Skip to main content
Erschienen in: Cognitive Computation 4/2019

30.03.2019

Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder

verfasst von: Vasily Sachnev, Sundaram Suresh, Narasimman Sundararajan, Belathur Suresh Mahanand, Muhammad W. Azeem, Saras Saraswathi

Erschienen in: Cognitive Computation | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three different developing brain regions, viz., the amygdala, caudate, and hippocampus. For this study, the structural magnetic resonance imaging (sMRI) data provided by the ADHD-200 consortium has been used to identify the following three classes of ADHD, viz., ADHD-combined, ADHD-inattentive, and the TDC (typically developing control). From the sMRIs of the amygdala, caudate, and hippocampus regions of the brain from the ADHD-200 data, multiple feature sets were obtained using a feature-selecting genetic algorithm (FSGA), in a wraparound approach using an extreme learning machine (ELM) basic classifier. An improved crossover operator for the FSGA has been developed for obtaining higher accuracies compared with other existing crossover operators. From the multiple feature sets and the corresponding ELM classifiers, a classifier-selecting genetic algorithm (CSGA) has been developed to identify the top performing feature sets and their ELM classifiers. These classifiers are then combined using a risk-sensitive hinge loss function to form a risk-sensitive cognitive ensemble classifier resulting in a simultaneous multiclass classification of ADHD with higher accuracies. Performance evaluation of the multi-region ensemble classifier is presented under the following three scenarios, viz., region-based individual (best) classifier, region-based ensemble classifier, and finally a multiple-region-based ensemble classifier. The study results clearly indicate that the proposed “multi-region ensemble classification approach” (MRECA) achieves a much higher classification accuracy of ADHD data (normally a difficult problem because of the variations in the data) compared with other existing methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Diagnostic and Statistical Manual of Mental Disorders, fifth edn. (American Psychiatric Association). Diagnostic and Statistical Manual of Mental Disorders, fifth edn. (American Psychiatric Association).
2.
Zurück zum Zitat Polanczyk G, DeLima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatr. 2007;164:942–8.CrossRefPubMed Polanczyk G, DeLima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatr. 2007;164:942–8.CrossRefPubMed
3.
Zurück zum Zitat Biederman J. Attention-deficit/hyperactivity disorder: a life-span perspective. J Clin Psychiatry. 1998;59(7):4–16.PubMed Biederman J. Attention-deficit/hyperactivity disorder: a life-span perspective. J Clin Psychiatry. 1998;59(7):4–16.PubMed
4.
Zurück zum Zitat Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention-deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand. 2012;125:114–26.CrossRefPubMed Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention-deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand. 2012;125:114–26.CrossRefPubMed
5.
Zurück zum Zitat Doshi JA, Hodgkins P, Kahle J, Sikirica V, Cangelosi MJ, Setyawan J, et al. Economic impact of childhood and adult attention-deficit/hyperactivity disorder in the United States. J Am Acad Child Adolesc Psychiatry. 2012;51(10):990–1002.CrossRefPubMed Doshi JA, Hodgkins P, Kahle J, Sikirica V, Cangelosi MJ, Setyawan J, et al. Economic impact of childhood and adult attention-deficit/hyperactivity disorder in the United States. J Am Acad Child Adolesc Psychiatry. 2012;51(10):990–1002.CrossRefPubMed
6.
Zurück zum Zitat Davenport N, Karatekin C, White T, Lim KO. Differential fractional anisotropy abnormalities in adolescents with ADHD or schizophrenia. Psychiatry Res. 2010;181:193–8.CrossRefPubMedPubMedCentral Davenport N, Karatekin C, White T, Lim KO. Differential fractional anisotropy abnormalities in adolescents with ADHD or schizophrenia. Psychiatry Res. 2010;181:193–8.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Selikowitz M. ADHD. Oxford press; 2009. Selikowitz M. ADHD. Oxford press; 2009.
8.
Zurück zum Zitat Fuente ADL, Xia S, Branch C, Li X. A review of attention-deficit/hyperactivity disorder from the perspective of brain networks. Front Hum Neurosci. 2013;7(192):1–6. Fuente ADL, Xia S, Branch C, Li X. A review of attention-deficit/hyperactivity disorder from the perspective of brain networks. Front Hum Neurosci. 2013;7(192):1–6.
9.
Zurück zum Zitat Wolosin SM, Richardson ME, Hennessey JG, Denckla MB, Mostofsky SH. Abnormal cerebral cortex structure in children with ADHD. Hum Brain Mapp. 2009;30(1):175–84.CrossRefPubMedPubMedCentral Wolosin SM, Richardson ME, Hennessey JG, Denckla MB, Mostofsky SH. Abnormal cerebral cortex structure in children with ADHD. Hum Brain Mapp. 2009;30(1):175–84.CrossRefPubMedPubMedCentral
10.
11.
Zurück zum Zitat Whalen PJ, Phelps EA. The human amygdala. Guilford Press, 2009. Whalen PJ, Phelps EA. The human amygdala. Guilford Press, 2009.
12.
Zurück zum Zitat Markowitsch H. Differential contribution of right and left amygdala to affective information processing. Behav Neurol. 1998;11(4):233–44.CrossRefPubMed Markowitsch H. Differential contribution of right and left amygdala to affective information processing. Behav Neurol. 1998;11(4):233–44.CrossRefPubMed
13.
Zurück zum Zitat Nestler EJ, Hyman SE, Holtzman DM, Malenka RC. Molecular neuropharmacology: a foundation for clinical neuroscience (3d ed.). McGraw Hill; 2009. Nestler EJ, Hyman SE, Holtzman DM, Malenka RC. Molecular neuropharmacology: a foundation for clinical neuroscience (3d ed.). McGraw Hill; 2009.
14.
Zurück zum Zitat Martin JH Neuroanatomy: text and atlas, 4th edn. McGraw Hill; 2003. Martin JH Neuroanatomy: text and atlas, 4th edn. McGraw Hill; 2003.
15.
Zurück zum Zitat Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Vaituzis AC, Dickstein DP, et al. Quantitative brain magnetic resonance 560 imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1996;53:607–16.CrossRefPubMed Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Vaituzis AC, Dickstein DP, et al. Quantitative brain magnetic resonance 560 imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1996;53:607–16.CrossRefPubMed
16.
Zurück zum Zitat Kyeong S, Park S, Cheon K-A, Kim J-J, Song D-H, Kim E. A new approach to investigate the association between brain functional connectivity and disease characteristics of attention-deficit/hyperactivity disorder: topological neuroimaging data analysis. PLoS One. 2015;10(9):e0137296.CrossRefPubMedPubMedCentral Kyeong S, Park S, Cheon K-A, Kim J-J, Song D-H, Kim E. A new approach to investigate the association between brain functional connectivity and disease characteristics of attention-deficit/hyperactivity disorder: topological neuroimaging data analysis. PLoS One. 2015;10(9):e0137296.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Nachamai M. Sub-type discernment of attention-deficit hyperactive disorder in children using a cluster partitioning algorithm. 2016; Indian J Sci Technol 9(8). Nachamai M. Sub-type discernment of attention-deficit hyperactive disorder in children using a cluster partitioning algorithm. 2016; Indian J Sci Technol 9(8).
18.
Zurück zum Zitat Wang J-B, Zheng L-J, Cao Q-J, Wang Y-F, Sun L, Zang Y-F, et al. Inconsistency in abnormal brain activity across cohorts of ADHD-200 in children with attention-deficit hyperactivity disorder. Front Neurosci. 2017;11:320.CrossRefPubMedPubMedCentral Wang J-B, Zheng L-J, Cao Q-J, Wang Y-F, Sun L, Zang Y-F, et al. Inconsistency in abnormal brain activity across cohorts of ADHD-200 in children with attention-deficit hyperactivity disorder. Front Neurosci. 2017;11:320.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Bellec P, Chu C, Chouinard-Decorte F, Benhajali Y, Margulies DS, Craddock RC. The Neuro Bureau ADHD-200 preprocessed repository. NeuroImage. 2017;144(Part B):275–86.CrossRefPubMed Bellec P, Chu C, Chouinard-Decorte F, Benhajali Y, Margulies DS, Craddock RC. The Neuro Bureau ADHD-200 preprocessed repository. NeuroImage. 2017;144(Part B):275–86.CrossRefPubMed
20.
Zurück zum Zitat Madureira DQM, Carvalho LAV, Cheniaux E. Focus modulated by mesothalamic dopamine: consequences in Parkinson’s disease and attention-deficit hyperactivity disorder. Cogn Comput. 2010;2(1):31–49.CrossRef Madureira DQM, Carvalho LAV, Cheniaux E. Focus modulated by mesothalamic dopamine: consequences in Parkinson’s disease and attention-deficit hyperactivity disorder. Cogn Comput. 2010;2(1):31–49.CrossRef
21.
Zurück zum Zitat Zou L, Xu S, Ma Z, Lu J, Su W. Attentional automatic removal of artifacts from attention-deficit hyperactivity disorder electroencephalograms based on independent component analysis. Cogn Comput. 2013;5(2):225–33.CrossRef Zou L, Xu S, Ma Z, Lu J, Su W. Attentional automatic removal of artifacts from attention-deficit hyperactivity disorder electroencephalograms based on independent component analysis. Cogn Comput. 2013;5(2):225–33.CrossRef
22.
Zurück zum Zitat Anderson A, Douglas PK, Kerr WT, Haynes VS, Yuille AL, Xie J, et al. Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD. NeuroImage. 2014;19(102). Anderson A, Douglas PK, Kerr WT, Haynes VS, Yuille AL, Xie J, et al. Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD. NeuroImage. 2014;19(102).
23.
Zurück zum Zitat Iannaccone R, Hauser TU, Ball J, Brandeis D, Walitza S, Brem S. Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging. Eur Child Adolesc Psychiatry. 2015;24(10):1279–89.CrossRefPubMed Iannaccone R, Hauser TU, Ball J, Brandeis D, Walitza S, Brem S. Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging. Eur Child Adolesc Psychiatry. 2015;24(10):1279–89.CrossRefPubMed
24.
Zurück zum Zitat Chang CW, Ho CC and Chen JH. ADHD classification by a texture analysis of anatomical brain MRI data, Front Syst Neurosci. 2012; 6. Chang CW, Ho CC and Chen JH. ADHD classification by a texture analysis of anatomical brain MRI data, Front Syst Neurosci. 2012; 6.
25.
Zurück zum Zitat Kobel M, Bechtel N, Specht K, Klarhofer M, Weber P, Scheffler K, et al. Structural and functional imaging approaches in attention-deficit/hyperactivity disorder: does the temporal lobe play a key role? Psychiatry Res. 2010;183:230–6.CrossRefPubMed Kobel M, Bechtel N, Specht K, Klarhofer M, Weber P, Scheffler K, et al. Structural and functional imaging approaches in attention-deficit/hyperactivity disorder: does the temporal lobe play a key role? Psychiatry Res. 2010;183:230–6.CrossRefPubMed
26.
Zurück zum Zitat Cao M, Shu N, Cao Q, Wang Y, He Y. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Mol Neurobiol. 2014;50(3):1111–23.CrossRefPubMed Cao M, Shu N, Cao Q, Wang Y, He Y. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Mol Neurobiol. 2014;50(3):1111–23.CrossRefPubMed
27.
Zurück zum Zitat Rangarajan B, Suresh S, Mahanand BS. Identification of potential biomarkers in the hippocampus region for the diagnosis of ADHD using PBL-McRBFN approach, Proceeding of 2014 13th International Conference on Control Automation Robotics and Vision (ICARCV) 2014; 2, 17–22. Rangarajan B, Suresh S, Mahanand BS. Identification of potential biomarkers in the hippocampus region for the diagnosis of ADHD using PBL-McRBFN approach, Proceeding of 2014 13th International Conference on Control Automation Robotics and Vision (ICARCV) 2014; 2, 17–22.
28.
Zurück zum Zitat Sabuncu MR, Konukoglu E. Clinical prediction from structural brain MRI scans: a large-scale empirical study. Neuroinformatics. 2015;13(1):31–46.CrossRefPubMedPubMedCentral Sabuncu MR, Konukoglu E. Clinical prediction from structural brain MRI scans: a large-scale empirical study. Neuroinformatics. 2015;13(1):31–46.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Mahanand BS, Savitha R, Suresh S. Computer aided diagnosis of ADHD using brain magnetic resonance images. Advances in Artificial Intelligence. 2013; 386–395. Mahanand BS, Savitha R, Suresh S. Computer aided diagnosis of ADHD using brain magnetic resonance images. Advances in Artificial Intelligence. 2013; 386–395.
30.
Zurück zum Zitat Sato JR, Hoexter MQ, Fujita A, Rohde LA. Evaluation of pattern recognition and feature extraction methods in ADHD prediction, Front Syst Neurosci. 2012; 6. Sato JR, Hoexter MQ, Fujita A, Rohde LA. Evaluation of pattern recognition and feature extraction methods in ADHD prediction, Front Syst Neurosci. 2012; 6.
31.
Zurück zum Zitat Eloyan A, Muschelli J, Nebel MB, Liu H, Han F, Zhao T, Barber AD, Joel S, Pekar JJ, Mostofsky SH, Caffo B. Automated diagnoses of attention-deficit hyperactive disorder using magnetic resonance imaging., Front Syst Neurosci 2012; 6. Eloyan A, Muschelli J, Nebel MB, Liu H, Han F, Zhao T, Barber AD, Joel S, Pekar JJ, Mostofsky SH, Caffo B. Automated diagnoses of attention-deficit hyperactive disorder using magnetic resonance imaging., Front Syst Neurosci 2012; 6.
32.
Zurück zum Zitat Colby JB, Rudie JD, Brown JA, Douglas PK, Cohen MS, Shehzad Z. Insights into multimodal imaging classification of ADHD. Front Syst Neurosci (59) (6) 1–18. Colby JB, Rudie JD, Brown JA, Douglas PK, Cohen MS, Shehzad Z. Insights into multimodal imaging classification of ADHD. Front Syst Neurosci (59) (6) 1–18.
33.
34.
Zurück zum Zitat Sachnev V. An efficient classification scheme for ADHD problem based on binary-coded genetic algorithm and McFIS, Proceeding on 2015 International Conference on Cognitive Computing and Information Processing (CCIP) 2015; 1–6. Sachnev V. An efficient classification scheme for ADHD problem based on binary-coded genetic algorithm and McFIS, Proceeding on 2015 International Conference on Cognitive Computing and Information Processing (CCIP) 2015; 1–6.
35.
Zurück zum Zitat Maldjian J, Laurienti P, Kraft R, Burdette J. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage. 2003;19(3):1233–9.CrossRefPubMed Maldjian J, Laurienti P, Kraft R, Burdette J. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage. 2003;19(3):1233–9.CrossRefPubMed
36.
Zurück zum Zitat Murugan MS, Suresh S, Ganguli R, Mani V. Target vector optimization of composite box beam using real-coded genetic algorithm: a decomposition approach. Struct Multidiscip Optim. 2007;33:131–46.CrossRef Murugan MS, Suresh S, Ganguli R, Mani V. Target vector optimization of composite box beam using real-coded genetic algorithm: a decomposition approach. Struct Multidiscip Optim. 2007;33:131–46.CrossRef
37.
Zurück zum Zitat Suresh S, Babu V, Sundararajan N. Image quality measurement using sparse extreme learning machine classifier, 2006 9th International Conference on Control, Automation, Robotics and Vision 2006; pp. 1–6. Suresh S, Babu V, Sundararajan N. Image quality measurement using sparse extreme learning machine classifier, 2006 9th International Conference on Control, Automation, Robotics and Vision 2006; pp. 1–6.
38.
Zurück zum Zitat Huang G-B, Zhu QY, Siew CK. Extreme learning machine: theory and application. Neurocomputing. 2006;70:489–501.CrossRef Huang G-B, Zhu QY, Siew CK. Extreme learning machine: theory and application. Neurocomputing. 2006;70:489–501.CrossRef
39.
Zurück zum Zitat Huang G-B. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput. 2014;6:376–90.CrossRef Huang G-B. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput. 2014;6:376–90.CrossRef
40.
Zurück zum Zitat Huang G-B. What are extreme learning machines? Filling the gap between frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput. 2015;7:263–78.CrossRef Huang G-B. What are extreme learning machines? Filling the gap between frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput. 2015;7:263–78.CrossRef
41.
Zurück zum Zitat Sachnev V, Savitha R, Suresh S, Kim HJ, Hwang HJ. A cognitive ensemble of extreme learning machines for steganalysis based on risk-sensitive hinge loss function. Cogn Comput. 2014;7(1):103–10.CrossRef Sachnev V, Savitha R, Suresh S, Kim HJ, Hwang HJ. A cognitive ensemble of extreme learning machines for steganalysis based on risk-sensitive hinge loss function. Cogn Comput. 2014;7(1):103–10.CrossRef
42.
Zurück zum Zitat Milham MP, Fair D, Mennes M, Mostofsky SH. The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci. 2012;6(62):1–5. Milham MP, Fair D, Mennes M, Mostofsky SH. The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci. 2012;6(62):1–5.
43.
Zurück zum Zitat Friston K, Ashburner J, Kiebel S, Nichols T, Penny W (eds.). Statistical parametric mapping: the analysis of functional brain images. Academic Press; 2007). Friston K, Ashburner J, Kiebel S, Nichols T, Penny W (eds.). Statistical parametric mapping: the analysis of functional brain images. Academic Press; 2007).
44.
Zurück zum Zitat Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38(1):95–113.CrossRefPubMed Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38(1):95–113.CrossRefPubMed
45.
Zurück zum Zitat Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. U Michigan Press; 1975. Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. U Michigan Press; 1975.
46.
Zurück zum Zitat Suresh S, Saraswathi S, Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems. Eng Appl Artif Intell. 2010;23(7):1149–57.CrossRef Suresh S, Saraswathi S, Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems. Eng Appl Artif Intell. 2010;23(7):1149–57.CrossRef
47.
Zurück zum Zitat Suresh S, Omkar SN, Mani V, Prakash TNG. Lift coefficient prediction at high angle of attack using recurrent neural network. Aerosp Sci Technol. 2003;7:595–602.CrossRef Suresh S, Omkar SN, Mani V, Prakash TNG. Lift coefficient prediction at high angle of attack using recurrent neural network. Aerosp Sci Technol. 2003;7:595–602.CrossRef
48.
Zurück zum Zitat Rong H-J, Jia Y-X, Zhao G-S. Aircraft recognition using modular extreme learning machine. Neurocomputing. 2014;128:166–74.CrossRef Rong H-J, Jia Y-X, Zhao G-S. Aircraft recognition using modular extreme learning machine. Neurocomputing. 2014;128:166–74.CrossRef
49.
Zurück zum Zitat Rong H-J, Ong Y-S, Tan A-H, Zhu Z. A fast pruned-extreme learning machine for classification problem. Neurocomputing. 2008;72:1–3.CrossRef Rong H-J, Ong Y-S, Tan A-H, Zhu Z. A fast pruned-extreme learning machine for classification problem. Neurocomputing. 2008;72:1–3.CrossRef
50.
Zurück zum Zitat Liu N, Wang H. Ensemble Based extreme learning machine. IEEE Signal Processing Letters. 2010;17(8):754–7.CrossRef Liu N, Wang H. Ensemble Based extreme learning machine. IEEE Signal Processing Letters. 2010;17(8):754–7.CrossRef
51.
Zurück zum Zitat Yu Q, van Heeswijk M, Miche Y, Nian R, He B, Séverin E, et al. Ensemble delta test-extreme learning machine (DT-ELM) for regression. Neurocomputing. 2014;129(10):153–8.CrossRef Yu Q, van Heeswijk M, Miche Y, Nian R, He B, Séverin E, et al. Ensemble delta test-extreme learning machine (DT-ELM) for regression. Neurocomputing. 2014;129(10):153–8.CrossRef
52.
Zurück zum Zitat Cao J, Lin Z, Huang G-B, Liu N. Voting based extreme learning machine. Inf Sci. 2012;185(1):66–77.CrossRef Cao J, Lin Z, Huang G-B, Liu N. Voting based extreme learning machine. Inf Sci. 2012;185(1):66–77.CrossRef
53.
Zurück zum Zitat Qureshi MNI, Min B, Jo HJ, Lee B. Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study. PLoS One. 2016;6(4):249–68. Qureshi MNI, Min B, Jo HJ, Lee B. Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study. PLoS One. 2016;6(4):249–68.
54.
Zurück zum Zitat Dai D, Wang J, Hua J, He H. Classification of ADHD children through multimodal magnetic resonance imaging. Front Syst Neurosci. 2012;6(63):1–8. Dai D, Wang J, Hua J, He H. Classification of ADHD children through multimodal magnetic resonance imaging. Front Syst Neurosci. 2012;6(63):1–8.
55.
Zurück zum Zitat Oishi K, Faria AV, Yoshida S, Chang L, Mori S. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging. Int J Dev Neurosci. 2013;31(7):512–24.CrossRefPubMed Oishi K, Faria AV, Yoshida S, Chang L, Mori S. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging. Int J Dev Neurosci. 2013;31(7):512–24.CrossRefPubMed
56.
Zurück zum Zitat Davatzikos C. Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage. 2004;23(1):17–20.CrossRefPubMed Davatzikos C. Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage. 2004;23(1):17–20.CrossRefPubMed
57.
Zurück zum Zitat Chiapponi C, Piras F, Piras F, Fagioli S, Caltagirone C, Spalletta G. Cortical grey matter and subcortical white matter brain microstructural changes in schizophrenia are localized and age independent: a case-control diffusion tensor imaging study. PLoS One. 2013;8(10):e75115.CrossRefPubMedPubMedCentral Chiapponi C, Piras F, Piras F, Fagioli S, Caltagirone C, Spalletta G. Cortical grey matter and subcortical white matter brain microstructural changes in schizophrenia are localized and age independent: a case-control diffusion tensor imaging study. PLoS One. 2013;8(10):e75115.CrossRefPubMedPubMedCentral
Metadaten
Titel
Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder
verfasst von
Vasily Sachnev
Sundaram Suresh
Narasimman Sundararajan
Belathur Suresh Mahanand
Muhammad W. Azeem
Saras Saraswathi
Publikationsdatum
30.03.2019
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 4/2019
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09636-0

Weitere Artikel der Ausgabe 4/2019

Cognitive Computation 4/2019 Zur Ausgabe