Skip to main content
Erschienen in: Journal of Nanoparticle Research 7/2019

01.07.2019 | Research Paper

NaCl and oxalic acid–assisted solvothermal exfoliation of edge-oxidized graphite to produce organic graphene dispersion for transparent conductive film application

verfasst von: Miaomiao Bai, Wei Wu, Lingna Liu, Jianfeng Chen, Xiangrong Ma, Yu Meng

Erschienen in: Journal of Nanoparticle Research | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Here, we demonstrate a facile method to prepare dispersible few-layer graphene sheets (GSs) by NaCl and oxalic acid–assisted solvothermal exfoliation of edge-oxidized graphite (EOG) in presence of polyvinylpyrrolidone under the synergetic effect of short-time ultrasonication. During solvothermal heating process, NaCl, oxalic acid, and PVP adsorbed on the edge/surface of EOG, and oxalic acid decomposed into CO2, CO, and H2O steam weakening the Van der Waals force between sheet layers of EOG. The solvothermal process results in the exfoliation and reduction of EOG to GSs which can be dispersed in various organic solvents with high concentrations (0.10–2.68 mg/mL) and remained stable for 6 months except dimethyl sulfoxide and acetonitrile. The GS film prepared by vacuum filtration method using EtOH phase GS dispersion had a sheet resistance of 28.0 kΩ/□ at a transparency of 81.2%. This method shows great promise for mass synthesis of few-layer graphene dispersions for thin film applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alanyalıoğlu M, Segura JJ, Oro-Sole J et al (2012) The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50(1):142–152CrossRef Alanyalıoğlu M, Segura JJ, Oro-Sole J et al (2012) The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 50(1):142–152CrossRef
Zurück zum Zitat Bai M, Chen J, Wu W, Zeng X, Wang J, Zou H (2016) Preparation of stable aqueous dispersion of edge-oxidized graphene and its transparent conductive films. Colloids Surf A Physicochem Eng Asp 490:59–66CrossRef Bai M, Chen J, Wu W, Zeng X, Wang J, Zou H (2016) Preparation of stable aqueous dispersion of edge-oxidized graphene and its transparent conductive films. Colloids Surf A Physicochem Eng Asp 490:59–66CrossRef
Zurück zum Zitat Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622CrossRef Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622CrossRef
Zurück zum Zitat Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016CrossRef Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016CrossRef
Zurück zum Zitat Deng J, Ren P, Deng D, Bao X (2015) Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed 54(7):2100–2104CrossRef Deng J, Ren P, Deng D, Bao X (2015) Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed 54(7):2100–2104CrossRef
Zurück zum Zitat Ding J, ur Rahman O, Zhao H, Peng W, Dou H, Chen H, Yu H (2017) Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity. Nanotechnology 28(39):39LT01CrossRef Ding J, ur Rahman O, Zhao H, Peng W, Dou H, Chen H, Yu H (2017) Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity. Nanotechnology 28(39):39LT01CrossRef
Zurück zum Zitat Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, Casiraghi C (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12(8):3925–3930CrossRef Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS, Casiraghi C (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12(8):3925–3930CrossRef
Zurück zum Zitat Ferrari AC (2017) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57 Ferrari AC (2017) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57
Zurück zum Zitat Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401CrossRef Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401CrossRef
Zurück zum Zitat Froberg J, Kulkarni P, Mallik S, Choi Y (2017) Electronic detection of single cancer cells with graphene field effect transistors. Biophys J 112(3):461aCrossRef Froberg J, Kulkarni P, Mallik S, Choi Y (2017) Electronic detection of single cancer cells with graphene field effect transistors. Biophys J 112(3):461aCrossRef
Zurück zum Zitat Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115(34):17009–17019CrossRef Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115(34):17009–17019CrossRef
Zurück zum Zitat Haar S, El Gemayel M, Shin Y et al (2015) Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of n-octylbenzene. Sci Rep 5:16684CrossRef Haar S, El Gemayel M, Shin Y et al (2015) Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of n-octylbenzene. Sci Rep 5:16684CrossRef
Zurück zum Zitat Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51CrossRef Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51CrossRef
Zurück zum Zitat Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, de S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRef Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, de S, McGovern IT, Holland B, Byrne M, Gun'Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568CrossRef
Zurück zum Zitat Hontoria-Lucas C, López-Peinado AJ, López-González JD, Rojas-Cervantes ML, Martín-Aranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33(11):1585–1592CrossRef Hontoria-Lucas C, López-Peinado AJ, López-González JD, Rojas-Cervantes ML, Martín-Aranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33(11):1585–1592CrossRef
Zurück zum Zitat Hu M, Zhou Y, Nie W, Chen P (2018) Functionalized graphene nanosheets with fewer defects prepared via sodium alginate assisted direct exfoliation of graphite in aqueous media for lithium-ion batteries. ACS Applied Nano Mater 1(4):1985–1994CrossRef Hu M, Zhou Y, Nie W, Chen P (2018) Functionalized graphene nanosheets with fewer defects prepared via sodium alginate assisted direct exfoliation of graphite in aqueous media for lithium-ion batteries. ACS Applied Nano Mater 1(4):1985–1994CrossRef
Zurück zum Zitat Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, Jung SM, Seo JM, Kim MJ, Wook Chang D, Dai L, Baek JB (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci 109(15):5588–5593CrossRef Jeon IY, Shin YR, Sohn GJ, Choi HJ, Bae SY, Mahmood J, Jung SM, Seo JM, Kim MJ, Wook Chang D, Dai L, Baek JB (2012) Edge-carboxylated graphene nanosheets via ball milling. Proc Natl Acad Sci 109(15):5588–5593CrossRef
Zurück zum Zitat Jiang F, Yu Y, Wang Y, Feng A, Song L (2017) A novel synthesis route of graphene via microwave assisted intercalation-exfoliation of graphite. Mater Lett 200:39–42CrossRef Jiang F, Yu Y, Wang Y, Feng A, Song L (2017) A novel synthesis route of graphene via microwave assisted intercalation-exfoliation of graphite. Mater Lett 200:39–42CrossRef
Zurück zum Zitat Kairi MI, Dayou S, Kairi NI, Bakar SA, Vigolo B, Mohamed AR (2018) Toward high production of graphene flakes-a review on recent developments in their synthesis methods and scalability. J Mater Chem A 6(31):15010–15026CrossRef Kairi MI, Dayou S, Kairi NI, Bakar SA, Vigolo B, Mohamed AR (2018) Toward high production of graphene flakes-a review on recent developments in their synthesis methods and scalability. J Mater Chem A 6(31):15010–15026CrossRef
Zurück zum Zitat Kakaei K, Hasanpour K (2014) Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. J Mater Chem A 2(37):15428–15436CrossRef Kakaei K, Hasanpour K (2014) Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. J Mater Chem A 2(37):15428–15436CrossRef
Zurück zum Zitat Khan U, O'Neill A, Lotya M, de S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6(7):864–871CrossRef Khan U, O'Neill A, Lotya M, de S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6(7):864–871CrossRef
Zurück zum Zitat Kim JY, Jang JW, Youn DH et al (2012) Graphene-carbon nanotube composite as an effective conducting scaffold to enhance the photoelectrochemical water oxidation activity of a hematite film. RSC Adv 2(25):9415–9422CrossRef Kim JY, Jang JW, Youn DH et al (2012) Graphene-carbon nanotube composite as an effective conducting scaffold to enhance the photoelectrochemical water oxidation activity of a hematite film. RSC Adv 2(25):9415–9422CrossRef
Zurück zum Zitat Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876CrossRef Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876CrossRef
Zurück zum Zitat Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41CrossRef Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41CrossRef
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRef
Zurück zum Zitat Li C, Adamcik J, Mezzenga R (2012) Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotechnol 7(7):421–427CrossRef Li C, Adamcik J, Mezzenga R (2012) Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotechnol 7(7):421–427CrossRef
Zurück zum Zitat Li J, Yan H, Dang D, Wei W, Meng L (2019) Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large scale production of high-quality graphene. J Colloid Interface Sci 535:92–99CrossRef Li J, Yan H, Dang D, Wei W, Meng L (2019) Salt and water co-assisted exfoliation of graphite in organic solvent for efficient and large scale production of high-quality graphene. J Colloid Interface Sci 535:92–99CrossRef
Zurück zum Zitat Liu C, Hu G (2014) Effect of nitric acid treatment on the preparation of graphene sheets by supercritical N, N-dimethylformamide exfoliation. Ind Eng Chem Res 53(37):14310–14314CrossRef Liu C, Hu G (2014) Effect of nitric acid treatment on the preparation of graphene sheets by supercritical N, N-dimethylformamide exfoliation. Ind Eng Chem Res 53(37):14310–14314CrossRef
Zurück zum Zitat Liu Y, Gao L, Sun J, Wang Y, Zhang J (2009) Stable nafion-functionalized graphene dispersions for transparent conducting films. Nanotechnology 20(46):465605CrossRef Liu Y, Gao L, Sun J, Wang Y, Zhang J (2009) Stable nafion-functionalized graphene dispersions for transparent conducting films. Nanotechnology 20(46):465605CrossRef
Zurück zum Zitat Liu Q, Cheng M, Jiang G (2013) Mildly oxidized graphene: facile synthesis, characterization, and application as a matrix in MALDI mass spectrometry. Chem Eur J 19(18):5561–5565CrossRef Liu Q, Cheng M, Jiang G (2013) Mildly oxidized graphene: facile synthesis, characterization, and application as a matrix in MALDI mass spectrometry. Chem Eur J 19(18):5561–5565CrossRef
Zurück zum Zitat Liu L, Shen Z, Yi M, Zhang X, Ma S (2014a) A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv 4(69):36464–36470CrossRef Liu L, Shen Z, Yi M, Zhang X, Ma S (2014a) A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces. RSC Adv 4(69):36464–36470CrossRef
Zurück zum Zitat Liu X, Zheng M, Xiao K, Xiao Y, He C, Dong H, Lei B, Liu Y (2014b) Simple, green and high-yield production of single-or few-layer graphene by hydrothermal exfoliation of graphite. Nanoscale 6(9):4598–4603CrossRef Liu X, Zheng M, Xiao K, Xiao Y, He C, Dong H, Lei B, Liu Y (2014b) Simple, green and high-yield production of single-or few-layer graphene by hydrothermal exfoliation of graphite. Nanoscale 6(9):4598–4603CrossRef
Zurück zum Zitat Liu W, Zhou R, Zhou D, Ding G, Soah JM, Yue CY, Lu X (2015) Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites. Carbon 83:188–197CrossRef Liu W, Zhou R, Zhou D, Ding G, Soah JM, Yue CY, Lu X (2015) Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites. Carbon 83:188–197CrossRef
Zurück zum Zitat Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, de S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620CrossRef Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, de S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131(10):3611–3620CrossRef
Zurück zum Zitat Lotya M, King PJ, Khan U, de S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4(6):3155–3162CrossRef Lotya M, King PJ, Khan U, de S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4(6):3155–3162CrossRef
Zurück zum Zitat Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Blake P, Novoselov KS, Watanabe K, Taniguchi T, Geim AK (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11(6):2396–2399CrossRef Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Blake P, Novoselov KS, Watanabe K, Taniguchi T, Geim AK (2011) Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett 11(6):2396–2399CrossRef
Zurück zum Zitat Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2017) The structure of suspended graphene sheets. Nature 446(7131):60–63CrossRef Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2017) The structure of suspended graphene sheets. Nature 446(7131):60–63CrossRef
Zurück zum Zitat Mosciatti T, Haar S, Liscio F, Ciesielski A, Orgiu E, Samorì P (2015) A multifunctional polymer-graphene thin-film transistor with tunable transport regimes. ACS Nano 9(3):2357–2367CrossRef Mosciatti T, Haar S, Liscio F, Ciesielski A, Orgiu E, Samorì P (2015) A multifunctional polymer-graphene thin-film transistor with tunable transport regimes. ACS Nano 9(3):2357–2367CrossRef
Zurück zum Zitat Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308CrossRef Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308CrossRef
Zurück zum Zitat Navik R, Gai Y, Wang W, Zhao Y (2018) Curcumin-assisted ultrasound exfoliation of graphite to graphene in ethanol. Ultrason Sonochem 48:96–102CrossRef Navik R, Gai Y, Wang W, Zhao Y (2018) Curcumin-assisted ultrasound exfoliation of graphite to graphene in ethanol. Ultrason Sonochem 48:96–102CrossRef
Zurück zum Zitat Niu L, Li M, Tao X, Xie Z, Zhou X, Raju APA, Young RJ, Zheng Z (2013) Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets. Nanoscale 5(16):7202–7208CrossRef Niu L, Li M, Tao X, Xie Z, Zhou X, Raju APA, Young RJ, Zheng Z (2013) Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets. Nanoscale 5(16):7202–7208CrossRef
Zurück zum Zitat Ou E, Xie Y, Peng C, Song Y, Peng H, Xiong Y, Xu W (2013) High concentration and stable few-layer graphene dispersions prepared by the exfoliation of graphite in different organic solvents. RSC Adv 3(24):9490–9499CrossRef Ou E, Xie Y, Peng C, Song Y, Peng H, Xiong Y, Xu W (2013) High concentration and stable few-layer graphene dispersions prepared by the exfoliation of graphite in different organic solvents. RSC Adv 3(24):9490–9499CrossRef
Zurück zum Zitat Rao CNR, Sood AK, Subrahmanyam KS et al (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48(42):7752–7777CrossRef Rao CNR, Sood AK, Subrahmanyam KS et al (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48(42):7752–7777CrossRef
Zurück zum Zitat Reina A, Jia X, Ho J et al (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRef Reina A, Jia X, Ho J et al (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRef
Zurück zum Zitat Rekha MY, Mallik N, Srivastava C (2018) First report on high entropy alloy nanoparticle decorated graphene. Sci Rep 8(1):8737CrossRef Rekha MY, Mallik N, Srivastava C (2018) First report on high entropy alloy nanoparticle decorated graphene. Sci Rep 8(1):8737CrossRef
Zurück zum Zitat Song P, Zhang X, Sun M, Cui X, Lin Y (2012) Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide. RSC Adv 2(3):1168–1173CrossRef Song P, Zhang X, Sun M, Cui X, Lin Y (2012) Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide. RSC Adv 2(3):1168–1173CrossRef
Zurück zum Zitat Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer WA (2010) Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol 5(10):727–731CrossRef Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer WA (2010) Scalable templated growth of graphene nanoribbons on SiC. Nat Nanotechnol 5(10):727–731CrossRef
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon 45(7):1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon 45(7):1558–1565CrossRef
Zurück zum Zitat Tang B, Yun X, Xiong Z, Wang X (2018) Formation of graphene oxide nanoscrolls in organic solvents: toward scalable device fabrication. ACS Appl Nano Mater 1(2):686–697CrossRef Tang B, Yun X, Xiong Z, Wang X (2018) Formation of graphene oxide nanoscrolls in organic solvents: toward scalable device fabrication. ACS Appl Nano Mater 1(2):686–697CrossRef
Zurück zum Zitat Tao H, Zhang Y, Gao Y (2017) Scalable exfoliation and dispersion of two-dimensional materials-an update. Phys Chem Chem Phys 19(2):921–960CrossRef Tao H, Zhang Y, Gao Y (2017) Scalable exfoliation and dispersion of two-dimensional materials-an update. Phys Chem Chem Phys 19(2):921–960CrossRef
Zurück zum Zitat Wei L, Wu F, Shi D, Hu C, Li X, Yuan W, Wang J, Zhao J, Geng H, Wei H, Wang Y, Hu N, Zhang Y (2013) Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene. Sci Rep 3:2636CrossRef Wei L, Wu F, Shi D, Hu C, Li X, Yuan W, Wang J, Zhao J, Geng H, Wei H, Wang Y, Hu N, Zhang Y (2013) Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene. Sci Rep 3:2636CrossRef
Zurück zum Zitat Yang W, Ratinac KR, Ringer SP et al (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49(12):2114–2138CrossRef Yang W, Ratinac KR, Ringer SP et al (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49(12):2114–2138CrossRef
Zurück zum Zitat Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715CrossRef Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715CrossRef
Zurück zum Zitat Zhao S, Wang H, Xin L, Cui J, Yan Y (2015) A versatile platform of 2-(3, 4-Dihydroxyphenyl) pyrrolidine grafted graphene for preparation of various graphene-derived materials. Chem Asian J 10(5):1177–1183CrossRef Zhao S, Wang H, Xin L, Cui J, Yan Y (2015) A versatile platform of 2-(3, 4-Dihydroxyphenyl) pyrrolidine grafted graphene for preparation of various graphene-derived materials. Chem Asian J 10(5):1177–1183CrossRef
Zurück zum Zitat Zhao S, Chang H, Chen S, Cui J, Yan Y (2016) High-performance and multifunctional epoxy composites filled with epoxide-functionalized graphene. Eur Polym J 84:300–312CrossRef Zhao S, Chang H, Chen S, Cui J, Yan Y (2016) High-performance and multifunctional epoxy composites filled with epoxide-functionalized graphene. Eur Polym J 84:300–312CrossRef
Zurück zum Zitat Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924CrossRef Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924CrossRef
Metadaten
Titel
NaCl and oxalic acid–assisted solvothermal exfoliation of edge-oxidized graphite to produce organic graphene dispersion for transparent conductive film application
verfasst von
Miaomiao Bai
Wei Wu
Lingna Liu
Jianfeng Chen
Xiangrong Ma
Yu Meng
Publikationsdatum
01.07.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 7/2019
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-019-4574-6

Weitere Artikel der Ausgabe 7/2019

Journal of Nanoparticle Research 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.