Skip to main content
Erschienen in: Quantum Information Processing 2/2018

01.02.2018

Multilevel quantum Otto heat engines with identical particles

verfasst von: X. L. Huang, D. Y. Guo, S. L. Wu, X. X. Yi

Erschienen in: Quantum Information Processing | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A quantum Otto heat engine is studied with multilevel identical particles trapped in one-dimensional box potential as working substance. The symmetrical wave function for Bosons and the anti-symmetrical wave function for Fermions are considered. In two-particle case, we focus on the ratios of \(W^i\) (\(i=B,F\)) to \(W_s\), where \(W^\mathrm{B}\) and \(W^\mathrm{F}\) are the work done by two Bosons and Fermions, respectively, and \(W_s\) is the work output of a single particle under the same conditions. Due to the symmetrical of the wave functions, the ratios are not equal to 2. Three different regimes, low-temperature regime, high-temperature regime, and intermediate-temperature regime, are analyzed, and the effects of energy level number and the differences between the two baths are calculated. In the multiparticle case, we calculate the ratios of \(W^i_M/M\) to \(W_s\), where \(W^i_M/M\) can be seen as the average work done by a single particle in multiparticle heat engine. For other working substances whose energy spectrum has the form of \(E_n\sim n^2\), the results are similar. For the case \(E_n\sim n\), two different conclusions are obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
2.
Zurück zum Zitat Sakurai, J.J.: Modern Quantum Mechanics Revised Edition. Addison-Wesley Publishing Company, Boston (1994) Sakurai, J.J.: Modern Quantum Mechanics Revised Edition. Addison-Wesley Publishing Company, Boston (1994)
3.
Zurück zum Zitat Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)ADSMathSciNetCrossRef Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)ADSMathSciNetCrossRef
4.
Zurück zum Zitat Kieu, T.D.: Quantum heat engines, the second law and Maxwell’s demon. Eur. Phys. J. D Atom. Mol. Opt. Plasma Phys. 39, 115 (2006) Kieu, T.D.: Quantum heat engines, the second law and Maxwell’s demon. Eur. Phys. J. D Atom. Mol. Opt. Plasma Phys. 39, 115 (2006)
5.
Zurück zum Zitat Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)ADSMathSciNetCrossRef Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)ADSMathSciNetCrossRef
7.
Zurück zum Zitat Wang, J., He, J., He, X.: Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity. Phys. Rev. E 84, 041127 (2011)ADSCrossRef Wang, J., He, J., He, X.: Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity. Phys. Rev. E 84, 041127 (2011)ADSCrossRef
8.
Zurück zum Zitat Wang, J., He, J., He, X.: Quantum Otto engine of a two-level atom with single-mode fields. Phys. Rev. E 85, 041148 (2012)ADSCrossRef Wang, J., He, J., He, X.: Quantum Otto engine of a two-level atom with single-mode fields. Phys. Rev. E 85, 041148 (2012)ADSCrossRef
9.
Zurück zum Zitat Niu, X.Y., Huang, X.L., Shang, Y.F., Wang, X.Y.: Effects of superpositions of quantum states on quantum isoenergetic cycles: efficiency and maximum power output Int. J. Mod. Phys. B 29, 1550086 (2015)ADSCrossRefMATH Niu, X.Y., Huang, X.L., Shang, Y.F., Wang, X.Y.: Effects of superpositions of quantum states on quantum isoenergetic cycles: efficiency and maximum power output Int. J. Mod. Phys. B 29, 1550086 (2015)ADSCrossRefMATH
10.
Zurück zum Zitat Huang, X.L., Shang, Y.F., Guo, D.Y., Yu, Q., Sun, Q.: Performance analysis of quantum diesel heat engines with a two-level atom as working substance. Quantum Inf. Process 16, 174 (2017)ADSCrossRefMATH Huang, X.L., Shang, Y.F., Guo, D.Y., Yu, Q., Sun, Q.: Performance analysis of quantum diesel heat engines with a two-level atom as working substance. Quantum Inf. Process 16, 174 (2017)ADSCrossRefMATH
11.
Zurück zum Zitat Leggio, B., Antezza, M.: Otto engine beyond its standard quantum limit. Phys. Rev. E 93, 022122 (2016)ADSCrossRef Leggio, B., Antezza, M.: Otto engine beyond its standard quantum limit. Phys. Rev. E 93, 022122 (2016)ADSCrossRef
12.
Zurück zum Zitat Muñoz, E., Peña, F.J.: Quantum heat engine in the relativistic limit: the case of a dirac particle. Phys. Rev. E 86, 061108 (2012)ADSCrossRef Muñoz, E., Peña, F.J.: Quantum heat engine in the relativistic limit: the case of a dirac particle. Phys. Rev. E 86, 061108 (2012)ADSCrossRef
13.
Zurück zum Zitat Correa, L.A., Mehboudi, M.: Testing a quantum heat pump with a two-level spin. Entropy 71, 75 (2016) Correa, L.A., Mehboudi, M.: Testing a quantum heat pump with a two-level spin. Entropy 71, 75 (2016)
14.
Zurück zum Zitat Yuan, Y., Wang, R., He, J.Z., Ma, Y.L., Wang, J.H.: Coefficient of performance under maximum criterion in a two-level atomic system as a refrigerator. Phys. Rev. E 90, 052151 (2014)ADSCrossRef Yuan, Y., Wang, R., He, J.Z., Ma, Y.L., Wang, J.H.: Coefficient of performance under maximum criterion in a two-level atomic system as a refrigerator. Phys. Rev. E 90, 052151 (2014)ADSCrossRef
15.
Zurück zum Zitat Quan, H.T., Zhang, P., Sun, C.P.: Quantum heat engine with multilevel quantum systems. Phys. Rev. E 72, 056110 (2005)ADSCrossRef Quan, H.T., Zhang, P., Sun, C.P.: Quantum heat engine with multilevel quantum systems. Phys. Rev. E 72, 056110 (2005)ADSCrossRef
16.
Zurück zum Zitat Gaveau, B., Moreau, M., Schulman, L.S.: Constrained maximal power in small engines. Phys. Rev. E 82, 051109 (2010)ADSCrossRef Gaveau, B., Moreau, M., Schulman, L.S.: Constrained maximal power in small engines. Phys. Rev. E 82, 051109 (2010)ADSCrossRef
17.
Zurück zum Zitat Peña, F.J., Ferré, M., Orellana, P.A., Rojas, R.G., Vargas, P.: Optimization of a relativistic quantum mechanical engine. Phys. Rev. E 94, 022109 (2016)ADSCrossRef Peña, F.J., Ferré, M., Orellana, P.A., Rojas, R.G., Vargas, P.: Optimization of a relativistic quantum mechanical engine. Phys. Rev. E 94, 022109 (2016)ADSCrossRef
18.
Zurück zum Zitat Çakmak, S., Altintas, F., Gençten, A., Müstecaplıoğlu, Ö.E.: Irreversible work and internal friction in a quantum Otto cycle of a single arbitrary spin. Eur. Phys. J. D 71, 75 (2016)CrossRef Çakmak, S., Altintas, F., Gençten, A., Müstecaplıoğlu, Ö.E.: Irreversible work and internal friction in a quantum Otto cycle of a single arbitrary spin. Eur. Phys. J. D 71, 75 (2016)CrossRef
19.
Zurück zum Zitat Wang, J.H., Ye, Z.L., Lai, Y.M., Li, W.S., He, J.Z.: Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. Phys. Rev. E 91, 062134 (2015)ADSCrossRef Wang, J.H., Ye, Z.L., Lai, Y.M., Li, W.S., He, J.Z.: Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. Phys. Rev. E 91, 062134 (2015)ADSCrossRef
20.
Zurück zum Zitat Insinga, A., Andresen, B., Salamon, P.: Thermodynamical analysis of a quantum heat engine based on harmonic oscillators. Phys. Rev. E 94, 012119 (2016)ADSCrossRef Insinga, A., Andresen, B., Salamon, P.: Thermodynamical analysis of a quantum heat engine based on harmonic oscillators. Phys. Rev. E 94, 012119 (2016)ADSCrossRef
21.
Zurück zum Zitat Abah, O., Lutz, E.: Optimal performance of a quantum Otto refrigerator. Europhys. Lett. 113, 60002 (2016)ADSCrossRef Abah, O., Lutz, E.: Optimal performance of a quantum Otto refrigerator. Europhys. Lett. 113, 60002 (2016)ADSCrossRef
22.
Zurück zum Zitat Gardas, B., Deffner, S., Saxena, A.: Non-hermitian quantum thermodynamics. Sci. Rep. 6, 23408 (2016)ADSCrossRef Gardas, B., Deffner, S., Saxena, A.: Non-hermitian quantum thermodynamics. Sci. Rep. 6, 23408 (2016)ADSCrossRef
24.
Zurück zum Zitat Zhang, T., Liu, W.T., Chen, P.X., Li, C.Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75, 062102 (2007)ADSCrossRef Zhang, T., Liu, W.T., Chen, P.X., Li, C.Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75, 062102 (2007)ADSCrossRef
25.
Zurück zum Zitat Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83, 031135 (2011)ADSCrossRef Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83, 031135 (2011)ADSCrossRef
26.
Zurück zum Zitat Huang, X.L., Wang, L.C., Yi, X.X.: Quantum Brayton cycle with coupled systems as working substance. Phys. Rev. E 87, 012144 (2013)ADSCrossRef Huang, X.L., Wang, L.C., Yi, X.X.: Quantum Brayton cycle with coupled systems as working substance. Phys. Rev. E 87, 012144 (2013)ADSCrossRef
27.
Zurück zum Zitat Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87, 166 (2014)ADSCrossRef Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87, 166 (2014)ADSCrossRef
28.
Zurück zum Zitat Altintas, F., Hardal, A.Ü.C., Müstecapliog̃lu, Ö.E.: Quantum correlated heat engine with spin squeezing. Phys. Rev. E 90, 032102 (2014)ADSCrossRef Altintas, F., Hardal, A.Ü.C., Müstecapliog̃lu, Ö.E.: Quantum correlated heat engine with spin squeezing. Phys. Rev. E 90, 032102 (2014)ADSCrossRef
29.
Zurück zum Zitat Çakmak, S., Altintas, F., Müstecaplıoǧlu, Ö.E.: Lipkin–Meshkov–Glick model in a quantum Otto cycle. Eur. Phys. J. Plus 131, 197 (2016)CrossRef Çakmak, S., Altintas, F., Müstecaplıoǧlu, Ö.E.: Lipkin–Meshkov–Glick model in a quantum Otto cycle. Eur. Phys. J. Plus 131, 197 (2016)CrossRef
30.
Zurück zum Zitat Zhao, L.-M., Zhang, G.-F.: Entangled quantum Otto heat engines based on two-spin systems with the Dzyaloshinski–Moriya interaction. Quantum Inf. Process. 16, 216 (2017)ADSMathSciNetCrossRef Zhao, L.-M., Zhang, G.-F.: Entangled quantum Otto heat engines based on two-spin systems with the Dzyaloshinski–Moriya interaction. Quantum Inf. Process. 16, 216 (2017)ADSMathSciNetCrossRef
31.
Zurück zum Zitat Huang, X.L., Xu, H., Niu, X.Y., Fu, Y.D.: A special entangled quantum heat engine based on the two-qubit Heisenberg \(XX\) model. Phys. Scr. 88, 065008 (2013)ADSCrossRef Huang, X.L., Xu, H., Niu, X.Y., Fu, Y.D.: A special entangled quantum heat engine based on the two-qubit Heisenberg \(XX\) model. Phys. Scr. 88, 065008 (2013)ADSCrossRef
32.
Zurück zum Zitat Altintas, F., Müstecaploğlu, Ö.E.: General formalism of local thermodynamics with an example: quantum Otto engine with a spin\(-1/2\) coupled to an arbitrary spin. Phys. Rev. E 92, 022142 (2015)ADSMathSciNetCrossRef Altintas, F., Müstecaploğlu, Ö.E.: General formalism of local thermodynamics with an example: quantum Otto engine with a spin\(-1/2\) coupled to an arbitrary spin. Phys. Rev. E 92, 022142 (2015)ADSMathSciNetCrossRef
33.
Zurück zum Zitat Azimi, M., Chotorlishvili, L., Mishra, S.K., Vekua, T., Hübner, W., Berakdar, J.: Quantum Otto heat engine based on a multiferroic chain working substance. New J. Phys. 16, 063018 (2014)ADSCrossRef Azimi, M., Chotorlishvili, L., Mishra, S.K., Vekua, T., Hübner, W., Berakdar, J.: Quantum Otto heat engine based on a multiferroic chain working substance. New J. Phys. 16, 063018 (2014)ADSCrossRef
34.
Zurück zum Zitat Huang, X.L., Sun, Qi, Guo, D.Y., Yu, Qian: Quantum Otto heat engine with three-qubit \(XXZ\) model as working substance. Phys. A 491, 604 (2018)MathSciNetCrossRef Huang, X.L., Sun, Qi, Guo, D.Y., Yu, Qian: Quantum Otto heat engine with three-qubit \(XXZ\) model as working substance. Phys. A 491, 604 (2018)MathSciNetCrossRef
35.
Zurück zum Zitat Basu, D., Nandi, J., Jayannavar, A.M., Marathe, R.: Two coupled, driven Ising spin systems working as an engine. Phys. Rev. E 95, 052123 (2017)ADSCrossRef Basu, D., Nandi, J., Jayannavar, A.M., Marathe, R.: Two coupled, driven Ising spin systems working as an engine. Phys. Rev. E 95, 052123 (2017)ADSCrossRef
36.
Zurück zum Zitat Chotorlishvili, L., Azimi, M., Stagraczyński, S., Toklikishvili, Z., Schüler, M., Berakdar, J.: Superadiabatic quantum heat engine with a multiferroic working medium. Phys. Rev. E 94, 032116 (2016)ADSCrossRef Chotorlishvili, L., Azimi, M., Stagraczyński, S., Toklikishvili, Z., Schüler, M., Berakdar, J.: Superadiabatic quantum heat engine with a multiferroic working medium. Phys. Rev. E 94, 032116 (2016)ADSCrossRef
37.
Zurück zum Zitat Ivanchenko, E.A.: Quantum Otto cycle efficiency on coupled qudits. Phys. Rev. E 92, 032124 (2015)ADSCrossRef Ivanchenko, E.A.: Quantum Otto cycle efficiency on coupled qudits. Phys. Rev. E 92, 032124 (2015)ADSCrossRef
38.
Zurück zum Zitat Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)ADSCrossRef Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)ADSCrossRef
39.
Zurück zum Zitat Blickle, V., Bechinger, C.: Realization of a micrometre-sized stochastic heat engine. Nat. Phys. 8, 143 (2012)CrossRef Blickle, V., Bechinger, C.: Realization of a micrometre-sized stochastic heat engine. Nat. Phys. 8, 143 (2012)CrossRef
40.
Zurück zum Zitat Fialko, O., Hallwood, D.W.: Isolated quantum heat engine. Phys. Rev. Lett. 108, 085303 (2012)ADSCrossRef Fialko, O., Hallwood, D.W.: Isolated quantum heat engine. Phys. Rev. Lett. 108, 085303 (2012)ADSCrossRef
41.
Zurück zum Zitat Zhang, K., Bariani, F., Meystre, P.: Quantum optomechanical heat engine. Phys. Rev. Lett. 112, 150602 (2014)ADSCrossRef Zhang, K., Bariani, F., Meystre, P.: Quantum optomechanical heat engine. Phys. Rev. Lett. 112, 150602 (2014)ADSCrossRef
42.
Zurück zum Zitat Ian, H.: Thermodynamic cycle in a cavity optomechanical system. J. Phys. B 47, 135502 (2014)ADSCrossRef Ian, H.: Thermodynamic cycle in a cavity optomechanical system. J. Phys. B 47, 135502 (2014)ADSCrossRef
44.
Zurück zum Zitat Roßnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352, 325 (2016)ADSMathSciNetCrossRefMATH Roßnagel, J., Dawkins, S.T., Tolazzi, K.N., Abah, O., Lutz, E., Schmidt-Kaler, F., Singer, K.: A single-atom heat engine. Science 352, 325 (2016)ADSMathSciNetCrossRefMATH
45.
Zurück zum Zitat Alickia, R., Gelbwaser-Klimovskyb, D., Jenkins, A.: A thermodynamic cycle for the solar cell. Ann. Phys. 378, 7 (2017)MathSciNet Alickia, R., Gelbwaser-Klimovskyb, D., Jenkins, A.: A thermodynamic cycle for the solar cell. Ann. Phys. 378, 7 (2017)MathSciNet
46.
Zurück zum Zitat Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862 (2003)ADSCrossRef Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862 (2003)ADSCrossRef
48.
Zurück zum Zitat Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)ADSCrossRef Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)ADSCrossRef
49.
Zurück zum Zitat Robnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014)ADSCrossRef Robnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112, 030602 (2014)ADSCrossRef
51.
Zurück zum Zitat Long, R., Liu, W.: Performance of quantum Otto refrigerators with squeezing. Phys. Rev. E 91, 062137 (2015)ADSCrossRef Long, R., Liu, W.: Performance of quantum Otto refrigerators with squeezing. Phys. Rev. E 91, 062137 (2015)ADSCrossRef
52.
Zurück zum Zitat Manzano, G., Galve, F., Zambrini, R., Parrondo, J.M.R.: Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016)ADSCrossRef Manzano, G., Galve, F., Zambrini, R., Parrondo, J.M.R.: Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016)ADSCrossRef
53.
Zurück zum Zitat Scully, M.O., Chapin, K.R., Dorfman, K.E., Kim, M.B., Svidzinsky, A.: Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. 108, 15097 (2012)ADSCrossRef Scully, M.O., Chapin, K.R., Dorfman, K.E., Kim, M.B., Svidzinsky, A.: Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. 108, 15097 (2012)ADSCrossRef
54.
Zurück zum Zitat Huang, X.L., Liu, Y., Wang, Z., Niu, X.Y.: Special coupled quantum Otto cycles. Eur. Phys. J. Plus 129, 4 (2014)ADSCrossRef Huang, X.L., Liu, Y., Wang, Z., Niu, X.Y.: Special coupled quantum Otto cycles. Eur. Phys. J. Plus 129, 4 (2014)ADSCrossRef
55.
Zurück zum Zitat Pathria, R.K.: Statistical Mechanics. Elsevier Pte Ltd, Singapore (1997)MATH Pathria, R.K.: Statistical Mechanics. Elsevier Pte Ltd, Singapore (1997)MATH
56.
Zurück zum Zitat Wang, R., Wang, J., He, J., Ma, Y.: Performance of a multilevel quantum heat engine of an ideal \(N\)-particle Fermi system. Phys. Rev. E 86, 021133 (2012)ADSCrossRef Wang, R., Wang, J., He, J., Ma, Y.: Performance of a multilevel quantum heat engine of an ideal \(N\)-particle Fermi system. Phys. Rev. E 86, 021133 (2012)ADSCrossRef
57.
Zurück zum Zitat Wang, J.H., He, J.Z.: Optimization on a three-level heat engine working with two noninteracting Fermions in a one-dimensional box trap. J. Appl. Phys. 111, 043505 (2011)ADSCrossRef Wang, J.H., He, J.Z.: Optimization on a three-level heat engine working with two noninteracting Fermions in a one-dimensional box trap. J. Appl. Phys. 111, 043505 (2011)ADSCrossRef
58.
59.
Zurück zum Zitat Schmidt, H.J., Schnack, J.: Thermodynamic Fermion–Boson symmetry in harmonic oscillator potentials. Phys. A 265, 564 (1998) Schmidt, H.J., Schnack, J.: Thermodynamic Fermion–Boson symmetry in harmonic oscillator potentials. Phys. A 265, 564 (1998)
60.
Zurück zum Zitat Wang, J.H., He, J.Z.: Phase transitions for an ideal Bose condensate trapped in a quartic potential. Eur. Phys. J. D Mol. Opt. Plasma Phys. 64, 73 (2011)ADS Wang, J.H., He, J.Z.: Phase transitions for an ideal Bose condensate trapped in a quartic potential. Eur. Phys. J. D Mol. Opt. Plasma Phys. 64, 73 (2011)ADS
Metadaten
Titel
Multilevel quantum Otto heat engines with identical particles
verfasst von
X. L. Huang
D. Y. Guo
S. L. Wu
X. X. Yi
Publikationsdatum
01.02.2018
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 2/2018
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-017-1795-4

Weitere Artikel der Ausgabe 2/2018

Quantum Information Processing 2/2018 Zur Ausgabe

Neuer Inhalt