Skip to main content
Erschienen in: Journal of Materials Science 8/2019

16.01.2019 | Composites

Multiwalled carbon nanotubes encapsulated polystyrene: a facile one-step synthesis, electrical and thermal properties

verfasst von: Weifang Han, Wei Song, Yuxiang Shen, Chunhua Ge, Rui Zhang, Xiangdong Zhang

Erschienen in: Journal of Materials Science | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polymer-based composites with excellent heat transfer properties have been widely applied in the thermal management system. However, the poor dispersion of filler restricts the heat dissipation performance of composites and the strong interfacial thermal barrier is another crucial issue. Herein, core–shell-structured polystyrene@multiwalled carbon nanotubes (PS@MWCNTs) composites were prepared by a one-step microemulsion polymerization method. The resultant PS@MWCNT composite with interconnected MWCNTs on the surface, as a thermally conductive network, was further processed and formed via hot pressing. As a consequence, the high thermal conductivity of 1.357 W/m K was achieved at MWCNTns loading of 10 wt%, which is equivalent to a thermal conductivity enhancement of 618% compared to pure PS (0.189 W/m K). Besides, the obtained PS@MWCNT composite film also possesses a low sheet resistance. This method can be further extended to construct other polymer-based composites with high thermal conductivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mehra N, Mu L, Zhu J (2017) Developing heat conduction pathways through short polymer chains in a hydrogen bonded polymer system. Compos Sci Technol 148:97–105CrossRef Mehra N, Mu L, Zhu J (2017) Developing heat conduction pathways through short polymer chains in a hydrogen bonded polymer system. Compos Sci Technol 148:97–105CrossRef
2.
Zurück zum Zitat Wu X, Yang Z, Kuang W, Tang Z, Guo B (2017) Coating polyrhodanine onto boron nitride nanosheets for thermally conductive elastomer composites. Compos A 94:77–85CrossRef Wu X, Yang Z, Kuang W, Tang Z, Guo B (2017) Coating polyrhodanine onto boron nitride nanosheets for thermally conductive elastomer composites. Compos A 94:77–85CrossRef
3.
Zurück zum Zitat Su Z, Wang H, Ye X, Tian K, Huang W, He J, Guo Y, Tian X (2018) Anisotropic thermally conductive flexible polymer composites filled with hexagonal born nitride (h-BN) platelets and ammine carbon nanotubes (CNT-NH2): effects of the filler distribution and orientation. Compos A 109:402–412CrossRef Su Z, Wang H, Ye X, Tian K, Huang W, He J, Guo Y, Tian X (2018) Anisotropic thermally conductive flexible polymer composites filled with hexagonal born nitride (h-BN) platelets and ammine carbon nanotubes (CNT-NH2): effects of the filler distribution and orientation. Compos A 109:402–412CrossRef
4.
Zurück zum Zitat Zhao F, Zhang G, Zhao S, Cui J, Gao A, Yan Y (2018) Fabrication of pristine graphene-based conductive polystyrene composites towards high performance and light-weight. Compos Sci Technol 159:232–239CrossRef Zhao F, Zhang G, Zhao S, Cui J, Gao A, Yan Y (2018) Fabrication of pristine graphene-based conductive polystyrene composites towards high performance and light-weight. Compos Sci Technol 159:232–239CrossRef
6.
Zurück zum Zitat Zhu Y, Shi Y, Huang Z-Q, Duan L, Tai Q, Hu Y (2017) Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: preparation and enhancement on thermal stability and flame retardancy of polystyrene. Compos A 99:149–156CrossRef Zhu Y, Shi Y, Huang Z-Q, Duan L, Tai Q, Hu Y (2017) Novel graphite-like carbon nitride/organic aluminum diethylhypophosphites nanohybrid: preparation and enhancement on thermal stability and flame retardancy of polystyrene. Compos A 99:149–156CrossRef
7.
Zurück zum Zitat Ruan K, Guo Y, Tang Y, Zhang Y, Zhang J, He M, Kong J, Gu J (2018) Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos Commun 10:68–72CrossRef Ruan K, Guo Y, Tang Y, Zhang Y, Zhang J, He M, Kong J, Gu J (2018) Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos Commun 10:68–72CrossRef
8.
Zurück zum Zitat Wu G, Wang Y, Wang K, Feng A (2016) The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites. RSC Adv 6:102542–102548CrossRef Wu G, Wang Y, Wang K, Feng A (2016) The effect of modified AlN on the thermal conductivity, mechanical and thermal properties of AlN/polystyrene composites. RSC Adv 6:102542–102548CrossRef
9.
Zurück zum Zitat Yu S, Hing P, Hu X (2002) Thermal conductivity of polystyrene–aluminum nitride composite. Compos A 33:289–292CrossRef Yu S, Hing P, Hu X (2002) Thermal conductivity of polystyrene–aluminum nitride composite. Compos A 33:289–292CrossRef
10.
Zurück zum Zitat Kumlutaş D, Tavman İH, Turhan Çoban M (2003) Thermal conductivity of particle filled polyethylene composite materials. Compos Sci Technol 63:113–117CrossRef Kumlutaş D, Tavman İH, Turhan Çoban M (2003) Thermal conductivity of particle filled polyethylene composite materials. Compos Sci Technol 63:113–117CrossRef
11.
Zurück zum Zitat Yu S, Lee JW, Han TH, Park C, Kwon Y, Hong SM, Koo CM (2013) Copper shell networks in polymer composites for efficient thermal conduction. ACS Appl Mater Interfaces 5:11618–11622CrossRef Yu S, Lee JW, Han TH, Park C, Kwon Y, Hong SM, Koo CM (2013) Copper shell networks in polymer composites for efficient thermal conduction. ACS Appl Mater Interfaces 5:11618–11622CrossRef
12.
Zurück zum Zitat Jouni M, Boudenne A, Boiteux G, Massardier V, Garnier B, Serghei A (2013) Electrical and thermal properties of polyethylene/silver nanoparticle composites. Polym Compos 34:778–786CrossRef Jouni M, Boudenne A, Boiteux G, Massardier V, Garnier B, Serghei A (2013) Electrical and thermal properties of polyethylene/silver nanoparticle composites. Polym Compos 34:778–786CrossRef
14.
Zurück zum Zitat Han W, Bai Y, Liu S, Ge C, Wang L, Ma Z, Yang Y, Zhang X (2017) Enhanced thermal conductivity of commercial polystyrene filled with core–shell structured BN@PS. Compos A 102:218–227CrossRef Han W, Bai Y, Liu S, Ge C, Wang L, Ma Z, Yang Y, Zhang X (2017) Enhanced thermal conductivity of commercial polystyrene filled with core–shell structured BN@PS. Compos A 102:218–227CrossRef
15.
Zurück zum Zitat Gu J, Lv Z, Wu Y, Zhao R, Tian L, Zhang Q (2015) Enhanced thermal conductivity of SiCp/PS composites by electrospinning–hot press technique. Compos A 79:8–13CrossRef Gu J, Lv Z, Wu Y, Zhao R, Tian L, Zhang Q (2015) Enhanced thermal conductivity of SiCp/PS composites by electrospinning–hot press technique. Compos A 79:8–13CrossRef
16.
Zurück zum Zitat Liu Y, Wang GJ, Wu YJ (2014) Amphiphilicity and self-assembly behaviors of polystyrene-grafted multi-walled carbon nanotubes in selective solvents. Colloid Polym Sci 292:185–196CrossRef Liu Y, Wang GJ, Wu YJ (2014) Amphiphilicity and self-assembly behaviors of polystyrene-grafted multi-walled carbon nanotubes in selective solvents. Colloid Polym Sci 292:185–196CrossRef
17.
Zurück zum Zitat Yuan JM, Fan ZF, Chen XH, Chen XH, Wu ZJ, He LP (2009) Preparation of polystyrene–multiwalled carbon nanotube composites with individual-dispersed nanotubes and strong interfacial adhesion. Polymer 50:3285–3291CrossRef Yuan JM, Fan ZF, Chen XH, Chen XH, Wu ZJ, He LP (2009) Preparation of polystyrene–multiwalled carbon nanotube composites with individual-dispersed nanotubes and strong interfacial adhesion. Polymer 50:3285–3291CrossRef
18.
Zurück zum Zitat Sun G, Chen G, Liu J, Yang J, Xie J, Liu Z, Li R, Li X (2009) A facile gemini surfactant-improved dispersion of carbon nanotubes in polystyrene. Polymer 50:5787–5793CrossRef Sun G, Chen G, Liu J, Yang J, Xie J, Liu Z, Li R, Li X (2009) A facile gemini surfactant-improved dispersion of carbon nanotubes in polystyrene. Polymer 50:5787–5793CrossRef
19.
Zurück zum Zitat Ding P, Zhang J, Song N, Tang S, Liu Y, Shi L (2015) Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions. Compos Sci Technol 109:25–31CrossRef Ding P, Zhang J, Song N, Tang S, Liu Y, Shi L (2015) Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions. Compos Sci Technol 109:25–31CrossRef
20.
Zurück zum Zitat Tu H, Ye L (2010) Preparation and characterization of thermally conductive polystyrene/carbon nanotubes composites. J Appl Polym Sci 116:2336–2342 Tu H, Ye L (2010) Preparation and characterization of thermally conductive polystyrene/carbon nanotubes composites. J Appl Polym Sci 116:2336–2342
21.
Zurück zum Zitat Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J (2018) Thermal transport in polymeric materials and across composite interfaces. Appl Mater Today 12:92–130CrossRef Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J (2018) Thermal transport in polymeric materials and across composite interfaces. Appl Mater Today 12:92–130CrossRef
22.
Zurück zum Zitat Kim ST, Choi HJ, Hong SM (2007) Bulk polymerized polystyrene in the presence of multiwalled carbon nanotubes. Colloid Polym Sci 285:593–598CrossRef Kim ST, Choi HJ, Hong SM (2007) Bulk polymerized polystyrene in the presence of multiwalled carbon nanotubes. Colloid Polym Sci 285:593–598CrossRef
23.
24.
Zurück zum Zitat Patole AS, Patole SP, Yoo JB, An JH, Kim TH (2012) Fabrication of polystyrene/multiwalled carbon nanotube composite films synthesized by in situ microemulsion polymerization. Polym Eng Sci 53:1327–1336CrossRef Patole AS, Patole SP, Yoo JB, An JH, Kim TH (2012) Fabrication of polystyrene/multiwalled carbon nanotube composite films synthesized by in situ microemulsion polymerization. Polym Eng Sci 53:1327–1336CrossRef
25.
Zurück zum Zitat Zeng X, Yao Y, Gong Z, Wang F, Sun R, Xu J, Wong CP (2015) Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11:6205–6213CrossRef Zeng X, Yao Y, Gong Z, Wang F, Sun R, Xu J, Wong CP (2015) Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11:6205–6213CrossRef
26.
Zurück zum Zitat Hu M, Feng J, Ng KM (2015) Thermally conductive PP/AlN composites with a 3-D segregated structure. Compos Sci Technol 110:26–34CrossRef Hu M, Feng J, Ng KM (2015) Thermally conductive PP/AlN composites with a 3-D segregated structure. Compos Sci Technol 110:26–34CrossRef
27.
Zurück zum Zitat Vu MC, Bae YH, Yu MJ, Islam MA, Kim SR (2018) Core–shell structured carbon nanotube-poly(methylmethacrylate) beads as thermo-conductive filler in epoxy composites. Compos A 109:55–62CrossRef Vu MC, Bae YH, Yu MJ, Islam MA, Kim SR (2018) Core–shell structured carbon nanotube-poly(methylmethacrylate) beads as thermo-conductive filler in epoxy composites. Compos A 109:55–62CrossRef
28.
Zurück zum Zitat Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385CrossRef Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385CrossRef
29.
Zurück zum Zitat Fan D, Zhou Q, Lv X, Jing J, Ye Z, Shao S, Xie J (2017) Synthesis, thermal conductivity and anti-oxidation properties of copper nanoparticles encapsulated within few-layer h-BN. Ceram Int 44:1205–1208CrossRef Fan D, Zhou Q, Lv X, Jing J, Ye Z, Shao S, Xie J (2017) Synthesis, thermal conductivity and anti-oxidation properties of copper nanoparticles encapsulated within few-layer h-BN. Ceram Int 44:1205–1208CrossRef
31.
Zurück zum Zitat Luo J, Lu H, Zhang Q, Yao Y, Chen M, Li Q (2016) Flexible carbon nanotube/polyurethane electrothermal films. Carbon 110:343–349CrossRef Luo J, Lu H, Zhang Q, Yao Y, Chen M, Li Q (2016) Flexible carbon nanotube/polyurethane electrothermal films. Carbon 110:343–349CrossRef
32.
Zurück zum Zitat Yuan S, Bai J, Chua CK, Wei J, Zhou K (2016) Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach. Compos A 90:699–710CrossRef Yuan S, Bai J, Chua CK, Wei J, Zhou K (2016) Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach. Compos A 90:699–710CrossRef
33.
Zurück zum Zitat Kaseem M, Hamad K, Ko YG (2016) Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review. Eur Polym J 79:36–62CrossRef Kaseem M, Hamad K, Ko YG (2016) Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review. Eur Polym J 79:36–62CrossRef
34.
Zurück zum Zitat Liu MS, Ching-Cheng Lin M, Huang IT, Wang CC (2005) Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transfer 32:1202–1210CrossRef Liu MS, Ching-Cheng Lin M, Huang IT, Wang CC (2005) Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transfer 32:1202–1210CrossRef
35.
Zurück zum Zitat Evgin T, Koca HD, Horny N, Turgut A, Tavman IH, Chirtoc M, Omastová M, Novak I (2016) Effect of aspect ratio on thermal conductivity of high density polyethylene/multi-walled carbon nanotubes nanocomposites. Compos A 82:208–213CrossRef Evgin T, Koca HD, Horny N, Turgut A, Tavman IH, Chirtoc M, Omastová M, Novak I (2016) Effect of aspect ratio on thermal conductivity of high density polyethylene/multi-walled carbon nanotubes nanocomposites. Compos A 82:208–213CrossRef
36.
Zurück zum Zitat Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG, Wang JH, Li ZM (2014) Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Funct Mater 25:559–566CrossRef Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG, Wang JH, Li ZM (2014) Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Funct Mater 25:559–566CrossRef
37.
Zurück zum Zitat Wang B, Li J, Liu Y, Gao Y (2017) Reduced graphene oxide/carbon nanotubes nanohybrids as preformed reinforcement for polystyrene composites. J Appl Polym Sci 134:45054CrossRef Wang B, Li J, Liu Y, Gao Y (2017) Reduced graphene oxide/carbon nanotubes nanohybrids as preformed reinforcement for polystyrene composites. J Appl Polym Sci 134:45054CrossRef
38.
Zurück zum Zitat Hatui G, Bhattacharya P, Sahoo S, Dhibar S, Das CK (2014) Combined effect of expanded graphite and multiwall carbon nanotubes on the thermo mechanical, morphological as well as electrical conductivity of in situ bulk polymerized polystyrene composites. Compos A 56:181–191CrossRef Hatui G, Bhattacharya P, Sahoo S, Dhibar S, Das CK (2014) Combined effect of expanded graphite and multiwall carbon nanotubes on the thermo mechanical, morphological as well as electrical conductivity of in situ bulk polymerized polystyrene composites. Compos A 56:181–191CrossRef
39.
Zurück zum Zitat Sun G, Chen G, Liu Z, Chen M (2010) Preparation, crystallization, electrical conductivity and thermal stability of syndiotactic polystyrene/carbon nanotube composites. Carbon 48:1434–1440CrossRef Sun G, Chen G, Liu Z, Chen M (2010) Preparation, crystallization, electrical conductivity and thermal stability of syndiotactic polystyrene/carbon nanotube composites. Carbon 48:1434–1440CrossRef
40.
Zurück zum Zitat Saleh TA (2011) The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl Surf Sci 257:7746–7751CrossRef Saleh TA (2011) The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl Surf Sci 257:7746–7751CrossRef
41.
Zurück zum Zitat Chiang YC, Lin WH, Chang YC (2011) The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Appl Surf Sci 257:2401–2410CrossRef Chiang YC, Lin WH, Chang YC (2011) The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Appl Surf Sci 257:2401–2410CrossRef
42.
Zurück zum Zitat Gu J, Guo Y, Lv Z, Geng W, Zhang Q (2015) Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities. Compos A 78:95–101CrossRef Gu J, Guo Y, Lv Z, Geng W, Zhang Q (2015) Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities. Compos A 78:95–101CrossRef
Metadaten
Titel
Multiwalled carbon nanotubes encapsulated polystyrene: a facile one-step synthesis, electrical and thermal properties
verfasst von
Weifang Han
Wei Song
Yuxiang Shen
Chunhua Ge
Rui Zhang
Xiangdong Zhang
Publikationsdatum
16.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03267-w

Weitere Artikel der Ausgabe 8/2019

Journal of Materials Science 8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.