Skip to main content

2019 | OriginalPaper | Buchkapitel

Multiphysics Simulation of Electromagnetic Forming of Aluminum Alloy Tubes

verfasst von : V. M. Volgin, V. D. Kukhar, A. E. Kireeva

Erschienen in: Proceedings of the 4th International Conference on Industrial Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is devoted to the study of coupled electromagnetic, mechanical, and heat transfer processes at electromagnetic forming of tubes. A multiphysics mathematical model of coupled, high-speed electrical, magnetic, mechanical, and heat transfer processes in the system “Installation-Coil-Workpiece” taking into account the characteristics of the technological system is developed. Numerical simulation of electromagnetic forming was performed by a finite element method within the 2D axisymmetric approximation. The effect of the main process parameters and modeling technique on electromagnetic forming of aluminum alloy tubes are investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Belyy V, Ferrtik SM, Khimenko LT (1996) Electromagnetic metal forming handbook, English version of Russian book translated by Altynova M.M. Ohio State University, USA Belyy V, Ferrtik SM, Khimenko LT (1996) Electromagnetic metal forming handbook, English version of Russian book translated by Altynova M.M. Ohio State University, USA
2.
Zurück zum Zitat Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M (2011) Electromagnetic forming—a review. J Mater Process Technol 211(5):787–829CrossRef Psyk V, Risch D, Kinsey BL, Tekkaya AE, Kleiner M (2011) Electromagnetic forming—a review. J Mater Process Technol 211(5):787–829CrossRef
3.
Zurück zum Zitat Gayakwad D, Dargar MK, Sharma PK, Rana RS (2014) A review on electromagnetic forming process. Proc Mater Sci 6:520–527CrossRef Gayakwad D, Dargar MK, Sharma PK, Rana RS (2014) A review on electromagnetic forming process. Proc Mater Sci 6:520–527CrossRef
4.
Zurück zum Zitat Furth HP, Waniek RW (1962) New ideas on magnetic forming. Metal working Prod 106:92–95 Furth HP, Waniek RW (1962) New ideas on magnetic forming. Metal working Prod 106:92–95
5.
Zurück zum Zitat Giannoglou A, Kladas A, Tegopoulos J, Koumoutsos A, Manolakos D, Mamalis A (2004) Electromagnetic forming: a coupled numerical electromagnetic-mechanical-electrical approach compared to measurements. COMPEL 23(3):789–799CrossRef Giannoglou A, Kladas A, Tegopoulos J, Koumoutsos A, Manolakos D, Mamalis A (2004) Electromagnetic forming: a coupled numerical electromagnetic-mechanical-electrical approach compared to measurements. COMPEL 23(3):789–799CrossRef
6.
Zurück zum Zitat Mamalis AG, Manolakos DE, Kladas AG, Koumoutsos AK (2006) Electromagnetic forming tools and processing conditions: numerical simulation. Mater Manuf Process 21(4):411–423CrossRef Mamalis AG, Manolakos DE, Kladas AG, Koumoutsos AK (2006) Electromagnetic forming tools and processing conditions: numerical simulation. Mater Manuf Process 21(4):411–423CrossRef
7.
Zurück zum Zitat Unger J, Stiemer M, Schwarze M, Svendsen B, Blum H, Reese S (2008) Strategies for 3D simulation of electromagnetic forming processes. J Mater Process Technol 199(1):341–362CrossRef Unger J, Stiemer M, Schwarze M, Svendsen B, Blum H, Reese S (2008) Strategies for 3D simulation of electromagnetic forming processes. J Mater Process Technol 199(1):341–362CrossRef
8.
Zurück zum Zitat Bartels G, Schatzing W, Scheibe HP, Leone M (2009) Comparison of two different simulation algorithms for the electromagnetic tube compression. Int J Mater Form 2(1):693–696CrossRef Bartels G, Schatzing W, Scheibe HP, Leone M (2009) Comparison of two different simulation algorithms for the electromagnetic tube compression. Int J Mater Form 2(1):693–696CrossRef
9.
Zurück zum Zitat Yu HU, Chunfeng LI, Jianghua DENG (2009) Sequential coupling simulation for electromagnetic–mechanical tube compression by finite element analysis. J Mater Process Tech 209(2):707–713CrossRef Yu HU, Chunfeng LI, Jianghua DENG (2009) Sequential coupling simulation for electromagnetic–mechanical tube compression by finite element analysis. J Mater Process Tech 209(2):707–713CrossRef
10.
Zurück zum Zitat Demir OK, Psyk V, Tekkaya AE (2010) Simulation of tube wrinkling in electromagnetic compression. Prod Eng 4(4):421–426CrossRef Demir OK, Psyk V, Tekkaya AE (2010) Simulation of tube wrinkling in electromagnetic compression. Prod Eng 4(4):421–426CrossRef
11.
Zurück zum Zitat Uhlmann E, Ziefle A (2011). Simulation approaches for pulse magnetic forming. Prod Eng 5(6):659–665. Cui X, Mo J, Han F (2012) 3D Multi-physics field simulation of electromagnetic tube forming. Int J Adv Manuf Technol 59(5):521–529 Uhlmann E, Ziefle A (2011). Simulation approaches for pulse magnetic forming. Prod Eng 5(6):659–665. Cui X, Mo J, Han F (2012) 3D Multi-physics field simulation of electromagnetic tube forming. Int J Adv Manuf Technol 59(5):521–529
12.
Zurück zum Zitat Kim J, Noh HG, Song WJ, Kang BS (2015) Analysis of electromagnetic forming process using sequential electromagnetic-structural coupling simulation. Int J Appl Electromagnet 49(2):263–278CrossRef Kim J, Noh HG, Song WJ, Kang BS (2015) Analysis of electromagnetic forming process using sequential electromagnetic-structural coupling simulation. Int J Appl Electromagnet 49(2):263–278CrossRef
13.
Zurück zum Zitat Patel C, Ghatule P, Kore SD (2017) Finite element analysis of effect of process parameters on electromagnetic free expansion of aluminium tube. Int J Mater Prod Tec 54(1–3):165–178CrossRef Patel C, Ghatule P, Kore SD (2017) Finite element analysis of effect of process parameters on electromagnetic free expansion of aluminium tube. Int J Mater Prod Tec 54(1–3):165–178CrossRef
14.
Zurück zum Zitat Feng H, Cui XY, Li GY (2017) Coupled-field simulation of electromagnetic tube forming process using a stable nodal integration method. Int J Mech Sci 128:332–344CrossRef Feng H, Cui XY, Li GY (2017) Coupled-field simulation of electromagnetic tube forming process using a stable nodal integration method. Int J Mech Sci 128:332–344CrossRef
15.
Zurück zum Zitat Manea TE, Verweij MD, Blok H (2002) The importance of velocity term in the electromagnetic forming process. In: Proceedings of 27th general assembly international union radio science, pp 112–115 Manea TE, Verweij MD, Blok H (2002) The importance of velocity term in the electromagnetic forming process. In: Proceedings of 27th general assembly international union radio science, pp 112–115
16.
Zurück zum Zitat Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of 7th international symposium on ballistics, vol 21, issue 1, pp 541–547 Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of 7th international symposium on ballistics, vol 21, issue 1, pp 541–547
17.
Zurück zum Zitat Hodko AA (2014) Features of a choice of models of metal plasticity deformable workpiece by the numerical study of hydrodynamic process stamping. Aerosp Techn Technol 5:11–24 (in Russian) Hodko AA (2014) Features of a choice of models of metal plasticity deformable workpiece by the numerical study of hydrodynamic process stamping. Aerosp Techn Technol 5:11–24 (in Russian)
18.
Zurück zum Zitat Golovashchenko S, Dmitriev V, Canfield P, Krause A, Maranville C (2009) Apparatus for electromagnetic forming with durability and efficiency enhancements. U.S. Patent No. 7540180 Golovashchenko S, Dmitriev V, Canfield P, Krause A, Maranville C (2009) Apparatus for electromagnetic forming with durability and efficiency enhancements. U.S. Patent No. 7540180
19.
Zurück zum Zitat Golovashchenko SF (2007) Material formability and coil design in electromagnetic forming. J Mater Eng Perform 16(3):314–320CrossRef Golovashchenko SF (2007) Material formability and coil design in electromagnetic forming. J Mater Eng Perform 16(3):314–320CrossRef
20.
Zurück zum Zitat Gale WF, Totemeier TC (eds) (2003) Smithells metals reference book. Butterworth-Heinemann Gale WF, Totemeier TC (eds) (2003) Smithells metals reference book. Butterworth-Heinemann
Metadaten
Titel
Multiphysics Simulation of Electromagnetic Forming of Aluminum Alloy Tubes
verfasst von
V. M. Volgin
V. D. Kukhar
A. E. Kireeva
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-95630-5_199

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.