composite joined by friction stir spot welding process but hither to little has been reported on multi factor optimization by considering different elements of flexural samples prepared by rapid joining process. This paper outlines multi-factor optimization for joining of polylactic acid (PLA)-hydroxyapatite (HAp)-chitosan (CS) based scaffolds by rapid joining process as a case study. This research work has been an extension work of previous reported work in which PLA-HAp-CS based 3D printed biocompatible and biodegradable functional prototypes have been joined using rapid joining process with the help of friction stir spot welding (FSSW).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alvarez, K., Nakajima, H.: Metallic scaffolds for bone regeneration. Materials. 2(3), 790–832 (2009)CrossRef Alvarez, K., Nakajima, H.: Metallic scaffolds for bone regeneration. Materials. 2(3), 790–832 (2009)CrossRef
2.
Zurück zum Zitat Baker, K.C., Maerz, T., Saad, H., Shaheen, P., Kannan, R.M.: In vivo bone formation by and inflammatory response to resorbable polymer-nanoclay constructs. Nanomed.: Nanotechnol. Biol. Med. 11(8), 1871–1881 (2015) Baker, K.C., Maerz, T., Saad, H., Shaheen, P., Kannan, R.M.: In vivo bone formation by and inflammatory response to resorbable polymer-nanoclay constructs. Nanomed.: Nanotechnol. Biol. Med. 11(8), 1871–1881 (2015)
3.
Zurück zum Zitat Basu, B.: Fundamentals of scaffolds fabrication using low temperature additive manufacturing. In: Biomaterials for Musculoskeletal regeneration, pp. 127–173. Springer, Singapore (2017) Basu, B.: Fundamentals of scaffolds fabrication using low temperature additive manufacturing. In: Biomaterials for Musculoskeletal regeneration, pp. 127–173. Springer, Singapore (2017)
4.
Zurück zum Zitat Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., Schroeder, A.: Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 15(340), 9–14 (2018)CrossRef Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., Schroeder, A.: Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 15(340), 9–14 (2018)CrossRef
5.
Zurück zum Zitat Dash, M., Chiellini, F., Ottenbrite, R.M., Chiellini, E.: Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36(8), 981–1014 (2011)CrossRef Dash, M., Chiellini, F., Ottenbrite, R.M., Chiellini, E.: Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 36(8), 981–1014 (2011)CrossRef
6.
Zurück zum Zitat Honarkar, H., Barikani, M.: Applications of biopolymers I: chitosan. Monatshefte für Chem.-Chem. Monthly. 140(12), 1403–1420 (2009)CrossRef Honarkar, H., Barikani, M.: Applications of biopolymers I: chitosan. Monatshefte für Chem.-Chem. Monthly. 140(12), 1403–1420 (2009)CrossRef
7.
Zurück zum Zitat Hutmacher, D.W., Schantz, J.T., Lam, C.X., Tan, K.C., Lim, T.C.: State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 1(4), 245–260 (2007)CrossRef Hutmacher, D.W., Schantz, J.T., Lam, C.X., Tan, K.C., Lim, T.C.: State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng. Regen. Med. 1(4), 245–260 (2007)CrossRef
8.
Zurück zum Zitat Idumah, C.I.: Recent advancements in conducting polymer bionanocomposites and hydrogels for biomedical applications. Int. J. Polym. Mater. Polym. Biomater. 2, 1–8 (2020) Idumah, C.I.: Recent advancements in conducting polymer bionanocomposites and hydrogels for biomedical applications. Int. J. Polym. Mater. Polym. Biomater. 2, 1–8 (2020)
9.
Zurück zum Zitat Jagur‐Grodzinski, J.: Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym. Adv. Technol. 17(6), 395–418 (2006) Jagur‐Grodzinski, J.: Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym. Adv. Technol. 17(6), 395–418 (2006)
10.
Zurück zum Zitat Kalita, S.J.: Rapid prototyping in biomedical engineering: structural intricacies of biological materials. In: Biointegration of medical implant materials, pp. 349–397. Woodhead Publishing (2010) Kalita, S.J.: Rapid prototyping in biomedical engineering: structural intricacies of biological materials. In: Biointegration of medical implant materials, pp. 349–397. Woodhead Publishing (2010)
11.
Zurück zum Zitat Kotela, I., Podporska, J., Soltysiak, E., Konsztowicz, K.J., Blazewicz, M.: Polymer nanocomposites for bone tissue substitutes. Ceram. Int. 35(6), 2475–2480 (2009)CrossRef Kotela, I., Podporska, J., Soltysiak, E., Konsztowicz, K.J., Blazewicz, M.: Polymer nanocomposites for bone tissue substitutes. Ceram. Int. 35(6), 2475–2480 (2009)CrossRef
12.
Zurück zum Zitat Kumar, A., Mandal, S., Barui, S., Vasireddi, R., Gbureck, U., Gelinsky, M., Basu, B.: Low temperature additive manufacturing of three-dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Mater. Sci. Eng. R. Rep. 1(103), 1–39 (2016)CrossRef Kumar, A., Mandal, S., Barui, S., Vasireddi, R., Gbureck, U., Gelinsky, M., Basu, B.: Low temperature additive manufacturing of three-dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Mater. Sci. Eng. R. Rep. 1(103), 1–39 (2016)CrossRef
13.
Zurück zum Zitat Leong, K.F., Cheah, C.M., Chua, C.K.: Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13), 2363–2378 (2003)CrossRef Leong, K.F., Cheah, C.M., Chua, C.K.: Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13), 2363–2378 (2003)CrossRef
14.
Zurück zum Zitat Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., De La Caba, K.: Chitosan as a bioactive polymer: processing, properties and applications. Int. J. Biol. Macromol. 1(105), 1358–1368 (2017)CrossRef Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., De La Caba, K.: Chitosan as a bioactive polymer: processing, properties and applications. Int. J. Biol. Macromol. 1(105), 1358–1368 (2017)CrossRef
15.
Zurück zum Zitat Ohura, K., Bohner, M., Hardouin, P., Lemaître, J., Pasquier, G., Flautre, B.: Resorption of, and bone formation from, new β-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. J. Biomed. Mater. Res.: Off. J. Soc. Biomater. Jpn. Soc. Biomater. 30(2), 193–200 (1996)CrossRef Ohura, K., Bohner, M., Hardouin, P., Lemaître, J., Pasquier, G., Flautre, B.: Resorption of, and bone formation from, new β-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. J. Biomed. Mater. Res.: Off. J. Soc. Biomater. Jpn. Soc. Biomater. 30(2), 193–200 (1996)CrossRef
16.
Zurück zum Zitat Pinho, R.A., Aguiar, A.S., Radák, Z.: Effects of resistance exercise on cerebral redox regulation and cognition: an interplay between muscle and brain. Antioxidants 8(11), 529 (2019)CrossRef Pinho, R.A., Aguiar, A.S., Radák, Z.: Effects of resistance exercise on cerebral redox regulation and cognition: an interplay between muscle and brain. Antioxidants 8(11), 529 (2019)CrossRef
17.
Zurück zum Zitat Polo-Corrales, L., Latorre-Esteves, M., Ramirez-Vick, J.E.: Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 14(1), 15–56 (2014) Polo-Corrales, L., Latorre-Esteves, M., Ramirez-Vick, J.E.: Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 14(1), 15–56 (2014)
18.
Zurück zum Zitat Radwan-Pragłowska, J., Janus, Ł., Piątkowski, M., Bogdał, D., Matysek, D.: 3D hierarchical, nanostructured chitosan/PLA/HA scaffolds doped with TiO2/Au/Pt NPs with tunable properties for guided bone tissue engineering. Polymers 12(4), 792 (2020) Radwan-Pragłowska, J., Janus, Ł., Piątkowski, M., Bogdał, D., Matysek, D.: 3D hierarchical, nanostructured chitosan/PLA/HA scaffolds doped with TiO2/Au/Pt NPs with tunable properties for guided bone tissue engineering. Polymers 12(4), 792 (2020)
19.
Zurück zum Zitat Ranjan, N., Singh, R., Ahuja, I.P., Kumar, R., Singh, D., Ramniwas, S., Verma, A.K., Mittal, D.: 3D printed scaffolds for tissue engineering applications: mechanical, morphological, thermal, in-vitro and in-vivo investigations. CIRP J. Manuf. Sci. Technol. 1(32), 205–216 (2021)CrossRef Ranjan, N., Singh, R., Ahuja, I.P., Kumar, R., Singh, D., Ramniwas, S., Verma, A.K., Mittal, D.: 3D printed scaffolds for tissue engineering applications: mechanical, morphological, thermal, in-vitro and in-vivo investigations. CIRP J. Manuf. Sci. Technol. 1(32), 205–216 (2021)CrossRef
20.
Zurück zum Zitat Ranjan, N., Singh, R., Ahuja, I.P.: Development of PLA-HAp-CS-based biocompatible functional prototype: a case study. J. Thermoplast. Compos. Mater. 33(3), 305–323 (2020)CrossRef Ranjan, N., Singh, R., Ahuja, I.P.: Development of PLA-HAp-CS-based biocompatible functional prototype: a case study. J. Thermoplast. Compos. Mater. 33(3), 305–323 (2020)CrossRef
21.
Zurück zum Zitat Ranjan, N., Singh, R., Ahuja, I.P.: Material processing of PLA-HAp-CS-based thermoplastic composite through fused deposition modeling for biomedical applications. In: Biomanufacturing, pp. 123–136. Springer, Cham (2019) Ranjan, N., Singh, R., Ahuja, I.P.: Material processing of PLA-HAp-CS-based thermoplastic composite through fused deposition modeling for biomedical applications. In: Biomanufacturing, pp. 123–136. Springer, Cham (2019)
22.
Zurück zum Zitat Reddy, R.D., Sharma, V.: Additive manufacturing in drug delivery applications: a review. Int. J. Pharm. 589, 119820 (2020) Reddy, R.D., Sharma, V.: Additive manufacturing in drug delivery applications: a review. Int. J. Pharm. 589, 119820 (2020)
23.
Zurück zum Zitat Saba, N., Tahir, P.M., Jawaid, M.: A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6(8), 2247–2273 (2014)CrossRef Saba, N., Tahir, P.M., Jawaid, M.: A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6(8), 2247–2273 (2014)CrossRef
24.
Zurück zum Zitat Tang, S., Zheng, J.: Antibacterial activity of silver nanoparticles: structural effects. Adv. Healthc. Mater. 7(13), 1701503 (2018)CrossRef Tang, S., Zheng, J.: Antibacterial activity of silver nanoparticles: structural effects. Adv. Healthc. Mater. 7(13), 1701503 (2018)CrossRef
25.
Zurück zum Zitat Vallet‐Regí, M., Ruiz‐Hernández, E.: Bioceramics: from bone regeneration to cancer nanomedicine. Adv. Mater. 23(44), 5177–5218 (2011) Vallet‐Regí, M., Ruiz‐Hernández, E.: Bioceramics: from bone regeneration to cancer nanomedicine. Adv. Mater. 23(44), 5177–5218 (2011)
26.
Zurück zum Zitat Venault, A., Subarja, A., Chang, Y.: Zwitterionic polyhydroxybutyrate electrospun fibrous membranes with a compromise of bioinert control and tissue-cell growth. Langmuir 33(9), 2460–2471 (2017)CrossRef Venault, A., Subarja, A., Chang, Y.: Zwitterionic polyhydroxybutyrate electrospun fibrous membranes with a compromise of bioinert control and tissue-cell growth. Langmuir 33(9), 2460–2471 (2017)CrossRef
27.
Zurück zum Zitat Yadid, M., Feiner, R., Dvir, T.: Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano Lett. 19(4), 2198–2206 (2019)CrossRef Yadid, M., Feiner, R., Dvir, T.: Gold nanoparticle-integrated scaffolds for tissue engineering and regenerative medicine. Nano Lett. 19(4), 2198–2206 (2019)CrossRef
28.
Zurück zum Zitat Yu, J.R., Navarro, J., Coburn, J.C., Mahadik, B., Molnar, J., Holmes, J.H., IV., Nam, A.J., Fisher, J.P.: Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application. Adv. Healthc. Mater. 8(5), 1801471 (2019)CrossRef Yu, J.R., Navarro, J., Coburn, J.C., Mahadik, B., Molnar, J., Holmes, J.H., IV., Nam, A.J., Fisher, J.P.: Current and future perspectives on skin tissue engineering: key features of biomedical research, translational assessment, and clinical application. Adv. Healthc. Mater. 8(5), 1801471 (2019)CrossRef
29.
Zurück zum Zitat Zhang, X., Tan, B.H., Li, Z.: Biodegradable polyester shape memory polymers: recent advances in design, material properties and applications. Mater. Sci. Eng. 1(92), 1061–1074 (2018)CrossRef Zhang, X., Tan, B.H., Li, Z.: Biodegradable polyester shape memory polymers: recent advances in design, material properties and applications. Mater. Sci. Eng. 1(92), 1061–1074 (2018)CrossRef
Metadaten
Titel
Multi-factor Optimization for Joining of Polylactic Acid-Hydroxyapatite-Chitosan Based Scaffolds by Rapid Joining Process
verfasst von
N. Ranjan
R. Singh
I. P. S. Ahuja
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-04301-7_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.