Skip to main content
Erschienen in: Foundations of Computational Mathematics 6/2016

01.12.2016

Multi-index Stochastic Collocation Convergence Rates for Random PDEs with Parametric Regularity

verfasst von: Abdul-Lateef Haji-Ali, Fabio Nobile, Lorenzo Tamellini, Raúl Tempone

Erschienen in: Foundations of Computational Mathematics | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We analyze the recent Multi-index Stochastic Collocation (MISC) method for computing statistics of the solution of a partial differential equation (PDE) with random data, where the random coefficient is parametrized by means of a countable sequence of terms in a suitable expansion. MISC is a combination technique based on mixed differences of spatial approximations and quadratures over the space of random data, and naturally, the error analysis uses the joint regularity of the solution with respect to both the variables in the physical domain and parametric variables. In MISC, the number of problem solutions performed at each discretization level is not determined by balancing the spatial and stochastic components of the error, but rather by suitably extending the knapsack-problem approach employed in the construction of the quasi-optimal sparse-grids and Multi-index Monte Carlo methods, i.e., we use a greedy optimization procedure to select the most effective mixed differences to include in the MISC estimator. We apply our theoretical estimates to a linear elliptic PDE in which the log-diffusion coefficient is modeled as a random field, with a covariance similar to a Matérn model, whose realizations have spatial regularity determined by a scalar parameter. We conduct a complexity analysis based on a summability argument showing algebraic rates of convergence with respect to the overall computational work. The rate of convergence depends on the smoothness parameter, the physical dimensionality and the efficiency of the linear solver. Numerical experiments show the effectiveness of MISC in this infinite dimensional setting compared with the Multi-index Monte Carlo method and compare the convergence rate against the rates predicted in our theoretical analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Recall that, given \(q \ge 1\), \(L^q(\Gamma ;V) = \left\{ v : \Gamma \rightarrow V \text { strongly measurable, such that } \int _\Gamma \left\| u \right\| _{V} ^q~{\text {d}}\mu < \infty \right\} \).
 
2
We recall that \(H^{{{\varvec{l}}}}({\mathscr {B}})\) is the completion of formal sums \(v=\sum _{k=1}^{K} v_{1,k}v_{2,k}\cdots v_{D,k}\) with \(v_{i,k} \in H^{l_i}({\mathscr {B}}_i)\) with respect to the norm induced by the inner product
$$\begin{aligned} (v,w)_{H^{{{\varvec{l}}}}({\mathscr {B}})} = \sum _{k,i} (v_{1,k},w_{1,i})_{H^{l_1}({\mathscr {B}}_1)}(v_{2,k},w_{2,i})_{H^{l_2}({\mathscr {B}}_2)}\cdots (v_{D,k},w_{D,i})_{H^{l_D}({\mathscr {B}}_D)}. \end{aligned}$$
 
Literatur
1.
Zurück zum Zitat I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM Review, 52 (2010), 317–355.MathSciNetCrossRefMATH I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM Review, 52 (2010), 317–355.MathSciNetCrossRefMATH
2.
Zurück zum Zitat A. Barth, C. Schwab, and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients, Numerische Mathematik, 119 (2011), 123–161.MathSciNetCrossRefMATH A. Barth, C. Schwab, and N. Zollinger, Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients, Numerische Mathematik, 119 (2011), 123–161.MathSciNetCrossRefMATH
3.
Zurück zum Zitat J. Beck, F. Nobile, L. Tamellini, and R. Tempone, On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1250023.MathSciNetCrossRefMATH J. Beck, F. Nobile, L. Tamellini, and R. Tempone, On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1250023.MathSciNetCrossRefMATH
4.
Zurück zum Zitat M. Bieri, A sparse composite collocation finite element method for elliptic SPDEs., SIAM Journal on Numerical Analysis, 49 (2011), 2277–2301.MathSciNetCrossRefMATH M. Bieri, A sparse composite collocation finite element method for elliptic SPDEs., SIAM Journal on Numerical Analysis, 49 (2011), 2277–2301.MathSciNetCrossRefMATH
5.
7.
Zurück zum Zitat H. J. Bungartz, M. Griebel, D. Röschke, and C. Zenger, Pointwise convergence of the combination technique for the Laplace equation, East-West Journal of Numerical Mathematics, 2 (1994), 21–45.MathSciNetMATH H. J. Bungartz, M. Griebel, D. Röschke, and C. Zenger, Pointwise convergence of the combination technique for the Laplace equation, East-West Journal of Numerical Mathematics, 2 (1994), 21–45.MathSciNetMATH
8.
Zurück zum Zitat J. Charrier, Strong and weak error estimates for elliptic partial differential equations with random coefficients, SIAM Journal on Numerical Analysis, 50 (2012), 216–246.MathSciNetCrossRefMATH J. Charrier, Strong and weak error estimates for elliptic partial differential equations with random coefficients, SIAM Journal on Numerical Analysis, 50 (2012), 216–246.MathSciNetCrossRefMATH
9.
Zurück zum Zitat J. Charrier, R. Scheichl, and A. Teckentrup, Finite element error analysis of elliptic pdes with random coefficients and its application to multilevel Monte Carlo methods, SIAM Journal on Numerical Analysis, 51 (2013), 322–352.MathSciNetCrossRefMATH J. Charrier, R. Scheichl, and A. Teckentrup, Finite element error analysis of elliptic pdes with random coefficients and its application to multilevel Monte Carlo methods, SIAM Journal on Numerical Analysis, 51 (2013), 322–352.MathSciNetCrossRefMATH
10.
Zurück zum Zitat A. Chkifa, On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection, Journal of Approximation Theory, 166 (2013), 176–200. A. Chkifa, On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection, Journal of Approximation Theory, 166 (2013), 176–200.
11.
Zurück zum Zitat A. Cohen, R. Devore, and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’S, Analysis and Applications, 9 (2011), 11–47.MathSciNetCrossRefMATH A. Cohen, R. Devore, and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’S, Analysis and Applications, 9 (2011), 11–47.MathSciNetCrossRefMATH
12.
Zurück zum Zitat N. Collier, A.-L. Haji-Ali, F. Nobile, E. von Schwerin, and R. Tempone, A continuation multilevel Monte Carlo algorithm, BIT Numerical Mathematics, 55 (2015), 399–432.MathSciNetCrossRefMATH N. Collier, A.-L. Haji-Ali, F. Nobile, E. von Schwerin, and R. Tempone, A continuation multilevel Monte Carlo algorithm, BIT Numerical Mathematics, 55 (2015), 399–432.MathSciNetCrossRefMATH
13.
Zurück zum Zitat G. M. Constantine and T. H. Savits, A multivariate Faà di Bruno formula with applications, Transactions of the American Mathematical Society, 348 (1996), 503–520.MathSciNetCrossRefMATH G. M. Constantine and T. H. Savits, A multivariate Faà di Bruno formula with applications, Transactions of the American Mathematical Society, 348 (1996), 503–520.MathSciNetCrossRefMATH
14.
Zurück zum Zitat D. Dũng and M. Griebel, Hyperbolic cross approximation in infinite dimensions, Journal of Complexity, 33 (2016), 55–88. D. Dũng and M. Griebel, Hyperbolic cross approximation in infinite dimensions, Journal of Complexity, 33 (2016), 55–88.
15.
Zurück zum Zitat B. Ganapathysubramanian and N. Zabaras, Sparse grid collocation schemes for stochastic natural convection problems, jcp, 225 (2007), 652–685.MathSciNetMATH B. Ganapathysubramanian and N. Zabaras, Sparse grid collocation schemes for stochastic natural convection problems, jcp, 225 (2007), 652–685.MathSciNetMATH
17.
Zurück zum Zitat W. J. Gordon and C. A. Hall, Construction of curvilinear co-ordinate systems and applications to mesh generation, International Journal for Numerical Methods in Engineering, 7 (1973), 461–477.MathSciNetCrossRefMATH W. J. Gordon and C. A. Hall, Construction of curvilinear co-ordinate systems and applications to mesh generation, International Journal for Numerical Methods in Engineering, 7 (1973), 461–477.MathSciNetCrossRefMATH
18.
Zurück zum Zitat I. G. Graham, R. Scheichl, and E. Ullmann, Mixed finite element analysis of lognormal diffusion and multilevel Monte Carlo methods, Stochastic Partial Differential Equations: Analysis and Computations, (2015), 1–35. I. G. Graham, R. Scheichl, and E. Ullmann, Mixed finite element analysis of lognormal diffusion and multilevel Monte Carlo methods, Stochastic Partial Differential Equations: Analysis and Computations, (2015), 1–35.
19.
Zurück zum Zitat M. Griebel and H. Harbrecht, On the convergence of the combination technique, in Sparse Grids and Applications - Munich 2012, J. Garcke and D. Pflüger, eds., vol. 97 of Lecture Notes in Computational Science and Engineering, Springer International Publishing, 2014, 55–74. M. Griebel and H. Harbrecht, On the convergence of the combination technique, in Sparse Grids and Applications - Munich 2012, J. Garcke and D. Pflüger, eds., vol. 97 of Lecture Notes in Computational Science and Engineering, Springer International Publishing, 2014, 55–74.
20.
Zurück zum Zitat M. Griebel and S. Knapek, Optimized general sparse grid approximation spaces for operator equations, Mathematics of Computation, 78 (2009), 2223–2257.MathSciNetCrossRefMATH M. Griebel and S. Knapek, Optimized general sparse grid approximation spaces for operator equations, Mathematics of Computation, 78 (2009), 2223–2257.MathSciNetCrossRefMATH
21.
Zurück zum Zitat M. Griebel, M. Schneider, and C. Zenger, A combination technique for the solution of sparse grid problems, in Iterative Methods in Linear Algebra, P. de Groen and R. Beauwens, eds., IMACS, Elsevier, North Holland, 1992, pp. 263–281. M. Griebel, M. Schneider, and C. Zenger, A combination technique for the solution of sparse grid problems, in Iterative Methods in Linear Algebra, P. de Groen and R. Beauwens, eds., IMACS, Elsevier, North Holland, 1992, pp. 263–281.
22.
Zurück zum Zitat A.-L. Haji-Ali, F. Nobile, L. Tamellini, and R. Tempone, Multi-index stochastic collocation for random PDEs, Computer Methods in Applied Mechanics and Engineering, 306 (2016), 95–122. A.-L. Haji-Ali, F. Nobile, L. Tamellini, and R. Tempone, Multi-index stochastic collocation for random PDEs, Computer Methods in Applied Mechanics and Engineering, 306 (2016), 95–122.
23.
Zurück zum Zitat A.-L. Haji-Ali, F. Nobile, and R. Tempone, Multi-index Monte Carlo: when sparsity meets sampling, Numerische Mathematik, 132 (2015), 767–806.MathSciNetCrossRefMATH A.-L. Haji-Ali, F. Nobile, and R. Tempone, Multi-index Monte Carlo: when sparsity meets sampling, Numerische Mathematik, 132 (2015), 767–806.MathSciNetCrossRefMATH
24.
Zurück zum Zitat A.-L. Haji-Ali, F. Nobile, E. von Schwerin, and R. Tempone, Optimization of mesh hierarchies in multilevel Monte Carlo samplers, Stochastic Partial Differential Equations: Analysis and Computations, 4 (2015), 76–112.MathSciNetCrossRef A.-L. Haji-Ali, F. Nobile, E. von Schwerin, and R. Tempone, Optimization of mesh hierarchies in multilevel Monte Carlo samplers, Stochastic Partial Differential Equations: Analysis and Computations, 4 (2015), 76–112.MathSciNetCrossRef
25.
Zurück zum Zitat H. Harbrecht, M. Peters, and M. Siebenmorgen, On multilevel quadrature for elliptic stochastic partial differential equations, in Sparse Grids and Applications, vol. 88 of Lecture Notes in Computational Science and Engineering, Springer, 2013, 161–179. H. Harbrecht, M. Peters, and M. Siebenmorgen, On multilevel quadrature for elliptic stochastic partial differential equations, in Sparse Grids and Applications, vol. 88 of Lecture Notes in Computational Science and Engineering, Springer, 2013, 161–179.
26.
Zurück zum Zitat M. Hegland, J. Garcke, and V. Challis, The combination technique and some generalisations, Linear Algebra and its Applications, 420 (2007), 249–275.MathSciNetCrossRefMATH M. Hegland, J. Garcke, and V. Challis, The combination technique and some generalisations, Linear Algebra and its Applications, 420 (2007), 249–275.MathSciNetCrossRefMATH
27.
Zurück zum Zitat S. Heinrich, Multilevel Monte Carlo methods, in Large-Scale Scientific Computing, vol. 2179 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2001, 58–67. S. Heinrich, Multilevel Monte Carlo methods, in Large-Scale Scientific Computing, vol. 2179 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2001, 58–67.
28.
Zurück zum Zitat T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194 (2005), 4135–4195.MathSciNetCrossRefMATH T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194 (2005), 4135–4195.MathSciNetCrossRefMATH
29.
Zurück zum Zitat F. Y. Kuo, C. Schwab, and I. Sloan, Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients, Foundations of Computational Mathematics, 15 (2015), 411–449.MathSciNetCrossRefMATH F. Y. Kuo, C. Schwab, and I. Sloan, Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients, Foundations of Computational Mathematics, 15 (2015), 411–449.MathSciNetCrossRefMATH
30.
Zurück zum Zitat S. Martello and P. Toth, Knapsack problems: algorithms and computer implementations, Wiley-Interscience series in discrete mathematics and optimization, J. Wiley & Sons, 1990. S. Martello and P. Toth, Knapsack problems: algorithms and computer implementations, Wiley-Interscience series in discrete mathematics and optimization, J. Wiley & Sons, 1990.
31.
Zurück zum Zitat A. Narayan and J. D. Jakeman, Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation, SIAM Journal on Scientific Computing, 36 (2014), A2952–A2983.MathSciNetCrossRefMATH A. Narayan and J. D. Jakeman, Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation, SIAM Journal on Scientific Computing, 36 (2014), A2952–A2983.MathSciNetCrossRefMATH
32.
Zurück zum Zitat F. Nobile, L. Tamellini, and R. Tempone, Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs, in Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM ’14, R. M. Kirby, M. Berzins, and J. S. Hesthaven, eds., vol. 106 of Lecture Notes in Computational Science and Engineering, Springer International Publishing, 2015, 475–482. F. Nobile, L. Tamellini, and R. Tempone, Comparison of Clenshaw-Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs, in Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM ’14, R. M. Kirby, M. Berzins, and J. S. Hesthaven, eds., vol. 106 of Lecture Notes in Computational Science and Engineering, Springer International Publishing, 2015, 475–482.
33.
Zurück zum Zitat F. Nobile, L. Tamellini, and R. Tempone, Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs, Numerische Mathematik, 134(2) (2016), 343–388. F. Nobile, L. Tamellini, and R. Tempone, Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs, Numerische Mathematik, 134(2) (2016), 343–388.
34.
Zurück zum Zitat F. Nobile, R. Tempone, and C. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM Journal on Numerical Analysis, 46 (2008), 2411–2442.MathSciNetCrossRefMATH F. Nobile, R. Tempone, and C. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM Journal on Numerical Analysis, 46 (2008), 2411–2442.MathSciNetCrossRefMATH
35.
Zurück zum Zitat F. Nobile, R. Tempone, and C. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM Journal on Numerical Analysis, 46 (2008), 2309–2345.MathSciNetCrossRefMATH F. Nobile, R. Tempone, and C. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM Journal on Numerical Analysis, 46 (2008), 2309–2345.MathSciNetCrossRefMATH
36.
Zurück zum Zitat C. Schillings and C. Schwab, Sparse, adaptive Smolyak quadratures for Bayesian inverse problems, Inverse Problems, 29 (2013), 065011.MathSciNetCrossRefMATH C. Schillings and C. Schwab, Sparse, adaptive Smolyak quadratures for Bayesian inverse problems, Inverse Problems, 29 (2013), 065011.MathSciNetCrossRefMATH
37.
Zurück zum Zitat A. Teckentrup, P. Jantsch, C. G. Webster, and M. Gunzburger, A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), 1046–1074.MathSciNetCrossRefMATH A. Teckentrup, P. Jantsch, C. G. Webster, and M. Gunzburger, A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data, SIAM/ASA Journal on Uncertainty Quantification, 3 (2015), 1046–1074.MathSciNetCrossRefMATH
38.
Zurück zum Zitat H. W. van Wyk, Multilevel sparse grid methods for elliptic partial differential equations with random coefficients, arXiv preprint arXiv:1404.0963, 2014. H. W. van Wyk, Multilevel sparse grid methods for elliptic partial differential equations with random coefficients, arXiv preprint arXiv:​1404.​0963, 2014.
39.
Zurück zum Zitat G. W. Wasilkowski and H. Wozniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems, Journal of Complexity, 11 (1995), 1–56.MathSciNetCrossRefMATH G. W. Wasilkowski and H. Wozniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems, Journal of Complexity, 11 (1995), 1–56.MathSciNetCrossRefMATH
40.
Zurück zum Zitat D. Xiu and J. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM Journal on Scientific Computing, 27 (2005), 1118–1139.MathSciNetCrossRefMATH D. Xiu and J. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM Journal on Scientific Computing, 27 (2005), 1118–1139.MathSciNetCrossRefMATH
41.
Zurück zum Zitat C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations, W. Hackbusch, ed., vol. 31 of Notes on Numerical Fluid Mechanics, Vieweg, 1991, pp. 241–251. C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations, W. Hackbusch, ed., vol. 31 of Notes on Numerical Fluid Mechanics, Vieweg, 1991, pp. 241–251.
Metadaten
Titel
Multi-index Stochastic Collocation Convergence Rates for Random PDEs with Parametric Regularity
verfasst von
Abdul-Lateef Haji-Ali
Fabio Nobile
Lorenzo Tamellini
Raúl Tempone
Publikationsdatum
01.12.2016
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 6/2016
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-016-9327-7

Weitere Artikel der Ausgabe 6/2016

Foundations of Computational Mathematics 6/2016 Zur Ausgabe

Preface

Preface