Skip to main content

2017 | OriginalPaper | Buchkapitel

21. Nano-Particles for Biomedical Applications

verfasst von : Paolo Decuzzi, Alessandro Coclite, Aeju Lee, Anna Lisa Palange, Daniele Di Mascolo, Ciro Chiappini, Hélder A. Santos, Maria Laura Coluccio, Gerardo Perozziello, Patrizio Candeloro, Enzo Di Fabrizio, Francesco Gentile

Erschienen in: Springer Handbook of Nanotechnology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanoparticles (NPs) are extremely small particulates with an average size that ranges from a micron or less to a few nanometers. The large majority of NPs necessitate nanotechnology methods for their production. The size of NPs may vary over a significant range, which underlies their scientific potential in that NPs may help cross the bridge between bulk materials and molecular structures. More importantly, NPs are (nano)tech products and thus, in contrast to natural systems, they can be designed and engineered. On directly interacting with cells, including the structures of cells, their machinery and their waste products, NPs represent an unprecedented tool for addressing specific biological problems. In this chapter, we will briefly review some recent advances in nanoparticle research for biomedical applications, ranging from mesoporous silicon particles to gold and silver nanoparticles and polymeric nanocarriers for therapeutic, diagnosis, or theranostic (therapeutics + diagnosis) applications. We will offer a description of how, at the current state of the art, similar nanomedicine platforms are realized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
21.1
Zurück zum Zitat W.R.S. Sanhai, J.H. Sakamoto, R. Canady, M. Ferrari: Seven challenges for nanomedicine, Nat. Nanotechnol. 3, 242–244 (2008) W.R.S. Sanhai, J.H. Sakamoto, R. Canady, M. Ferrari: Seven challenges for nanomedicine, Nat. Nanotechnol. 3, 242–244 (2008)
21.3
Zurück zum Zitat K. Riehemann, S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari, H. Fuchs: Nanomedicine–challenge and perspectives, Angewandte Chemie Int. Edn. 48(5), 872–897 (2009) K. Riehemann, S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari, H. Fuchs: Nanomedicine–challenge and perspectives, Angewandte Chemie Int. Edn. 48(5), 872–897 (2009)
21.4
Zurück zum Zitat R. Petros, J. DeSimone: Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov. 9(8), 615–627 (2010) R. Petros, J. DeSimone: Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov. 9(8), 615–627 (2010)
21.5
Zurück zum Zitat M. Ferrari: Cancer nanotechnology: Opportunities and challenges, Nat. Rev. Cancer 5, 161–171 (2005) M. Ferrari: Cancer nanotechnology: Opportunities and challenges, Nat. Rev. Cancer 5, 161–171 (2005)
21.6
Zurück zum Zitat W.M. Haynes (Ed.): CRC Handbook of Chemistry and Physics (CRC, Boulder 1998) W.M. Haynes (Ed.): CRC Handbook of Chemistry and Physics (CRC, Boulder 1998)
21.7
Zurück zum Zitat Z. Zhang, M.A. Horsch, M.H. Lamm, S.C. Glotzer: Tethered nano building blocks: Toward a conceptual framework for nanoparticle self-assembly, Nano Lett. 3(10), 1341–1346 (2003) Z. Zhang, M.A. Horsch, M.H. Lamm, S.C. Glotzer: Tethered nano building blocks: Toward a conceptual framework for nanoparticle self-assembly, Nano Lett. 3(10), 1341–1346 (2003)
21.8
Zurück zum Zitat P.F. Damasceno, M. Engel, S.C. Glotzer: Predictive self-assembly of polyhedra into complex structures, Science 337, 453 (2012) P.F. Damasceno, M. Engel, S.C. Glotzer: Predictive self-assembly of polyhedra into complex structures, Science 337, 453 (2012)
21.9
Zurück zum Zitat X. Lu, M. Rycenga, S. Skrabalak, B. Wiley, Y. Xia: Chemical synthesis of novel plasmonic nanoparticles, Ann. Rev. Phys. Chem. 60, 167–192 (2009) X. Lu, M. Rycenga, S. Skrabalak, B. Wiley, Y. Xia: Chemical synthesis of novel plasmonic nanoparticles, Ann. Rev. Phys. Chem. 60, 167–192 (2009)
21.10
Zurück zum Zitat M.G. Guzmán, J. Dille, S. Godet: Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity, Int. J. Chem. Biomol. Eng. 2(3), 104–111 (2009) M.G. Guzmán, J. Dille, S. Godet: Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity, Int. J. Chem. Biomol. Eng. 2(3), 104–111 (2009)
21.11
Zurück zum Zitat U. Mohanty: Electrodeposition: A versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals, J. Appl. Electrochem. 41, 257–270 (2011) U. Mohanty: Electrodeposition: A versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals, J. Appl. Electrochem. 41, 257–270 (2011)
21.12
Zurück zum Zitat N. German, A. Ramanavicius, A. Ramanavicien: Electrochemical deposition of gold nanoparticles on graphite rod for glucose biosensing, Sens. Actuators B 203, 25–34 (2014) N. German, A. Ramanavicius, A. Ramanavicien: Electrochemical deposition of gold nanoparticles on graphite rod for glucose biosensing, Sens. Actuators B 203, 25–34 (2014)
21.13
Zurück zum Zitat J. Key, A.L. Palange, F. Gentile, S. Aryal, C. Stigliano, D. Di Mascolo, E. De Rosa, M. Cho, Y. Lee, J. Singh, P. Decuzzi: Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors, ACS Nano 9(12), 11628–11641 (2015) J. Key, A.L. Palange, F. Gentile, S. Aryal, C. Stigliano, D. Di Mascolo, E. De Rosa, M. Cho, Y. Lee, J. Singh, P. Decuzzi: Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors, ACS Nano 9(12), 11628–11641 (2015)
21.14
Zurück zum Zitat C. Daraio, S. Jin: Synthesis and patterning methods for nanostructures useful for biological applications. In: Nanotechnology for Biology and Medicine at the Building Block Level, ed. by G.A. Silva, V. Parpura (Springer, New York 2012) C. Daraio, S. Jin: Synthesis and patterning methods for nanostructures useful for biological applications. In: Nanotechnology for Biology and Medicine at the Building Block Level, ed. by G.A. Silva, V. Parpura (Springer, New York 2012)
21.15
Zurück zum Zitat T.D.H. Le, W. Bonani, G. Speranza, V. Sglavo, R. Ceccato, D. Maniglio, A. Motta, C. Migliaresi: Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering, Mater. Sci. Eng. C 59, 471–479 (2016) T.D.H. Le, W. Bonani, G. Speranza, V. Sglavo, R. Ceccato, D. Maniglio, A. Motta, C. Migliaresi: Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering, Mater. Sci. Eng. C 59, 471–479 (2016)
21.16
Zurück zum Zitat A. Jantschke, C. Fischer, R. Hensel, H.G. Braun, E. Brunner: Directed assembly of nanoparticles to isolated diatom valves using the non-wetting characteristics after pyrolysis, Nanoscale 6, 11637–11645 (2014) A. Jantschke, C. Fischer, R. Hensel, H.G. Braun, E. Brunner: Directed assembly of nanoparticles to isolated diatom valves using the non-wetting characteristics after pyrolysis, Nanoscale 6, 11637–11645 (2014)
21.17
Zurück zum Zitat S. Schlücker: Surface-enhanced Raman spectroscopy: Concepts and chemical applications, Angew. Chem. Int. Edn. 53(19), 4756–4795 (2014) S. Schlücker: Surface-enhanced Raman spectroscopy: Concepts and chemical applications, Angew. Chem. Int. Edn. 53(19), 4756–4795 (2014)
21.18
Zurück zum Zitat K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld: Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. 78, 1667–1670 (1997) K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld: Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. 78, 1667–1670 (1997)
21.19
Zurück zum Zitat K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld: Surface-enhanced Raman scattering and biophysics, J. Phys. Condens. Matter 14, R597–R624 (2002) K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld: Surface-enhanced Raman scattering and biophysics, J. Phys. Condens. Matter 14, R597–R624 (2002)
21.20
Zurück zum Zitat J. Kneipp, H. Kneipp, K. Kneipp: SERS-a single-molecule and nanoscale tool for bioanalytics, Chem. Soc. Rev. 37(5), 1052–1060 (2008) J. Kneipp, H. Kneipp, K. Kneipp: SERS-a single-molecule and nanoscale tool for bioanalytics, Chem. Soc. Rev. 37(5), 1052–1060 (2008)
21.21
Zurück zum Zitat S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic, Y. Román-Leshkov: Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts, Science 352(6288), 974–978 (2016) S.T. Hunt, M. Milina, A.C. Alba-Rubio, C.H. Hendon, J.A. Dumesic, Y. Román-Leshkov: Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts, Science 352(6288), 974–978 (2016)
21.22
Zurück zum Zitat O. Govorov, H.H. Richardson: Generating heat with metal nanoparticles, Nano Today 2, 30–38 (2007) O. Govorov, H.H. Richardson: Generating heat with metal nanoparticles, Nano Today 2, 30–38 (2007)
21.23
Zurück zum Zitat G. Baffou, R. Quidan: Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat, Laser Photonics Rev. 7(2), 171–187 (2013) G. Baffou, R. Quidan: Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat, Laser Photonics Rev. 7(2), 171–187 (2013)
21.24
Zurück zum Zitat D. Maharaj, B. Bhushan: Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation, J. Nanotechnol. 5, 822–836 (2014) D. Maharaj, B. Bhushan: Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation, J. Nanotechnol. 5, 822–836 (2014)
21.25
Zurück zum Zitat D. Maharaj, B. Bhushan: Nanomechanical behavior of MoS2 and WS2 multi-walled nanotubes and Carbon nanohorns, Sci. Rep. 5(8539), 1–9 (2015) D. Maharaj, B. Bhushan: Nanomechanical behavior of MoS2 and WS2 multi-walled nanotubes and Carbon nanohorns, Sci. Rep. 5(8539), 1–9 (2015)
21.26
Zurück zum Zitat D. Chen, X. Qiao, X. Qiu, J. Chen: Synthesis and electrical properties of uniform silver nanoparticles for electronic applications, J. Mater. Sci. 44(4), 1076 (2009) D. Chen, X. Qiao, X. Qiu, J. Chen: Synthesis and electrical properties of uniform silver nanoparticles for electronic applications, J. Mater. Sci. 44(4), 1076 (2009)
21.27
Zurück zum Zitat A.H. Alshehri, M. Jakubowska, A. Młożniak, M. Horaczek, D. Rudka, C. Free, J.D. Carey: Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications, ACS Appl. Mater. Interfaces 4(12), 7007–7010 (2012) A.H. Alshehri, M. Jakubowska, A. Młożniak, M. Horaczek, D. Rudka, C. Free, J.D. Carey: Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications, ACS Appl. Mater. Interfaces 4(12), 7007–7010 (2012)
21.28
Zurück zum Zitat A. Akbarzadeh, M. Samiei, S. Davaran: Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett. 7(1), 144 (2012) A. Akbarzadeh, M. Samiei, S. Davaran: Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett. 7(1), 144 (2012)
21.29
Zurück zum Zitat B. Nawrot, E. Gaggelli: Understanding the chemical mechanisms of life, Nat. Chem. Biol. 3, 745–749 (2007) B. Nawrot, E. Gaggelli: Understanding the chemical mechanisms of life, Nat. Chem. Biol. 3, 745–749 (2007)
21.30
Zurück zum Zitat G.M. Whitesides: The ‘right’ size in nanobiotechnology, Nat. Biotechnol. 21, 1161–1165 (2003) G.M. Whitesides: The ‘right’ size in nanobiotechnology, Nat. Biotechnol. 21, 1161–1165 (2003)
21.31
Zurück zum Zitat W.F. Marshall, K.D. Young, M. Swaffer, E. Wood, P. Nurse, A. Kimura, J. Frankel, J. Wallingford, V. Walbot, X. Qu, A.H. Roeder: What determines cell size?, BMC Biology 10(101), 1–22 (2012) doi:10.1186/1741-7007-10-101 CrossRef W.F. Marshall, K.D. Young, M. Swaffer, E. Wood, P. Nurse, A. Kimura, J. Frankel, J. Wallingford, V. Walbot, X. Qu, A.H. Roeder: What determines cell size?, BMC Biology 10(101), 1–22 (2012) doi:10.​1186/​1741-7007-10-101 CrossRef
21.32
Zurück zum Zitat E. Hafen, H. Stocker: How are the sizes of cells, organs, and bodies controlled?, PLoS. Biol. 1(3), e86 (2003) E. Hafen, H. Stocker: How are the sizes of cells, organs, and bodies controlled?, PLoS. Biol. 1(3), e86 (2003)
21.33
Zurück zum Zitat Y. Fung: Biomechanics, Mechanical Properties of Living Tissues (Springer, New York 1993) Y. Fung: Biomechanics, Mechanical Properties of Living Tissues (Springer, New York 1993)
21.34
Zurück zum Zitat M. Elsabahy, K.L. Wooley: Design of polymeric nanoparticles for biomedical delivery applications, Chem. Soc. Rev. 41, 2545–2561 (2012) M. Elsabahy, K.L. Wooley: Design of polymeric nanoparticles for biomedical delivery applications, Chem. Soc. Rev. 41, 2545–2561 (2012)
21.35
Zurück zum Zitat E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M. Ming-Cheng Cheng, P. Decuzzi, J.M. Tour, F. Robertson, M. Ferrari: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications, Nat. Nanotechnol. 3, 151–157 (2008) E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A.D. Leonard, B.K. Price, M. Ming-Cheng Cheng, P. Decuzzi, J.M. Tour, F. Robertson, M. Ferrari: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications, Nat. Nanotechnol. 3, 151–157 (2008)
21.36
Zurück zum Zitat E. Blanco, H. Shen, M. Ferrari: Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat. Biotechnol. 33, 941–951 (2015) E. Blanco, H. Shen, M. Ferrari: Principles of nanoparticle design for overcoming biological barriers to drug delivery, Nat. Biotechnol. 33, 941–951 (2015)
21.37
Zurück zum Zitat A. Parodi, N. Quattrocchi, A.L. van de Ven, C. Chiappini, M. Evangelopoulos, J.O. Martinez, B.S. Brown, S.Z. Khaled, I.K. Yazdi, M.V. Enzo, L. Isenhart, M. Ferrari, E. Tasciotti: Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions, Nat. Nanotechnol. 8, 61–68 (2013) A. Parodi, N. Quattrocchi, A.L. van de Ven, C. Chiappini, M. Evangelopoulos, J.O. Martinez, B.S. Brown, S.Z. Khaled, I.K. Yazdi, M.V. Enzo, L. Isenhart, M. Ferrari, E. Tasciotti: Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions, Nat. Nanotechnol. 8, 61–68 (2013)
21.38
Zurück zum Zitat Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink: Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev. 41, 2590–2605 (2012) Z. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink: Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev. 41, 2590–2605 (2012)
21.39
Zurück zum Zitat J.S. Ananta, B. Godin, R. Sethi, L. Moriggi, X. Liu, R.E. Serda, R. Krishnamurthy, R. Muthupillai, R.D. Bolskar, L. Helm, M. Ferrari, L.J. Wilson, P. Decuzzi: Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast, Nat. Nanotechnol. 5, 815–821 (2010) J.S. Ananta, B. Godin, R. Sethi, L. Moriggi, X. Liu, R.E. Serda, R. Krishnamurthy, R. Muthupillai, R.D. Bolskar, L. Helm, M. Ferrari, L.J. Wilson, P. Decuzzi: Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast, Nat. Nanotechnol. 5, 815–821 (2010)
21.40
Zurück zum Zitat L. Dykmana, N. Khlebtsov: Gold nanoparticles in biomedical applications: Recent advances and perspectives, Chem. Soc. Rev. 41, 2256–2282 (2012) L. Dykmana, N. Khlebtsov: Gold nanoparticles in biomedical applications: Recent advances and perspectives, Chem. Soc. Rev. 41, 2256–2282 (2012)
21.41
Zurück zum Zitat E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed: The golden age: Gold nanoparticles for biomedicine, Chem. Soc. Rev. 41, 2740–2779 (2012) E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed: The golden age: Gold nanoparticles for biomedicine, Chem. Soc. Rev. 41, 2740–2779 (2012)
21.42
Zurück zum Zitat Q.H. Tran, V.Q.A.-T. Le Nguyen: Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001 (2013) Q.H. Tran, V.Q.A.-T. Le Nguyen: Silver nanoparticles: Synthesis, properties, toxicology, applications and perspectives, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001 (2013)
21.43
Zurück zum Zitat S. Prabhu, E.K. Poulose: Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett. 2(32), 1–10 (2012) S. Prabhu, E.K. Poulose: Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett. 2(32), 1–10 (2012)
21.44
Zurück zum Zitat H.T. Nasrabadi, E. Abbasi, S. Davaran, M. Kouhi, A. Akbarzadeh: Bimetallic nanoparticles: Preparation, properties, and biomedical applications, Artif. Cells Nanomed. Biotechnol. 44, 376–380 (2016) H.T. Nasrabadi, E. Abbasi, S. Davaran, M. Kouhi, A. Akbarzadeh: Bimetallic nanoparticles: Preparation, properties, and biomedical applications, Artif. Cells Nanomed. Biotechnol. 44, 376–380 (2016)
21.45
Zurück zum Zitat C. Xu, S. Sun: New forms of superparamagnetic nanoparticles for biomedical applications, Adv. Drug Deliv. Rev. 65, 732–743 (2013) C. Xu, S. Sun: New forms of superparamagnetic nanoparticles for biomedical applications, Adv. Drug Deliv. Rev. 65, 732–743 (2013)
21.46
Zurück zum Zitat A.K. Gupta, M. Gupta: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26, 3995–4021 (2005) A.K. Gupta, M. Gupta: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26, 3995–4021 (2005)
21.47
Zurück zum Zitat J.H. Lee, J.-T. Jang, J.-S. Choi, S.H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K.I. Park, J. Cheon: Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol. 6, 418–422 (2011) J.H. Lee, J.-T. Jang, J.-S. Choi, S.H. Moon, S.-H. Noh, J.-W. Kim, J.-G. Kim, I.-S. Kim, K.I. Park, J. Cheon: Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol. 6, 418–422 (2011)
21.48
Zurück zum Zitat H.L. Ferrand, S. Bolisetty, A.F. Demirors, R. Libanori, A.R. Studart, R. Mezzenga: Magnetic assembly of transparent and conducting graphene-based functional composites, Nat. Commun. 7, 12078 (2016) H.L. Ferrand, S. Bolisetty, A.F. Demirors, R. Libanori, A.R. Studart, R. Mezzenga: Magnetic assembly of transparent and conducting graphene-based functional composites, Nat. Commun. 7, 12078 (2016)
21.49
Zurück zum Zitat L.Y. Chou, K. Zagorovsky, W.C. Chan: DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination, Nat. Nanotechnol. 9, 148–155 (2014) L.Y. Chou, K. Zagorovsky, W.C. Chan: DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination, Nat. Nanotechnol. 9, 148–155 (2014)
21.50
Zurück zum Zitat F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A.L. Breton, V. Préat: PLGA-based nanoparticles: An overview of biomedical applications, J. Control. Release 161, 505–522 (2012) F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A.L. Breton, V. Préat: PLGA-based nanoparticles: An overview of biomedical applications, J. Control. Release 161, 505–522 (2012)
21.51
21.52
Zurück zum Zitat C. Antoniades, C. Psarros, D. Tousoulis, C. Bakogiannis, C. Shirodaria, C. Stefanadis: Nanoparticles: A promising therapeutic approach in atherosclerosis, Curr. Drug Deliv. 7(4), 303–311 (2010) C. Antoniades, C. Psarros, D. Tousoulis, C. Bakogiannis, C. Shirodaria, C. Stefanadis: Nanoparticles: A promising therapeutic approach in atherosclerosis, Curr. Drug Deliv. 7(4), 303–311 (2010)
21.54
Zurück zum Zitat A.L. van de Ven, P. Kim, O.A.H. Haley, J.R. Fakhoury, G. Adriani, J. Schmulen, P. Moloney, F. Hussain, M. Ferrari, X. Liu, S.-H. Yun, P. Decuzzi: Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution, J. Control. Release 158(1), 148–155 (2012) doi:10.1016/j.jconrel.2011.10.021 CrossRef A.L. van de Ven, P. Kim, O.A.H. Haley, J.R. Fakhoury, G. Adriani, J. Schmulen, P. Moloney, F. Hussain, M. Ferrari, X. Liu, S.-H. Yun, P. Decuzzi: Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution, J. Control. Release 158(1), 148–155 (2012) doi:10.​1016/​j.​jconrel.​2011.​10.​021 CrossRef
21.55
21.56
Zurück zum Zitat R.E. Serda, S. Ferrati, B. Godin, E. Tasciotti, X. Liu, M. Ferrari: Mitotic trafficking of silicon microparticles, Nanoscale 1(2), 250–259 (2009) doi:10.1039/B9NR00138G CrossRef R.E. Serda, S. Ferrati, B. Godin, E. Tasciotti, X. Liu, M. Ferrari: Mitotic trafficking of silicon microparticles, Nanoscale 1(2), 250–259 (2009) doi:10.​1039/​B9NR00138G CrossRef
21.57
Zurück zum Zitat A.C. Anselmo, M. Zhang, S. Kumar, D.R. Vogus, S. Menegatti, M.E. Helgeson, S. Mitragotri: Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting, ACS Nano 9(3), 3169–3177 (2015) doi:10.1021/acsnano.5b00147 CrossRef A.C. Anselmo, M. Zhang, S. Kumar, D.R. Vogus, S. Menegatti, M.E. Helgeson, S. Mitragotri: Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting, ACS Nano 9(3), 3169–3177 (2015) doi:10.​1021/​acsnano.​5b00147 CrossRef
21.59
Zurück zum Zitat T.R. Lee, M. Choi, A.M. Kopacz, S.H. Yun, W.K. Liu, P. Decuzzi: On the near-wall accumulation of injectable particles in the microcirculation: Smaller is not better, Sci. Rep. 3, 2079 (2013) doi:10.1038/srep02079 CrossRef T.R. Lee, M. Choi, A.M. Kopacz, S.H. Yun, W.K. Liu, P. Decuzzi: On the near-wall accumulation of injectable particles in the microcirculation: Smaller is not better, Sci. Rep. 3, 2079 (2013) doi:10.​1038/​srep02079 CrossRef
21.60
Zurück zum Zitat T.R. Lee, M.S. Greene, Z. Jiang, A.M. Kopacz, P. Decuzzi, W. Chen, W.K. Liu: Quantifying uncertainties in the microvascular transport of nanoparticles, Biomech. Model. Mechanobiol. 13(3), 515–526 (2014) doi:10.1007/s10237-013-0513-0 CrossRef T.R. Lee, M.S. Greene, Z. Jiang, A.M. Kopacz, P. Decuzzi, W. Chen, W.K. Liu: Quantifying uncertainties in the microvascular transport of nanoparticles, Biomech. Model. Mechanobiol. 13(3), 515–526 (2014) doi:10.​1007/​s10237-013-0513-0 CrossRef
21.61
Zurück zum Zitat M.D. de Tullio, P. De Palma, G. Iaccarino, G. Pascazio, M. Napolitano: An immersed boundary method for compressible flows using local grid refinement, J. Comput. Phys. 225(2), 2098–2117 (2007)MathSciNetMATH M.D. de Tullio, P. De Palma, G. Iaccarino, G. Pascazio, M. Napolitano: An immersed boundary method for compressible flows using local grid refinement, J. Comput. Phys. 225(2), 2098–2117 (2007)MathSciNetMATH
21.62
Zurück zum Zitat S.S. Hossain, T.J. Hughes, P. Decuzzi: Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree, Biomech. Model. Mechanobiol. 13(3), 585–597 (2014) doi:10.1007/s10237-013-0520-1 CrossRef S.S. Hossain, T.J. Hughes, P. Decuzzi: Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree, Biomech. Model. Mechanobiol. 13(3), 585–597 (2014) doi:10.​1007/​s10237-013-0520-1 CrossRef
21.63
Zurück zum Zitat S.S. Hossain, Y. Zhang, X. Liang, F. Hussain, M. Ferrari, T.J. Hughes, P. Decuzzi: In silico vascular modeling for personalized nanoparticle delivery, Nanomedicine 8(3), 343–357 (2013) doi:10.2217/nnm.12.124 CrossRef S.S. Hossain, Y. Zhang, X. Liang, F. Hussain, M. Ferrari, T.J. Hughes, P. Decuzzi: In silico vascular modeling for personalized nanoparticle delivery, Nanomedicine 8(3), 343–357 (2013) doi:10.​2217/​nnm.​12.​124 CrossRef
21.64
Zurück zum Zitat A.J.C. Ladd: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271, 285–309 (1994)MathSciNetMATH A.J.C. Ladd: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271, 285–309 (1994)MathSciNetMATH
21.65
Zurück zum Zitat A.J.C. Ladd: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech. 271, 311–339 (1994)MathSciNetMATH A.J.C. Ladd: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech. 271, 311–339 (1994)MathSciNetMATH
21.66
Zurück zum Zitat S. Succi: The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (Oxford University Press, Oxford 2001)MATH S. Succi: The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (Oxford University Press, Oxford 2001)MATH
21.67
21.68
Zurück zum Zitat A. Coclite, M.D. de Tullio, G. Pascazio, P. Decuzzi: A combined lattice Boltzmann and immersed boundary approach for predicting the vascular transport of differently shaped particles, Comput. Fluids 136, 260–271 (2016)MathSciNetMATH A. Coclite, M.D. de Tullio, G. Pascazio, P. Decuzzi: A combined lattice Boltzmann and immersed boundary approach for predicting the vascular transport of differently shaped particles, Comput. Fluids 136, 260–271 (2016)MathSciNetMATH
21.71
Zurück zum Zitat C. Stigliano, J. Key, M. Ramirez, S. Aryal, P. Decuzzi: Radiolabeled polymeric nanoconstructs loaded with docetaxel and curcumin for cancer combinatorial therapy and nuclear imaging, Adv. Funct. Mater. 25(22), 3371–3379 (2015) doi:10.1002/adfm.201500627 CrossRef C. Stigliano, J. Key, M. Ramirez, S. Aryal, P. Decuzzi: Radiolabeled polymeric nanoconstructs loaded with docetaxel and curcumin for cancer combinatorial therapy and nuclear imaging, Adv. Funct. Mater. 25(22), 3371–3379 (2015) doi:10.​1002/​adfm.​201500627 CrossRef
21.72
Zurück zum Zitat A. Lee, D. Di Mascolo, M. Francardi, F. Piccardi, T. Bandiera, P. Decuzzi: Spherical polymeric nanoconstructs for combined chemotherapeutic and anti-inflammatory therapies, Nanomedicine 12(7), 2139–2147 (2016) doi:10.1016/j.nano.2016.05.012 CrossRef A. Lee, D. Di Mascolo, M. Francardi, F. Piccardi, T. Bandiera, P. Decuzzi: Spherical polymeric nanoconstructs for combined chemotherapeutic and anti-inflammatory therapies, Nanomedicine 12(7), 2139–2147 (2016) doi:10.​1016/​j.​nano.​2016.​05.​012 CrossRef
21.74
21.78
Zurück zum Zitat H. Ouyang, M. Christophersen, P.M. Fauchet: Enhanced control of porous silicon morphology from macropore to mesopore formation, Phys. Stat. Sol. A 202(8), 1396–1401 (2005) doi:10.1002/pssa.200461112 CrossRef H. Ouyang, M. Christophersen, P.M. Fauchet: Enhanced control of porous silicon morphology from macropore to mesopore formation, Phys. Stat. Sol. A 202(8), 1396–1401 (2005) doi:10.​1002/​pssa.​200461112 CrossRef
21.79
Zurück zum Zitat L. Xiao, L. Gu, S.B. Howell, M.J. Sailor: Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells, ACS Nano 5, 3651–3659 (2011) L. Xiao, L. Gu, S.B. Howell, M.J. Sailor: Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells, ACS Nano 5, 3651–3659 (2011)
21.80
21.81
Zurück zum Zitat C. Chiappini, E. De Rosa, J.O. Martinez, X. Liu, J. Steele, M.M. Stevens, E. Tasciotti: Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization, Nat. Mater. 14(5), 532–539 (2015) doi:10.1038/nmat4249 CrossRef C. Chiappini, E. De Rosa, J.O. Martinez, X. Liu, J. Steele, M.M. Stevens, E. Tasciotti: Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization, Nat. Mater. 14(5), 532–539 (2015) doi:10.​1038/​nmat4249 CrossRef
21.83
Zurück zum Zitat F. Dai, J. Zai, R. Yi, M.L. Gordin, H. Sohn, S. Chen, D. Wang: Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance, Nat. Comm. 5, 1–11 (2014) doi:10.1038/ncomms4605 CrossRef F. Dai, J. Zai, R. Yi, M.L. Gordin, H. Sohn, S. Chen, D. Wang: Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance, Nat. Comm. 5, 1–11 (2014) doi:10.​1038/​ncomms4605 CrossRef
21.84
Zurück zum Zitat L. Batchelor, A. Loni, L.T. Canham, M. Hasan, J.L. Coffer: Manufacture of mesoporous silicon from living plants and agricultural waste: An environmentally friendly and scalable process, Silicon 4(4), 259–266 (2012) doi:10.1007/s12633-012-9129-8 CrossRef L. Batchelor, A. Loni, L.T. Canham, M. Hasan, J.L. Coffer: Manufacture of mesoporous silicon from living plants and agricultural waste: An environmentally friendly and scalable process, Silicon 4(4), 259–266 (2012) doi:10.​1007/​s12633-012-9129-8 CrossRef
21.85
Zurück zum Zitat M.J. Sailor: Fundamentals of porous silicon preparation. In: Porous Silicon in Practice (Wiley-VCH, Weinheim 2012) pp. 1–42 M.J. Sailor: Fundamentals of porous silicon preparation. In: Porous Silicon in Practice (Wiley-VCH, Weinheim 2012) pp. 1–42
21.87
Zurück zum Zitat S.F. Chuang, S.D. Collins, R.L. Smith: Preferential propagation of pores during the formation of porous silicon: A transmission electron microscopy study, Appl. Phys. Lett. 55(7), 675 (1989) doi:10.1063/1.101819 CrossRef S.F. Chuang, S.D. Collins, R.L. Smith: Preferential propagation of pores during the formation of porous silicon: A transmission electron microscopy study, Appl. Phys. Lett. 55(7), 675 (1989) doi:10.​1063/​1.​101819 CrossRef
21.88
Zurück zum Zitat H. Foll, M. Christophersen, J. Carstensen, G. Hasse: Formation and application of porous silicon, Mater. Sci. Eng. 39, 93–141 (2002) H. Foll, M. Christophersen, J. Carstensen, G. Hasse: Formation and application of porous silicon, Mater. Sci. Eng. 39, 93–141 (2002)
21.89
Zurück zum Zitat L.T. Canham, L. Canham (Eds.): Handbook of Porous Silicon (Springer, Cham 2014) L.T. Canham, L. Canham (Eds.): Handbook of Porous Silicon (Springer, Cham 2014)
21.90
Zurück zum Zitat M.G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiß, P. Grosse: Dielectric filters made of PS: Advanced performance by oxidation and new layer structures, Thin Sol. Films 297(1/2), 237–240 (1997) doi:10.1016/S0040-6090(96)09361-3 CrossRef M.G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiß, P. Grosse: Dielectric filters made of PS: Advanced performance by oxidation and new layer structures, Thin Sol. Films 297(1/2), 237–240 (1997) doi:10.​1016/​S0040-6090(96)09361-3 CrossRef
21.91
Zurück zum Zitat F. Cunin, T.A. Schmedake, J.R. Link, Y.Y. Li, J. Koh, S.N. Bhatia, M.J. Sailor: Biomolecular screening with encoded porous-silicon photonic crystals, Nat. Mater. 1(1), 39–41 (2002) doi:10.1038/nmat702 CrossRef F. Cunin, T.A. Schmedake, J.R. Link, Y.Y. Li, J. Koh, S.N. Bhatia, M.J. Sailor: Biomolecular screening with encoded porous-silicon photonic crystals, Nat. Mater. 1(1), 39–41 (2002) doi:10.​1038/​nmat702 CrossRef
21.92
21.93
Zurück zum Zitat T.A. Schmedake, F. Cunin, J.R. Link, M.J. Sailor: Standoff detection of chemicals using porous silicon ‘‘smart dust’’ particles, Adv. Mater. 14(18), 1270–1272 (2002) T.A. Schmedake, F. Cunin, J.R. Link, M.J. Sailor: Standoff detection of chemicals using porous silicon ‘‘smart dust’’ particles, Adv. Mater. 14(18), 1270–1272 (2002)
21.94
Zurück zum Zitat J. Salonen, L. Laitinen, A. Kaukonen, J. Tuura, M. Bjorkqvist, T. Heikkila, K. Vahaheikkila, J. Hirvonen, V. Lehto: Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs, J. Control. Release 108(2/3), 362–374 (2005) doi:10.1016/j.jconrel.2005.08.017 CrossRef J. Salonen, L. Laitinen, A. Kaukonen, J. Tuura, M. Bjorkqvist, T. Heikkila, K. Vahaheikkila, J. Hirvonen, V. Lehto: Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs, J. Control. Release 108(2/3), 362–374 (2005) doi:10.​1016/​j.​jconrel.​2005.​08.​017 CrossRef
21.95
Zurück zum Zitat H.A. Santos, J. Riikonen, J. Salonen, E. Mäkilä, T. Heikkilä, T. Laaksonen, L. Peltonen, V.P. Lehto, J. Hirvonen: In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size, Acta. Biomater. 6(7), 2721–2731 (2010) doi:10.1016/j.actbio.2009.12.043 CrossRef H.A. Santos, J. Riikonen, J. Salonen, E. Mäkilä, T. Heikkilä, T. Laaksonen, L. Peltonen, V.P. Lehto, J. Hirvonen: In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size, Acta. Biomater. 6(7), 2721–2731 (2010) doi:10.​1016/​j.​actbio.​2009.​12.​043 CrossRef
21.96
Zurück zum Zitat J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor: Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nat. Mater. 8(4), 331–336 (2009) doi:10.1038/nmat2398 CrossRef J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor: Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nat. Mater. 8(4), 331–336 (2009) doi:10.​1038/​nmat2398 CrossRef
21.97
Zurück zum Zitat R.A. Petros, J.M. DeSimone: Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov. 9(8), 615–627 (2010) doi:10.1038/nrd2591 CrossRef R.A. Petros, J.M. DeSimone: Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov. 9(8), 615–627 (2010) doi:10.​1038/​nrd2591 CrossRef
21.98
Zurück zum Zitat S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone: The effect of particle design on cellular internalization pathways, Proc. Natl. Acad. Sci. 105(33), 11613–11618 (2008) doi:10.1073/pnas.0801763105 CrossRef S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone: The effect of particle design on cellular internalization pathways, Proc. Natl. Acad. Sci. 105(33), 11613–11618 (2008) doi:10.​1073/​pnas.​0801763105 CrossRef
21.99
Zurück zum Zitat B. Godin, C. Chiappini, S. Srinivasan, J.F. Alexander, K. Yokoi, M. Ferrari, P. Decuzzi, X. Liu: Discoidal porous silicon particles: Fabrication and biodistribution in breast cancer bearing mice, Adv. Funct. Mater. 22(20), 4225–4235 (2012) doi:10.1002/adfm.201200869 CrossRef B. Godin, C. Chiappini, S. Srinivasan, J.F. Alexander, K. Yokoi, M. Ferrari, P. Decuzzi, X. Liu: Discoidal porous silicon particles: Fabrication and biodistribution in breast cancer bearing mice, Adv. Funct. Mater. 22(20), 4225–4235 (2012) doi:10.​1002/​adfm.​201200869 CrossRef
21.100
Zurück zum Zitat C. Chiappini, E. Tasciotti, J.R. Fakhoury, D. Fine, L. Pullan, Y.C. Wang, L. Fu, X. Liu, M. Ferrari: Tailored porous silicon microparticles: Fabrication and properties, Chem. Phys. Chem. 11(5), 1029–1035 (2010) doi:10.1002/cphc.200900914 CrossRef C. Chiappini, E. Tasciotti, J.R. Fakhoury, D. Fine, L. Pullan, Y.C. Wang, L. Fu, X. Liu, M. Ferrari: Tailored porous silicon microparticles: Fabrication and properties, Chem. Phys. Chem. 11(5), 1029–1035 (2010) doi:10.​1002/​cphc.​200900914 CrossRef
21.101
Zurück zum Zitat C. Chiappini, E. Tasciotti, R.E. Serda, L. Brousseau, X. Liu, M. Ferrari: Mesoporous silicon particles as intravascular drug delivery vectors: Fabrication, in-vitro, and in-vivo assessments, Phys. Stat. Sol. C 8(6), 1826–1832 (2011) doi:10.1002/pssc.201000344 CrossRef C. Chiappini, E. Tasciotti, R.E. Serda, L. Brousseau, X. Liu, M. Ferrari: Mesoporous silicon particles as intravascular drug delivery vectors: Fabrication, in-vitro, and in-vivo assessments, Phys. Stat. Sol. C 8(6), 1826–1832 (2011) doi:10.​1002/​pssc.​201000344 CrossRef
21.102
Zurück zum Zitat C. Zhang, C. Li, Z. Liu, J. Zheng, C. Xue, Y. Zuo, B. Cheng, Q. Wang: Electrically conductive and optically active porous silicon nanowires, Nano. Lett. 9(12), 4539–4543 (2009) doi:10.1021/nl903030h CrossRef C. Zhang, C. Li, Z. Liu, J. Zheng, C. Xue, Y. Zuo, B. Cheng, Q. Wang: Electrically conductive and optically active porous silicon nanowires, Nano. Lett. 9(12), 4539–4543 (2009) doi:10.​1021/​nl903030h CrossRef
21.104
Zurück zum Zitat N. Geyer, B. Fuhrmann, Z. Huang, J. de Boor, H.S. Leipner, P. Werner: Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts, J. Phys. Chem. C 116(24), 13446–13451 (2012) doi:10.1021/jp3034227 CrossRef N. Geyer, B. Fuhrmann, Z. Huang, J. de Boor, H.S. Leipner, P. Werner: Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts, J. Phys. Chem. C 116(24), 13446–13451 (2012) doi:10.​1021/​jp3034227 CrossRef
21.105
Zurück zum Zitat X. Zhong, Y. Qu, Y.-C. Lin, L. Liao, X. Duan: Unveiling the formation pathway of single crystalline porous silicon nanowires, ACS Appl. Mater. Interf. 3(2), 261–270 (2011) doi:10.1021/am1009056 CrossRef X. Zhong, Y. Qu, Y.-C. Lin, L. Liao, X. Duan: Unveiling the formation pathway of single crystalline porous silicon nanowires, ACS Appl. Mater. Interf. 3(2), 261–270 (2011) doi:10.​1021/​am1009056 CrossRef
21.106
21.107
Zurück zum Zitat M. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, E. Di Fabrizio: Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications, Sensors 14(4), 6056–6083 (2014) doi:10.3390/s140406056 CrossRef M. Coluccio, F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, E. Di Fabrizio: Electroless deposition and nanolithography can control the formation of materials at the nano-scale for plasmonic applications, Sensors 14(4), 6056–6083 (2014) doi:10.​3390/​s140406056 CrossRef
21.108
Zurück zum Zitat R. Elnathan, L. Isa, D. Brodoceanu, A. Nelson, F.J. Harding, B. Delalat, T. Kraus, N.H. Voelcker: Versatile particle-based route to engineer vertically aligned silicon nanowire arrays and nanoscale pores, ACS Appl. Mater. Interf. 7(42), 23717–23724 (2015) doi:10.1021/acsami.5b07777 CrossRef R. Elnathan, L. Isa, D. Brodoceanu, A. Nelson, F.J. Harding, B. Delalat, T. Kraus, N.H. Voelcker: Versatile particle-based route to engineer vertically aligned silicon nanowire arrays and nanoscale pores, ACS Appl. Mater. Interf. 7(42), 23717–23724 (2015) doi:10.​1021/​acsami.​5b07777 CrossRef
21.109
Zurück zum Zitat H. Alhmoud, B. Delalat, R. Elnathan, A.C. Rius, A. Chaix, M.L. Rogers, J.-O. Durand, N.H. Voelcker: Porous silicon nanodiscs for targeted drug delivery, Adv. Funct. Mater. 25(7), 1137–1145 (2015) doi:10.1002/adfm.201403414 CrossRef H. Alhmoud, B. Delalat, R. Elnathan, A.C. Rius, A. Chaix, M.L. Rogers, J.-O. Durand, N.H. Voelcker: Porous silicon nanodiscs for targeted drug delivery, Adv. Funct. Mater. 25(7), 1137–1145 (2015) doi:10.​1002/​adfm.​201403414 CrossRef
21.110
Zurück zum Zitat H. Lin, H.-Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, T. Hung, J. Zhou, J.C. Ho, C.-Y. Wong: Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping, J. Mater. Chem. A 1(34), 9942–9946 (2013) doi:10.1039/C3TA11889D CrossRef H. Lin, H.-Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, T. Hung, J. Zhou, J.C. Ho, C.-Y. Wong: Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping, J. Mater. Chem. A 1(34), 9942–9946 (2013) doi:10.​1039/​C3TA11889D CrossRef
21.111
Zurück zum Zitat F. Gentile, M.L. Coluccio, R.P. Zaccaria, M. Francardi, G. Cojoc, G. Perozziello, R. Raimondo, P. Candeloro, E. Di Fabrizio: Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles, Nanoscale 6(14), 8208–8225 (2014) doi:10.1039/C4NR00796D CrossRef F. Gentile, M.L. Coluccio, R.P. Zaccaria, M. Francardi, G. Cojoc, G. Perozziello, R. Raimondo, P. Candeloro, E. Di Fabrizio: Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles, Nanoscale 6(14), 8208–8225 (2014) doi:10.​1039/​C4NR00796D CrossRef
21.112
Zurück zum Zitat G.S. Higashi, Y.J. Chabal, G.W. Trucks, K. Raghavachari: Ideal hydrogen termination of the Si (111) surface, Appl. Phys. Lett. 56(7), 656–658 (1990) doi:10.1063/1.102728 CrossRef G.S. Higashi, Y.J. Chabal, G.W. Trucks, K. Raghavachari: Ideal hydrogen termination of the Si (111) surface, Appl. Phys. Lett. 56(7), 656–658 (1990) doi:10.​1063/​1.​102728 CrossRef
21.113
21.114
21.115
21.116
21.117
Zurück zum Zitat J. Riikonen, M. Salomäki, J. van Wonderen, M. Kemell, W. Xu, O. Korhonen, M. Ritala, F. MacMillan, J. Salonen, V.P. Lehto: Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods, Langmuir 28(28), 10573–10583 (2012) doi:10.1021/la301642w CrossRef J. Riikonen, M. Salomäki, J. van Wonderen, M. Kemell, W. Xu, O. Korhonen, M. Ritala, F. MacMillan, J. Salonen, V.P. Lehto: Surface chemistry, reactivity, and pore structure of porous silicon oxidized by various methods, Langmuir 28(28), 10573–10583 (2012) doi:10.​1021/​la301642w CrossRef
21.118
Zurück zum Zitat J.B. Brzoska, I.B. Azouz, F. Rondelez: Silanization of solid substrates: A step toward reproducibility, Langmuir 10(11), 4367–4373 (1994), doi:10.1021/la00023a072 J.B. Brzoska, I.B. Azouz, F. Rondelez: Silanization of solid substrates: A step toward reproducibility, Langmuir 10(11), 4367–4373 (1994), doi:10.1021/la00023a072
21.119
Zurück zum Zitat G.T. Hermanson: Bioconjugate Techniques, 3rd edn. (Elsevier, Amsterdam 2013) G.T. Hermanson: Bioconjugate Techniques, 3rd edn. (Elsevier, Amsterdam 2013)
21.120
21.122
21.123
Zurück zum Zitat R.E. Serda, A. Mack, M. Pulikkathara, A.M. Zaske, C. Chiappini, J.R. Fakhoury, D. Webb, B. Godin, J.L. Conyers, X.W. Liu, J.A. Bankson, M. Ferrari: Cellular association and assembly of a multistage delivery system, Small 6(12), 1329–1340 (2010) doi:10.1002/smll.201000126 CrossRef R.E. Serda, A. Mack, M. Pulikkathara, A.M. Zaske, C. Chiappini, J.R. Fakhoury, D. Webb, B. Godin, J.L. Conyers, X.W. Liu, J.A. Bankson, M. Ferrari: Cellular association and assembly of a multistage delivery system, Small 6(12), 1329–1340 (2010) doi:10.​1002/​smll.​201000126 CrossRef
21.124
Zurück zum Zitat S.H.C. Anderson, H. Elliott, D.J. Wallis, L.T. Canham, J.J. Powell: Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions, Phys. Stat. Sol A 197(2), 331–335 (2003) doi:10.1002/pssa.200306519 CrossRef S.H.C. Anderson, H. Elliott, D.J. Wallis, L.T. Canham, J.J. Powell: Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions, Phys. Stat. Sol A 197(2), 331–335 (2003) doi:10.​1002/​pssa.​200306519 CrossRef
21.125
Zurück zum Zitat B. Godin, J. Gu, R.E. Serda, R. Bhavane, E. Tasciotti, C. Chiappini, X. Liu, T. Tanaka, P. Decuzzi, M. Ferrari: Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation, J. Biomed. Mater. Res. A 94A(4), 1236–1243 (2010) doi:10.1002/jbm.a.32807 CrossRef B. Godin, J. Gu, R.E. Serda, R. Bhavane, E. Tasciotti, C. Chiappini, X. Liu, T. Tanaka, P. Decuzzi, M. Ferrari: Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation, J. Biomed. Mater. Res. A 94A(4), 1236–1243 (2010) doi:10.​1002/​jbm.​a.​32807 CrossRef
21.126
Zurück zum Zitat W. Sun, J.E. Puzas, T.J. Sheu, X. Liu, P.M. Fauchet: Nano-to microscale porous silicon as a cell interface for bone-tissue engineering, Adv. Mater. 19(7), 921–924 (2007) doi:10.1002/adma.200600319 CrossRef W. Sun, J.E. Puzas, T.J. Sheu, X. Liu, P.M. Fauchet: Nano-to microscale porous silicon as a cell interface for bone-tissue engineering, Adv. Mater. 19(7), 921–924 (2007) doi:10.​1002/​adma.​200600319 CrossRef
21.127
Zurück zum Zitat T. Jalkanen, E. Mäkilä, Y.I. Suzuki, T. Urata, K. Fukami, T. Sakka, J. Salonen, Y.H. Ogata: Studies on chemical modification of porous silicon-based graded-index optical microcavities for improved stability under alkaline conditions, Adv. Funct. Mater. 22(18), 3890–3898 (2012) doi:10.1002/adfm.201200386 CrossRef T. Jalkanen, E. Mäkilä, Y.I. Suzuki, T. Urata, K. Fukami, T. Sakka, J. Salonen, Y.H. Ogata: Studies on chemical modification of porous silicon-based graded-index optical microcavities for improved stability under alkaline conditions, Adv. Funct. Mater. 22(18), 3890–3898 (2012) doi:10.​1002/​adfm.​201200386 CrossRef
21.128
Zurück zum Zitat A.T. Balter, Z. Shatsberg, M. Beckerman, E. Segal, N. Artzi: Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues, Nat. Comm. 6, 6208 (2015) doi:10.1038/ncomms7208 CrossRef A.T. Balter, Z. Shatsberg, M. Beckerman, E. Segal, N. Artzi: Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues, Nat. Comm. 6, 6208 (2015) doi:10.​1038/​ncomms7208 CrossRef
21.129
Zurück zum Zitat T. Tanaka, B. Godin, R. Bhavane, R.N. Alicea, J. Gu, X. Liu, C. Chiappini, J.R. Fakhoury, S. Amra, A. Ewing: In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice, Int. J. Pharm. 402(1/2), 190–197 (2010) doi:10.1016/j.ijpharm.2010.09.015 CrossRef T. Tanaka, B. Godin, R. Bhavane, R.N. Alicea, J. Gu, X. Liu, C. Chiappini, J.R. Fakhoury, S. Amra, A. Ewing: In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice, Int. J. Pharm. 402(1/2), 190–197 (2010) doi:10.​1016/​j.​ijpharm.​2010.​09.​015 CrossRef
21.130
Zurück zum Zitat L. Gu, D.J. Hall, Z. Qin, E. Anglin, J. Joo, D.J. Mooney, S.B. Howell, M.J. Sailor: In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles, Nat. Comm. 4, 1–7 (2013) doi:10.1038/ncomms3326 CrossRef L. Gu, D.J. Hall, Z. Qin, E. Anglin, J. Joo, D.J. Mooney, S.B. Howell, M.J. Sailor: In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles, Nat. Comm. 4, 1–7 (2013) doi:10.​1038/​ncomms3326 CrossRef
21.131
Zurück zum Zitat M. Ariza-Avidad, A. Nieto, A.S. alinas-Castillo, L.F. Capitan-Vallvey, G.M. Miskelly, M.J. Sailor: Monitoring of degradation of porous silicon photonic crystals using digital photography, Nanoscale Res. Lett. 9(1), 410 (2014) doi:10.1186/1556-276X-9-410 CrossRef M. Ariza-Avidad, A. Nieto, A.S. alinas-Castillo, L.F. Capitan-Vallvey, G.M. Miskelly, M.J. Sailor: Monitoring of degradation of porous silicon photonic crystals using digital photography, Nanoscale Res. Lett. 9(1), 410 (2014) doi:10.​1186/​1556-276X-9-410 CrossRef
21.132
Zurück zum Zitat S.P. Low, K.A. Williams, L.T. Canham, N.H. Voelcker: Generation of reactive oxygen species from porous silicon microparticles in cell culture medium, J. Biomed. Mater. Res. A 93A(3), 1124–1131 (2010) doi:10.1002/jbm.a.32610 CrossRef S.P. Low, K.A. Williams, L.T. Canham, N.H. Voelcker: Generation of reactive oxygen species from porous silicon microparticles in cell culture medium, J. Biomed. Mater. Res. A 93A(3), 1124–1131 (2010) doi:10.​1002/​jbm.​a.​32610 CrossRef
21.134
21.135
Zurück zum Zitat L.M. Bimbo, M. Sarparanta, H.A. Santos, A.J. Airaksinen, E. Mäkilä, T. Laaksonen, L. Peltonen, V.P. Lehto, J. Hirvonen, J. Salonen: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats, ACS Nano 4(6), 3023–3032 (2010) doi:10.1021/nn901657w CrossRef L.M. Bimbo, M. Sarparanta, H.A. Santos, A.J. Airaksinen, E. Mäkilä, T. Laaksonen, L. Peltonen, V.P. Lehto, J. Hirvonen, J. Salonen: Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats, ACS Nano 4(6), 3023–3032 (2010) doi:10.​1021/​nn901657w CrossRef
21.137
Zurück zum Zitat A.S.-W. Goh, A.Y.-F. Chung, R.H.-G. Lo, T.-N. Lau, S.W.-K. Yu, M. Chng, S. Satchithanantham, S.L.-E. Loong, D.C.-E. Ng, B.-C. Lim, S. Connor, P.K.-H. Chow: A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device – A first-in-man study, Int. J. Radiat. Oncol. Biol. Phys. 67(3), 786–792 (2007) doi:10.1016/j.ijrobp.2006.09.011 CrossRef A.S.-W. Goh, A.Y.-F. Chung, R.H.-G. Lo, T.-N. Lau, S.W.-K. Yu, M. Chng, S. Satchithanantham, S.L.-E. Loong, D.C.-E. Ng, B.-C. Lim, S. Connor, P.K.-H. Chow: A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device – A first-in-man study, Int. J. Radiat. Oncol. Biol. Phys. 67(3), 786–792 (2007) doi:10.​1016/​j.​ijrobp.​2006.​09.​011 CrossRef
21.138
21.139
Zurück zum Zitat S. Ferrati, A. Mack, C. Chiappini, X. Liu, A.J. Bean, M. Ferrari, R.E. Serda: Intracellular trafficking of silicon particles and logic-embedded vectors, Nanoscale 2(8), 1512–1520 (2010) doi:10.1039/C0NR00227E CrossRef S. Ferrati, A. Mack, C. Chiappini, X. Liu, A.J. Bean, M. Ferrari, R.E. Serda: Intracellular trafficking of silicon particles and logic-embedded vectors, Nanoscale 2(8), 1512–1520 (2010) doi:10.​1039/​C0NR00227E CrossRef
21.140
Zurück zum Zitat E. Tasciotti, B. Godin, J.O. Martinez, C. Chiappini, R.C. Bhavane, X. Liu, M. Ferrari: Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles, Mol. Imag. 10(1), 56 (2011) E. Tasciotti, B. Godin, J.O. Martinez, C. Chiappini, R.C. Bhavane, X. Liu, M. Ferrari: Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles, Mol. Imag. 10(1), 56 (2011)
21.141
Zurück zum Zitat E. De Rosa, C. Chiappini, D. Fan, X. Liu, M. Ferrari, E. Tasciotti: Agarose surface coating influences intracellular accumulation and enhances payload stability of a nano-delivery system, Pharm. Res. 28(7), 1520–1530 (2011) doi:10.1007/s11095-011-0453-2 CrossRef E. De Rosa, C. Chiappini, D. Fan, X. Liu, M. Ferrari, E. Tasciotti: Agarose surface coating influences intracellular accumulation and enhances payload stability of a nano-delivery system, Pharm. Res. 28(7), 1520–1530 (2011) doi:10.​1007/​s11095-011-0453-2 CrossRef
21.142
Zurück zum Zitat D. Liu, L.M. Bimbo, E. Mäkilä, F. Villanova, M. Kaasalainen, B. Herranz-Blanco, C.M. Caramella, V.P. Lehto, J. Salonen, K.-H. Herzig, J. Hirvonen, H.A. Santos: Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles, J. Control. Release 170(2), 268–278 (2013) doi:10.1016/j.jconrel.2013.05.036 CrossRef D. Liu, L.M. Bimbo, E. Mäkilä, F. Villanova, M. Kaasalainen, B. Herranz-Blanco, C.M. Caramella, V.P. Lehto, J. Salonen, K.-H. Herzig, J. Hirvonen, H.A. Santos: Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles, J. Control. Release 170(2), 268–278 (2013) doi:10.​1016/​j.​jconrel.​2013.​05.​036 CrossRef
21.143
Zurück zum Zitat M. Xue, X. Zhong, Z. Shaposhnik, Y. Qu, F. Tamanoi, X. Duan, J.I. Zink: pH-operated mechanized porous silicon nanoparticles, J. Am. Chem. Soc. 133(23), 8798–8801 (2011) doi:10.1021/ja201252e CrossRef M. Xue, X. Zhong, Z. Shaposhnik, Y. Qu, F. Tamanoi, X. Duan, J.I. Zink: pH-operated mechanized porous silicon nanoparticles, J. Am. Chem. Soc. 133(23), 8798–8801 (2011) doi:10.​1021/​ja201252e CrossRef
21.144
Zurück zum Zitat A.P. Mann, T. Tanaka, A. Somasunderam, X. Liu, D.G. Gorenstein, M. Ferrari: E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow, Adv. Mater. 23(36), H278–H282 (2011) doi:10.1002/adma.201101541 CrossRef A.P. Mann, T. Tanaka, A. Somasunderam, X. Liu, D.G. Gorenstein, M. Ferrari: E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow, Adv. Mater. 23(36), H278–H282 (2011) doi:10.​1002/​adma.​201101541 CrossRef
21.145
Zurück zum Zitat E. Secret, M. Maynadier, A. Gallud, M.G. Bobo, A. Chaix, E. Belamie, P. Maillard, M.J. Sailor, M. Garcia, J.O. Durand, F. Cunin: Anionic porphyrin -grafted porous silicon nanoparticles for photodynamic therapy, Chem. Comm. 49(39), 4202–4204 (2013) doi:10.1039/C3CC38837A CrossRef E. Secret, M. Maynadier, A. Gallud, M.G. Bobo, A. Chaix, E. Belamie, P. Maillard, M.J. Sailor, M. Garcia, J.O. Durand, F. Cunin: Anionic porphyrin -grafted porous silicon nanoparticles for photodynamic therapy, Chem. Comm. 49(39), 4202–4204 (2013) doi:10.​1039/​C3CC38837A CrossRef
21.146
Zurück zum Zitat M. Wang, J.L. Coffer, K. Dorraj, P.S. Hartman, A. Loni, L.T. Canham: Sustained antibacterial activity from triclosan-loaded nanostructured mesoporous silicon, Mol. Pharm. 7(6), 2232–2239 (2010) doi:10.1021/mp100227m CrossRef M. Wang, J.L. Coffer, K. Dorraj, P.S. Hartman, A. Loni, L.T. Canham: Sustained antibacterial activity from triclosan-loaded nanostructured mesoporous silicon, Mol. Pharm. 7(6), 2232–2239 (2010) doi:10.​1021/​mp100227m CrossRef
21.147
Zurück zum Zitat R. Xu, G. Zhang, J. Mai, X. Deng, V. Segura-Ibarra, S. Wu, J. Shen, H. Liu, Z. Hu, L. Chen, Y. Huang, E. Koay, Y. Huang, J. Liu, J.E. Ensor, E. Blanco, X. Liu, M. Ferrari, H. Shen: An injectable nanoparticle generator enhances delivery of cancer therapeutics, Nat. Biotechnol. 34(4), 414–418 (2016) doi:10.1038/nbt.3506 CrossRef R. Xu, G. Zhang, J. Mai, X. Deng, V. Segura-Ibarra, S. Wu, J. Shen, H. Liu, Z. Hu, L. Chen, Y. Huang, E. Koay, Y. Huang, J. Liu, J.E. Ensor, E. Blanco, X. Liu, M. Ferrari, H. Shen: An injectable nanoparticle generator enhances delivery of cancer therapeutics, Nat. Biotechnol. 34(4), 414–418 (2016) doi:10.​1038/​nbt.​3506 CrossRef
21.148
Zurück zum Zitat J.O. Martinez, M. Evangelopoulos, V. Karun, E. Shegog, J.A. Wang, C. Boada, X. Liu, M. Ferrari, E. Tasciotti: The effect of multistage nanovector targeting of VEGFR2 positive tumor endothelia on cell adhesion and local payload accumulation, Biomaterials 35(37), 9824–9832 (2014) doi:10.1016/j.biomaterials.2014.08.024 CrossRef J.O. Martinez, M. Evangelopoulos, V. Karun, E. Shegog, J.A. Wang, C. Boada, X. Liu, M. Ferrari, E. Tasciotti: The effect of multistage nanovector targeting of VEGFR2 positive tumor endothelia on cell adhesion and local payload accumulation, Biomaterials 35(37), 9824–9832 (2014) doi:10.​1016/​j.​biomaterials.​2014.​08.​024 CrossRef
21.149
Zurück zum Zitat L. Gu, L.E. Ruff, Z. Qin, M. Corr, S.M. Hedrick, M.J. Sailor: Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody, Adv. Mater. 24(29), 3981–3987 (2012) doi:10.1002/adma.201200776 CrossRef L. Gu, L.E. Ruff, Z. Qin, M. Corr, S.M. Hedrick, M.J. Sailor: Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody, Adv. Mater. 24(29), 3981–3987 (2012) doi:10.​1002/​adma.​201200776 CrossRef
21.150
Zurück zum Zitat C. Chiappini, J.O. Martinez, E. De Rosa, C.S. Almeida, E. Tasciotti, M.M. Stevens: Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: Exploring the biointerface, ACS Nano 9, 5500–5509 (2015) doi:10.1021/acsnano.5b01490 CrossRef C. Chiappini, J.O. Martinez, E. De Rosa, C.S. Almeida, E. Tasciotti, M.M. Stevens: Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: Exploring the biointerface, ACS Nano 9, 5500–5509 (2015) doi:10.​1021/​acsnano.​5b01490 CrossRef
21.151
Zurück zum Zitat M.M. Orosco, C. Pacholski, G.M. Miskelly, M.J. Sailor: Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity, Adv. Mater. 18(11), 1393–1396 (2006) doi:10.1002/adma.200502420 CrossRef M.M. Orosco, C. Pacholski, G.M. Miskelly, M.J. Sailor: Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity, Adv. Mater. 18(11), 1393–1396 (2006) doi:10.​1002/​adma.​200502420 CrossRef
21.152
Zurück zum Zitat C. Chiappini, P. Campagnolo, C.S. Almeida, N. Annassi-Ghadi, L.W. Chow, G.B. Hanna, M.M. Stevens: Mapping Local cytosolic enzymatic activity in human esophageal mucosa with porous silicon nanoneedles, Adv. Mater. 27(35), 5147–5152 (2015) doi:10.1002/adma.201501304 CrossRef C. Chiappini, P. Campagnolo, C.S. Almeida, N. Annassi-Ghadi, L.W. Chow, G.B. Hanna, M.M. Stevens: Mapping Local cytosolic enzymatic activity in human esophageal mucosa with porous silicon nanoneedles, Adv. Mater. 27(35), 5147–5152 (2015) doi:10.​1002/​adma.​201501304 CrossRef
21.153
Zurück zum Zitat A. Caliò, I. Rea, J. Politi, P. Giardina, S. Longobardi, L.D. Stefano: Hybrid bio/non-bio interfaces for protein-glucose interaction monitoring, J. Appl. Phys. 114(13), 134904 (2013) doi:10.1063/1.4824379 CrossRef A. Caliò, I. Rea, J. Politi, P. Giardina, S. Longobardi, L.D. Stefano: Hybrid bio/non-bio interfaces for protein-glucose interaction monitoring, J. Appl. Phys. 114(13), 134904 (2013) doi:10.​1063/​1.​4824379 CrossRef
21.154
Zurück zum Zitat G. Rong, J.D. Ryckman, R.L. Mernaugh, S.M. Weiss: Label-free porous silicon membrane waveguide for DNA sensing, Appl. Phys. Lett. 93(16), 161109 (2008) doi:10.1063/1.3005620 CrossRef G. Rong, J.D. Ryckman, R.L. Mernaugh, S.M. Weiss: Label-free porous silicon membrane waveguide for DNA sensing, Appl. Phys. Lett. 93(16), 161109 (2008) doi:10.​1063/​1.​3005620 CrossRef
21.155
Zurück zum Zitat N. Massad-Ivanir, G. Shtenberg, A. Tzur, M.A. Krepker, E. Segal: Engineering nanostructured porous SiO2 surfaces for bacteria detection via ‘‘direct cell capture’’, Anal. Chem. 83(9), 3282–3289 (2011) doi:10.1021/ac200407w CrossRef N. Massad-Ivanir, G. Shtenberg, A. Tzur, M.A. Krepker, E. Segal: Engineering nanostructured porous SiO2 surfaces for bacteria detection via ‘‘direct cell capture’’, Anal. Chem. 83(9), 3282–3289 (2011) doi:10.​1021/​ac200407w CrossRef
21.156
Zurück zum Zitat L. De Stefano, I. Rea, I. Rendina, L. Rotiroti, M. Rossi, S. D'Auria: Resonant cavity enhanced optical microsensor for molecular interactions based on porous silicon, Phys. Stat. Sol. A 203(5), 886–891 (2006) doi:10.1002/pssa.200521350 CrossRef L. De Stefano, I. Rea, I. Rendina, L. Rotiroti, M. Rossi, S. D'Auria: Resonant cavity enhanced optical microsensor for molecular interactions based on porous silicon, Phys. Stat. Sol. A 203(5), 886–891 (2006) doi:10.​1002/​pssa.​200521350 CrossRef
21.157
Zurück zum Zitat S. D'Auria, M. de Champdoré, V. Aurilia, A. Parracino, M. Staiano, A. Vitale, M. Rossi, I. Rea, L. Rotiroti, A.M. Rossi, S. Borini, I. Rendina, L. De Stefano: Nanostructured silicon-based biosensors for the selective identification of analytes of social interest, J. Phys. Condens. Matter 18(33), S2019–S2028 (2006) doi:10.1088/0953-8984/18/33/S17 CrossRef S. D'Auria, M. de Champdoré, V. Aurilia, A. Parracino, M. Staiano, A. Vitale, M. Rossi, I. Rea, L. Rotiroti, A.M. Rossi, S. Borini, I. Rendina, L. De Stefano: Nanostructured silicon-based biosensors for the selective identification of analytes of social interest, J. Phys. Condens. Matter 18(33), S2019–S2028 (2006) doi:10.​1088/​0953-8984/​18/​33/​S17 CrossRef
21.159
Zurück zum Zitat J. Zhang, Y. Wu, B. Zhang, M. Li, S. Jia, S. Jiang, H. Zhou, Y. Zhang, C. Zhang, A.P.F. Turner: Label-free electrochemical detection of tetracycline by an aptamer nano-biosensor, Anal. Lett. 45(9), 986–992 (2012) doi:10.1080/00032719.2012.670784 CrossRef J. Zhang, Y. Wu, B. Zhang, M. Li, S. Jia, S. Jiang, H. Zhou, Y. Zhang, C. Zhang, A.P.F. Turner: Label-free electrochemical detection of tetracycline by an aptamer nano-biosensor, Anal. Lett. 45(9), 986–992 (2012) doi:10.​1080/​00032719.​2012.​670784 CrossRef
21.160
Zurück zum Zitat L.A. Osminkina, V.A. Sivakov, G.A. Mysov, V.A. Georgobiani, U.A. Natashina, F. Talkenberg, V.V. Solovyev, A.A. Kudryavtsev, V.Y. Timoshenko: Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy, Nanoscale Res. Lett. 9(1), 1 (2014) doi:10.1186/1556-276X-9-463 CrossRef L.A. Osminkina, V.A. Sivakov, G.A. Mysov, V.A. Georgobiani, U.A. Natashina, F. Talkenberg, V.V. Solovyev, A.A. Kudryavtsev, V.Y. Timoshenko: Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy, Nanoscale Res. Lett. 9(1), 1 (2014) doi:10.​1186/​1556-276X-9-463 CrossRef
21.161
Zurück zum Zitat A. Gizzatov, C. Stigliano, J.S. Ananta, R. Sethi, R. Xu, A. Guven, M. Ramirez, H. Shen, A. Sood, M. Ferrari, L.J. Wilson, X. Liu, P. Decuzzi: Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer, Cancer Lett. 352(1), 97–101 (2014) doi:10.1016/j.canlet.2014.06.001 CrossRef A. Gizzatov, C. Stigliano, J.S. Ananta, R. Sethi, R. Xu, A. Guven, M. Ramirez, H. Shen, A. Sood, M. Ferrari, L.J. Wilson, X. Liu, P. Decuzzi: Geometrical confinement of Gd(DOTA) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer, Cancer Lett. 352(1), 97–101 (2014) doi:10.​1016/​j.​canlet.​2014.​06.​001 CrossRef
21.162
Zurück zum Zitat R. Duncan, R. Gaspar: Nanomedicine (s) under the microscope, Mol. Pharm. 8(6), 2101–2141 (2011) R. Duncan, R. Gaspar: Nanomedicine (s) under the microscope, Mol. Pharm. 8(6), 2101–2141 (2011)
21.163
Zurück zum Zitat W.B. Liechty, D.R. Kryscio, B.V. Slaughter, N.A. Peppas: Polymers for drug delivery systems, Annu. Rev. Chem. Biomol. Eng. 1, 149 (2010) W.B. Liechty, D.R. Kryscio, B.V. Slaughter, N.A. Peppas: Polymers for drug delivery systems, Annu. Rev. Chem. Biomol. Eng. 1, 149 (2010)
21.164
Zurück zum Zitat Y.H. Yun, B.K. Lee, K. Park: Controlled drug delivery: Historical perspective for the next generation, J. Control. Release 219, 2–7 (2011) Y.H. Yun, B.K. Lee, K. Park: Controlled drug delivery: Historical perspective for the next generation, J. Control. Release 219, 2–7 (2011)
21.165
Zurück zum Zitat H.A. Santos: Porous Silicon for Biomedical Applications (Elsevier, Amsterdam 2014) H.A. Santos: Porous Silicon for Biomedical Applications (Elsevier, Amsterdam 2014)
21.166
Zurück zum Zitat N. Shrestha, M.-A. Shahbazi, F. Araújo, E. Mäkilä, J. Raula, E.I. Kauppinen, J. Salonen, B. Sarmento, J. Hirvonen, H.A. Santos: Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system, Biomaterials 68, 9–20 (2015) N. Shrestha, M.-A. Shahbazi, F. Araújo, E. Mäkilä, J. Raula, E.I. Kauppinen, J. Salonen, B. Sarmento, J. Hirvonen, H.A. Santos: Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system, Biomaterials 68, 9–20 (2015)
21.167
Zurück zum Zitat M.K. Marschütz, A. Bernkop-Schnürch: Oral peptide drug delivery: polymer–inhibitor conjugates protecting insulin from enzymatic degradation in vitro, Biomaterials 21(14), 1499–1507 (2000) M.K. Marschütz, A. Bernkop-Schnürch: Oral peptide drug delivery: polymer–inhibitor conjugates protecting insulin from enzymatic degradation in vitro, Biomaterials 21(14), 1499–1507 (2000)
21.168
Zurück zum Zitat S. Munier, I. Messai, T. Delair, B. Verrier, Y. Ataman-Önal: Cationic PLA nanoparticles for DNA delivery: Comparison of three surface polycations for DNA binding, protection and transfection properties, Colloids Surf. B 43(3), 163–173 (2005) S. Munier, I. Messai, T. Delair, B. Verrier, Y. Ataman-Önal: Cationic PLA nanoparticles for DNA delivery: Comparison of three surface polycations for DNA binding, protection and transfection properties, Colloids Surf. B 43(3), 163–173 (2005)
21.169
Zurück zum Zitat H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B.I. Ipe, M.G. Bawendi, J.V. Frangioni: Renal clearance of quantum dots, Nat. Biotechnol. 25(10), 1165–1170 (2007) H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B.I. Ipe, M.G. Bawendi, J.V. Frangioni: Renal clearance of quantum dots, Nat. Biotechnol. 25(10), 1165–1170 (2007)
21.170
Zurück zum Zitat M.I. Stockman, D.J. Bergman, T. Kobayashi: Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems, Phys. Rev. B 69, 054202 (2004) M.I. Stockman, D.J. Bergman, T. Kobayashi: Coherent control of nanoscale localization of ultrafast optical excitation in nanosystems, Phys. Rev. B 69, 054202 (2004)
21.171
Zurück zum Zitat S. Stolnik, L. Illum, S. Davis: Long circulating microparticulate drug carriers, Adv. Drug Deliv. Rev. 64, 290–301 (2012) S. Stolnik, L. Illum, S. Davis: Long circulating microparticulate drug carriers, Adv. Drug Deliv. Rev. 64, 290–301 (2012)
21.172
Zurück zum Zitat H.A. Santos, E. Mäkilä, A.J. Airaksinen, L.M. Bimbo, J. Hirvonen: Porous silicon nanoparticles for nanomedicine: Preparation and biomedical applications, Nanomedicine 9(4), 535–554 (2014) H.A. Santos, E. Mäkilä, A.J. Airaksinen, L.M. Bimbo, J. Hirvonen: Porous silicon nanoparticles for nanomedicine: Preparation and biomedical applications, Nanomedicine 9(4), 535–554 (2014)
21.173
Zurück zum Zitat H.A. Santos, J. Hirvonen: Nanostructured porous silicon materials: Potential candidates for improving drug delivery, Nanomedicine 7(9), 1281–1284 (2012) H.A. Santos, J. Hirvonen: Nanostructured porous silicon materials: Potential candidates for improving drug delivery, Nanomedicine 7(9), 1281–1284 (2012)
21.174
Zurück zum Zitat F. Fontana, M.P. Ferreira, A. Correia, J. Hirvonen, H.A. Santos: Microfluidics as a cutting-edge technique for drug delivery applications, J. Drug Deliv. Sci. Technol. 34, 76–87 (2016) F. Fontana, M.P. Ferreira, A. Correia, J. Hirvonen, H.A. Santos: Microfluidics as a cutting-edge technique for drug delivery applications, J. Drug Deliv. Sci. Technol. 34, 76–87 (2016)
21.175
Zurück zum Zitat I. Polenz, D.A. Weitz, J.-C. Baret: Polyurea microcapsules in microfluidics: Surfactant control of soft membranes, Langmuir 31(3), 1127–1134 (2015) I. Polenz, D.A. Weitz, J.-C. Baret: Polyurea microcapsules in microfluidics: Surfactant control of soft membranes, Langmuir 31(3), 1127–1134 (2015)
21.176
Zurück zum Zitat A. Utada, L.-Y. Chu, A. Fernandez-Nieves, D. Link, C. Holtze, D. Weitz: Dripping, jetting, drops, and wetting: The magic of microfluidics, MRS Bull. 32(09), 702–708 (2007) A. Utada, L.-Y. Chu, A. Fernandez-Nieves, D. Link, C. Holtze, D. Weitz: Dripping, jetting, drops, and wetting: The magic of microfluidics, MRS Bull. 32(09), 702–708 (2007)
21.177
Zurück zum Zitat A.S. Utada, A. Fernandez-Nieves, H.A. Stone, D.A. Weitz: Dripping to jetting transitions in coflowing liquid streams, Phys. Rev. Lett. 99(9), 094502 (2007) A.S. Utada, A. Fernandez-Nieves, H.A. Stone, D.A. Weitz: Dripping to jetting transitions in coflowing liquid streams, Phys. Rev. Lett. 99(9), 094502 (2007)
21.178
Zurück zum Zitat Y. Kim, B.L. Chung, M. Ma, W.J. Mulder, Z.A. Fayad, O.C. Farokhzad, R. Langer: Mass production and size control of lipid–polymer hybrid nanoparticles through controlled microvortices, Nano Lett. 12(7), 3587–3591 (2012) Y. Kim, B.L. Chung, M. Ma, W.J. Mulder, Z.A. Fayad, O.C. Farokhzad, R. Langer: Mass production and size control of lipid–polymer hybrid nanoparticles through controlled microvortices, Nano Lett. 12(7), 3587–3591 (2012)
21.179
Zurück zum Zitat P.M. Valencia, O.C. Farokhzad, R. Karnik, R. Langer: Microfluidic technologies for accelerating the clinical translation of nanoparticles, Nat. Nanotechnol. 7(10), 623–629 (2012) doi:10.1038/nnano.2012.168 CrossRef P.M. Valencia, O.C. Farokhzad, R. Karnik, R. Langer: Microfluidic technologies for accelerating the clinical translation of nanoparticles, Nat. Nanotechnol. 7(10), 623–629 (2012) doi:10.​1038/​nnano.​2012.​168 CrossRef
21.180
Zurück zum Zitat E.F. Petricoin, D.K. Ornstein, C.P. Paweletz, A. Ardekani, P.S. Hackett, B.A. Hitt, A. Velasco, C. Trucco, L. Wiegand, K. Wood, C.B. Simone, P.J. Levine, W.M. Linehan, M.R.E. Buck, S.M. Steinberg, E.C. Kohn, L.A. Liotta: Serum proteomic patterns for detection of prostate cancer, J. Natl. Cancer Inst. 94(20), 1576–1578 (2002) E.F. Petricoin, D.K. Ornstein, C.P. Paweletz, A. Ardekani, P.S. Hackett, B.A. Hitt, A. Velasco, C. Trucco, L. Wiegand, K. Wood, C.B. Simone, P.J. Levine, W.M. Linehan, M.R.E. Buck, S.M. Steinberg, E.C. Kohn, L.A. Liotta: Serum proteomic patterns for detection of prostate cancer, J. Natl. Cancer Inst. 94(20), 1576–1578 (2002)
21.181
Zurück zum Zitat T. Rossow, J.A. Heyman, A.J. Ehrlicher, A. Langhoff, D.A. Weitz, R. Haag, S. Seiffert: Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics, J. Am. Chem. Soc. 134(10), 4983–4989 (2012) doi:10.1021/Ja300460p CrossRef T. Rossow, J.A. Heyman, A.J. Ehrlicher, A. Langhoff, D.A. Weitz, R. Haag, S. Seiffert: Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics, J. Am. Chem. Soc. 134(10), 4983–4989 (2012) doi:10.​1021/​Ja300460p CrossRef
21.183
Zurück zum Zitat A. Manz, D.J. Harrison, E.M. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi, H.M. Widmer: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip, J. Chromatogr. A 593(1), 253–258 (1992) A. Manz, D.J. Harrison, E.M. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi, H.M. Widmer: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip, J. Chromatogr. A 593(1), 253–258 (1992)
21.184
Zurück zum Zitat Y. Hu, A. Bouamrani, E. Tasciotti, L. Li, X. Liu, M. Ferrari: Tailoring of the nanotexture of mesoporous silica films and their functionalized derivatives for selectively harvesting low molecular weight protein, ACS Nano 4(1), 439–451 (2010) Y. Hu, A. Bouamrani, E. Tasciotti, L. Li, X. Liu, M. Ferrari: Tailoring of the nanotexture of mesoporous silica films and their functionalized derivatives for selectively harvesting low molecular weight protein, ACS Nano 4(1), 439–451 (2010)
21.185
Zurück zum Zitat J.S. Sander, L. Isa, P.A. Rühs, P. Fischer, A.R. Studart: Stabilization mechanism of double emulsions made by microfluidics, Soft Matter 8(45), 11471–11477 (2012) J.S. Sander, L. Isa, P.A. Rühs, P. Fischer, A.R. Studart: Stabilization mechanism of double emulsions made by microfluidics, Soft Matter 8(45), 11471–11477 (2012)
21.186
Zurück zum Zitat L.R. Arriaga, S.S. Datta, S.H. Kim, E. Amstad, T.E. Kodger, F. Monroy, D.A. Weitz: Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation, Small 10(5), 950–956 (2014) L.R. Arriaga, S.S. Datta, S.H. Kim, E. Amstad, T.E. Kodger, F. Monroy, D.A. Weitz: Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation, Small 10(5), 950–956 (2014)
21.187
Zurück zum Zitat S. Nie, S.R. Emory: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275(5303), 1102–1106 (1997) S. Nie, S.R. Emory: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275(5303), 1102–1106 (1997)
21.188
Zurück zum Zitat Y.-C. Tan, V. Cristini, A.P. Lee: Monodispersed microfluidic droplet generation by shear focusing microfluidic device, Sens. Actuators B 114(1), 350–356 (2006) Y.-C. Tan, V. Cristini, A.P. Lee: Monodispersed microfluidic droplet generation by shear focusing microfluidic device, Sens. Actuators B 114(1), 350–356 (2006)
21.189
Zurück zum Zitat J.C. Stachowiak, D.L. Richmond, T.H. Li, A.P. Liu, S.H. Parekh, D.A. Fletcher: Unilamellar vesicle formation and encapsulation by microfluidic jetting, Proc. Natl. Acad. Sci. 105(12), 4697–4702 (2008) J.C. Stachowiak, D.L. Richmond, T.H. Li, A.P. Liu, S.H. Parekh, D.A. Fletcher: Unilamellar vesicle formation and encapsulation by microfluidic jetting, Proc. Natl. Acad. Sci. 105(12), 4697–4702 (2008)
21.190
Zurück zum Zitat G. Whitesides, A. Stroock:: Flexible methods for microfluidics, J. Phys. Today 54(6), 42–48 (2001) G. Whitesides, A. Stroock:: Flexible methods for microfluidics, J. Phys. Today 54(6), 42–48 (2001)
21.191
Zurück zum Zitat A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, D.A. Weitz: Monodisperse double emulsions generated from a microcapillary device, Science 308(5721), 537–541 (2005) doi:10.1126/science.1109164 CrossRef A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, D.A. Weitz: Monodisperse double emulsions generated from a microcapillary device, Science 308(5721), 537–541 (2005) doi:10.​1126/​science.​1109164 CrossRef
21.192
Zurück zum Zitat S. Yang, F. Guo, B. Kiraly, X. Mao, M. Lu, K.W. Leong, T.J. Huang: Microfluidic synthesis of multifunctional Janus particles for biomedical applications, Lab Chip 12(12), 2097–2102 (2012) doi:10.1039/c2lc90046g CrossRef S. Yang, F. Guo, B. Kiraly, X. Mao, M. Lu, K.W. Leong, T.J. Huang: Microfluidic synthesis of multifunctional Janus particles for biomedical applications, Lab Chip 12(12), 2097–2102 (2012) doi:10.​1039/​c2lc90046g CrossRef
21.193
Zurück zum Zitat S. Mazzitelli, L. Capretto, F. Quinci, R. Piva, C. Nastruzzi: Preparation of cell-encapsulation devices in confined microenvironment, Adv. Drug Deliv. Rev. 65(11/12), 1533–1555 (2013) S. Mazzitelli, L. Capretto, F. Quinci, R. Piva, C. Nastruzzi: Preparation of cell-encapsulation devices in confined microenvironment, Adv. Drug Deliv. Rev. 65(11/12), 1533–1555 (2013)
21.194
Zurück zum Zitat Y. Kim, F. Fay, D.P. Cormode, B.L. Sanchez-Gaytan, J. Tang, E.J. Hennessy, M.M. Ma, K. Moore, O.C. Farokhzad, E.A. Fisher, W.J.M. Mulder, R. Langer, Z.A. Fayad: Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics, ACS Nano 7(11), 9975–9983 (2013) doi:10.1021/Nn4039063 CrossRef Y. Kim, F. Fay, D.P. Cormode, B.L. Sanchez-Gaytan, J. Tang, E.J. Hennessy, M.M. Ma, K. Moore, O.C. Farokhzad, E.A. Fisher, W.J.M. Mulder, R. Langer, Z.A. Fayad: Single step reconstitution of multifunctional high-density lipoprotein-derived nanomaterials using microfluidics, ACS Nano 7(11), 9975–9983 (2013) doi:10.​1021/​Nn4039063 CrossRef
21.195
Zurück zum Zitat H.A. Santos: Opinion paper: Microfluidics technique to revolutionize the drug delivery field: Current developments and applications, Curr. Drug Deliv. 12(6), 642–644 (2015) H.A. Santos: Opinion paper: Microfluidics technique to revolutionize the drug delivery field: Current developments and applications, Curr. Drug Deliv. 12(6), 642–644 (2015)
21.196
21.197
Zurück zum Zitat R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. Kyei-Manu, R. Langer, O.C. Farokhzad: Microfluidic platform for controlled synthesis of polymeric nanoparticles, Nano Lett. 8(9), 2906–2912 (2008) R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. Kyei-Manu, R. Langer, O.C. Farokhzad: Microfluidic platform for controlled synthesis of polymeric nanoparticles, Nano Lett. 8(9), 2906–2912 (2008)
21.198
Zurück zum Zitat S.H. Kim, J.W. Kim, D.H. Kim, S.H. Han, D.A. Weitz: Polymersomes containing a hydrogel network for high stability and controlled release, Small 9(1), 124–131 (2013) S.H. Kim, J.W. Kim, D.H. Kim, S.H. Han, D.A. Weitz: Polymersomes containing a hydrogel network for high stability and controlled release, Small 9(1), 124–131 (2013)
21.199
Zurück zum Zitat S. Stainmesse, H. Fessi, J.P. Devissaguet, F. Puisieux, C. Theis: Process for the preparation of dispersible colloidal systems of a substance in the form of nanoparticles, US Patent 5133908 (US005133908A) (1992) S. Stainmesse, H. Fessi, J.P. Devissaguet, F. Puisieux, C. Theis: Process for the preparation of dispersible colloidal systems of a substance in the form of nanoparticles, US Patent 5133908 (US005133908A) (1992)
21.200
Zurück zum Zitat F. Ganachaud, J.L. Katz: Nanoparticles and nanocapsules created using the Ouzo effect: Spontaneous emulsification as an alternative to ultrasonic and high-shear devices, Chem. Phys. Chem. 6(2), 209–216 (2005) F. Ganachaud, J.L. Katz: Nanoparticles and nanocapsules created using the Ouzo effect: Spontaneous emulsification as an alternative to ultrasonic and high-shear devices, Chem. Phys. Chem. 6(2), 209–216 (2005)
21.201
Zurück zum Zitat F. Kong, X. Zhang, H. Zhang, X. Qu, D. Chen, M. Servos, E. Mäkilä, J. Salonen, H.A. Santos, M. Hai, D.A. Weitz: Inhibition of multidrug resistance of cancer cells by co-delivery of DNA nanostructures and drugs using porous silicon nanoparticles@giant liposomes, Adv. Funct. Mater. 25(22), 3330–3340 (2015) doi:10.1002/adfm.201500594 CrossRef F. Kong, X. Zhang, H. Zhang, X. Qu, D. Chen, M. Servos, E. Mäkilä, J. Salonen, H.A. Santos, M. Hai, D.A. Weitz: Inhibition of multidrug resistance of cancer cells by co-delivery of DNA nanostructures and drugs using porous silicon nanoparticles@giant liposomes, Adv. Funct. Mater. 25(22), 3330–3340 (2015) doi:10.​1002/​adfm.​201500594 CrossRef
21.202
Zurück zum Zitat F. Araujo, N. Shrestha, M.A. Shahbazi, D. Liu, B. Herranz-Blanco, E.M. Makila, J.J. Salonen, J.T. Hirvonen, P.L. Granja, B. Sarmento, H.A. Santos: Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs, ACS Nano 9(8), 8291–8302 (2015) doi:10.1021/acsnano.5b02762 CrossRef F. Araujo, N. Shrestha, M.A. Shahbazi, D. Liu, B. Herranz-Blanco, E.M. Makila, J.J. Salonen, J.T. Hirvonen, P.L. Granja, B. Sarmento, H.A. Santos: Microfluidic assembly of a multifunctional tailorable composite system designed for site specific combined oral delivery of peptide drugs, ACS Nano 9(8), 8291–8302 (2015) doi:10.​1021/​acsnano.​5b02762 CrossRef
21.203
Zurück zum Zitat H. Zhang, D. Liu, M.A. Shahbazi, E. Makila, B. Herranz-Blanco, J. Salonen, J. Hirvonen, H.A. Santos: Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix, Adv. Mater. 26(26), 4497–4503 (2014) doi:10.1002/adma.201400953 CrossRef H. Zhang, D. Liu, M.A. Shahbazi, E. Makila, B. Herranz-Blanco, J. Salonen, J. Hirvonen, H.A. Santos: Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix, Adv. Mater. 26(26), 4497–4503 (2014) doi:10.​1002/​adma.​201400953 CrossRef
21.204
Zurück zum Zitat D. Liu, H. Zhang, B.-H. Blanco, E. Makila, V.P. Lehto, J. Salonen, J. Hirvonen, H.A. Santos: Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery, Small 10(10), 2029–2038 (2014) doi:10.1002/smll.201303740 CrossRef D. Liu, H. Zhang, B.-H. Blanco, E. Makila, V.P. Lehto, J. Salonen, J. Hirvonen, H.A. Santos: Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery, Small 10(10), 2029–2038 (2014) doi:10.​1002/​smll.​201303740 CrossRef
21.205
Zurück zum Zitat D. Liu, B. Herranz-Blanco, E. Makila, L.R. Arriaga, S. Mirza, D.A. Weitz, N. Sandler, J. Salonen, J. Hirvonen, H.A. Santos: Microfluidic templated mesoporous silicon-solid lipid microcomposites for sustained drug delivery, ACS Appl. Mater. Interfaces 5(22), 12127–12134 (2013) doi:10.1021/am403999q CrossRef D. Liu, B. Herranz-Blanco, E. Makila, L.R. Arriaga, S. Mirza, D.A. Weitz, N. Sandler, J. Salonen, J. Hirvonen, H.A. Santos: Microfluidic templated mesoporous silicon-solid lipid microcomposites for sustained drug delivery, ACS Appl. Mater. Interfaces 5(22), 12127–12134 (2013) doi:10.​1021/​am403999q CrossRef
21.206
Zurück zum Zitat A. Jahn, S.M. Stavis, J.S. Hong, W.N. Vreeland, D.L. Devoe, M. Gaitan: Microfluidic mixing and the formation of nanoscale lipid vesicles, ACS Nano 4(4), 2077–2087 (2010) doi:10.1021/Nn901676x CrossRef A. Jahn, S.M. Stavis, J.S. Hong, W.N. Vreeland, D.L. Devoe, M. Gaitan: Microfluidic mixing and the formation of nanoscale lipid vesicles, ACS Nano 4(4), 2077–2087 (2010) doi:10.​1021/​Nn901676x CrossRef
21.207
Zurück zum Zitat Y.T. Kim, B.L. Chung, M.M. Ma, W.J.M. Mulder, Z.A. Fayad, O.C. Farokhzad, R. Langer: Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices, Nano Lett. 12(7), 3587–3591 (2012) doi:10.1021/Nl301253v CrossRef Y.T. Kim, B.L. Chung, M.M. Ma, W.J.M. Mulder, Z.A. Fayad, O.C. Farokhzad, R. Langer: Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices, Nano Lett. 12(7), 3587–3591 (2012) doi:10.​1021/​Nl301253v CrossRef
21.208
Zurück zum Zitat N. Kolishetti, S. Dhar, P.M. Valencia, L.Q. Lin, R. Karnik, S.J. Lippard, R. Langer, O.C. Farokhzad: Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy, Proc. Natl. Acad. Sci. 107(42), 17939–17944 (2010) doi:10.1073/pnas.1011368107 CrossRef N. Kolishetti, S. Dhar, P.M. Valencia, L.Q. Lin, R. Karnik, S.J. Lippard, R. Langer, O.C. Farokhzad: Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy, Proc. Natl. Acad. Sci. 107(42), 17939–17944 (2010) doi:10.​1073/​pnas.​1011368107 CrossRef
21.209
Zurück zum Zitat A. Jahn, W.N. Vreeland, M. Gaitan, L.E. Locascio: Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing, J. Am. Chem. Soc. 126(9), 2674–2675 (2004) doi:10.1021/Ja0318030 CrossRef A. Jahn, W.N. Vreeland, M. Gaitan, L.E. Locascio: Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing, J. Am. Chem. Soc. 126(9), 2674–2675 (2004) doi:10.​1021/​Ja0318030 CrossRef
21.210
Zurück zum Zitat C.J. Thiele: Neuroblastoma. In: Human Cell Culture, Vol. 1, ed. by J.R.W. Masters, B. Palsson (Springer, Dordrecht 1998) pp. 21–53 C.J. Thiele: Neuroblastoma. In: Human Cell Culture, Vol. 1, ed. by J.R.W. Masters, B. Palsson (Springer, Dordrecht 1998) pp. 21–53
21.211
Zurück zum Zitat J.O. McNamara, E.R. Andrechek, Y. Wang, K.D. Viles, R.E. Rempel, E. Gilboa, B.A. Sullenger, P.H. Giangrande: Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras, Nat. Biotechnol. 24(8), 1005–1015 (2006) doi:10.1038/Nbt1223 CrossRef J.O. McNamara, E.R. Andrechek, Y. Wang, K.D. Viles, R.E. Rempel, E. Gilboa, B.A. Sullenger, P.H. Giangrande: Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras, Nat. Biotechnol. 24(8), 1005–1015 (2006) doi:10.​1038/​Nbt1223 CrossRef
21.212
Zurück zum Zitat F.S. Majedi, M.M. Hasani-Sadrabadi, J.J. VanDersarl, N. Mokarram, S. Hojjati-Emami, E. Dashtimoghadam, S. Bonakdar, M.A. Shokrgozar, A. Bertsch, P. Renaud: On-chip fabrication of paclitaxel-loaded chitosan nanoparticles for cancer therapeutics, Adv. Funct. Mater. 24(4), 432–441 (2014) F.S. Majedi, M.M. Hasani-Sadrabadi, J.J. VanDersarl, N. Mokarram, S. Hojjati-Emami, E. Dashtimoghadam, S. Bonakdar, M.A. Shokrgozar, A. Bertsch, P. Renaud: On-chip fabrication of paclitaxel-loaded chitosan nanoparticles for cancer therapeutics, Adv. Funct. Mater. 24(4), 432–441 (2014)
21.213
Zurück zum Zitat A.J. Mieszawska, Y. Kim, A. Gianella, I. van Rooy, B. Priem, M.P. Labarre, C. Ozcan, D.P. Cormode, A. Petrov, R. Langer, O.C. Farokhzad, Z.A. Fayad, W.J.M. Mulder: Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy, Bioconj. Chem. 24(9), 1429–1434 (2013) doi:10.1021/Bc400166j CrossRef A.J. Mieszawska, Y. Kim, A. Gianella, I. van Rooy, B. Priem, M.P. Labarre, C. Ozcan, D.P. Cormode, A. Petrov, R. Langer, O.C. Farokhzad, Z.A. Fayad, W.J.M. Mulder: Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy, Bioconj. Chem. 24(9), 1429–1434 (2013) doi:10.​1021/​Bc400166j CrossRef
21.214
Zurück zum Zitat P.M. Valencia, P.A. Basto, L.F. Zhang, M. Rhee, R. Langer, O.C. Farokhzad, R. Karnik: Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing, ACS Nano 4(3), 1671–1679 (2010) P.M. Valencia, P.A. Basto, L.F. Zhang, M. Rhee, R. Langer, O.C. Farokhzad, R. Karnik: Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing, ACS Nano 4(3), 1671–1679 (2010)
21.215
Zurück zum Zitat M. Wang, M. Thanou: Targeting nanoparticles to cancer, Pharmacol. Res. 62(2), 90–99 (2010) M. Wang, M. Thanou: Targeting nanoparticles to cancer, Pharmacol. Res. 62(2), 90–99 (2010)
21.216
Zurück zum Zitat L. Zhang, F. Gu, J. Chan, A. Wang, R. Langer, O. Farokhzad: Nanoparticles in medicine: Therapeutic applications and developments, Clin. Pharmacol. Ther. 83(5), 761–769 (2008) L. Zhang, F. Gu, J. Chan, A. Wang, R. Langer, O. Farokhzad: Nanoparticles in medicine: Therapeutic applications and developments, Clin. Pharmacol. Ther. 83(5), 761–769 (2008)
21.217
Zurück zum Zitat K.W. Spitzer, R.D. Vaughan-Jones: Regulation of intracellular pH in mammalian cells. In: The Sodium-Hydrogen Exchanger, ed. by M. Karmazyn, M. Arkiran, L. Fliegal (Springer, New York 2003) pp. 1–15 K.W. Spitzer, R.D. Vaughan-Jones: Regulation of intracellular pH in mammalian cells. In: The Sodium-Hydrogen Exchanger, ed. by M. Karmazyn, M. Arkiran, L. Fliegal (Springer, New York 2003) pp. 1–15
21.218
Zurück zum Zitat M. Stubbs, P.M. McSheehy, J.R. Griffiths, C.L. Bashford: Causes and consequences of tumour acidity and implications for treatment, Mol. Med. Today 6(1), 15–19 (2000) M. Stubbs, P.M. McSheehy, J.R. Griffiths, C.L. Bashford: Causes and consequences of tumour acidity and implications for treatment, Mol. Med. Today 6(1), 15–19 (2000)
21.219
Zurück zum Zitat K.E. Broaders, J.A. Cohen, T.T. Beaudette, E.M. Bachelder, J.M.J. Frechet: Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy, Proc. Natl. Acad. Sci. USA 106(14), 5497–5502 (2009) K.E. Broaders, J.A. Cohen, T.T. Beaudette, E.M. Bachelder, J.M.J. Frechet: Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy, Proc. Natl. Acad. Sci. USA 106(14), 5497–5502 (2009)
21.220
Zurück zum Zitat E.M. Bachelder, T.T. Beaudette, K.E. Broaders, J.M.J. Frechet, M.T. Albrecht, A.J. Mateczun, K.M. Ainslie, J.T. Pesce, A.M. Keane-Myers: In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants, Mol. Pharm. 7(3), 826–835 (2010) E.M. Bachelder, T.T. Beaudette, K.E. Broaders, J.M.J. Frechet, M.T. Albrecht, A.J. Mateczun, K.M. Ainslie, J.T. Pesce, A.M. Keane-Myers: In vitro analysis of acetalated dextran microparticles as a potent delivery platform for vaccine adjuvants, Mol. Pharm. 7(3), 826–835 (2010)
21.221
Zurück zum Zitat M. Stockman: Nanoplasmonics: The physics behind the applications, Phys. Today 64(2), 39 (2011) M. Stockman: Nanoplasmonics: The physics behind the applications, Phys. Today 64(2), 39 (2011)
21.222
Zurück zum Zitat H. Wendt: Ullmann’s encyclopedia of industrial chemistry. In: Ullmann’s Encyclopedia of Industrial Chemistry, ‘‘Electrochemistry’’, ed. by H. Wendt (Wiley-VCH, Winheim 2004) H. Wendt: Ullmann’s encyclopedia of industrial chemistry. In: Ullmann’s Encyclopedia of Industrial Chemistry, ‘‘Electrochemistry’’, ed. by H. Wendt (Wiley-VCH, Winheim 2004)
21.223
Zurück zum Zitat V. Dimitrova, L. Gorker: Modified Nernst equation for electroless metal deposition, Prog. React. Kinet. Mech. 31(1), 45–58 (2006) V. Dimitrova, L. Gorker: Modified Nernst equation for electroless metal deposition, Prog. React. Kinet. Mech. 31(1), 45–58 (2006)
21.224
Zurück zum Zitat D. Goia, E. Matijevic: Preparation of monodispersed metal particles, New J. Chem. 22, 1203–1215 (1998) D. Goia, E. Matijevic: Preparation of monodispersed metal particles, New J. Chem. 22, 1203–1215 (1998)
21.225
Zurück zum Zitat S. Yae, N. Nasu, K. Matsumoto, T. Hagihara, N. Fukumuro, H. Matsuda: Catalytic activity of noble metals for metal-assisted chemical etching of silicon, Electrochimica. Acta. 53, 35–41 (2007) S. Yae, N. Nasu, K. Matsumoto, T. Hagihara, N. Fukumuro, H. Matsuda: Catalytic activity of noble metals for metal-assisted chemical etching of silicon, Electrochimica. Acta. 53, 35–41 (2007)
21.226
Zurück zum Zitat S. Yae, N. Nasu, K. Matsumoto, T. Hagihara, N. Fukumuro, H. Matsuda: Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions, Electrochim. Acta. 53(1), 35–41 (2007) S. Yae, N. Nasu, K. Matsumoto, T. Hagihara, N. Fukumuro, H. Matsuda: Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions, Electrochim. Acta. 53(1), 35–41 (2007)
21.227
Zurück zum Zitat K. Kneipp: Surface-enhanced Raman scattering, Phys. Today 60(11), 40–47 (2007) K. Kneipp: Surface-enhanced Raman scattering, Phys. Today 60(11), 40–47 (2007)
21.228
Zurück zum Zitat M.L. Coluccio, F. Gentile, G. Das, A. Nicastri, A.M. Perri, P. Candeloro, G. Perozziello, R.P. Zaccaria, J.S.T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, E. Di Fabrizio: Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain, Sci. Adv. 1(8), e1500487 (2015) M.L. Coluccio, F. Gentile, G. Das, A. Nicastri, A.M. Perri, P. Candeloro, G. Perozziello, R.P. Zaccaria, J.S.T. Gongora, S. Alrasheed, A. Fratalocchi, T. Limongi, G. Cuda, E. Di Fabrizio: Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain, Sci. Adv. 1(8), e1500487 (2015)
21.229
Zurück zum Zitat F. Gentile, M. Coluccio, A. Toma, E. Rondanina, M. Leoncini, F. De Angelis, G. Das, C. Dorigoni, P. Candeloro, E. Di Fabrizio: Electroless deposition dynamics of silver nanoparticles clusters: A diffusion limited aggregation (DLA) approach, Microelectron. Eng. 98, 359–362 (2012) F. Gentile, M. Coluccio, A. Toma, E. Rondanina, M. Leoncini, F. De Angelis, G. Das, C. Dorigoni, P. Candeloro, E. Di Fabrizio: Electroless deposition dynamics of silver nanoparticles clusters: A diffusion limited aggregation (DLA) approach, Microelectron. Eng. 98, 359–362 (2012)
21.230
Zurück zum Zitat R. Dawkins, D. ben-Avraham: Computer simulations of diffusion-limited reactions, Comput. Sci. Eng. 3(1), 72–76 (2001) R. Dawkins, D. ben-Avraham: Computer simulations of diffusion-limited reactions, Comput. Sci. Eng. 3(1), 72–76 (2001)
21.231
Zurück zum Zitat T. Qiu, P. Chu: Self-selective electroless plating: an approach for fabrication of functional 1-D nanomaterials, Mater. Sci. Eng. R 61, 59–77 (2008) T. Qiu, P. Chu: Self-selective electroless plating: an approach for fabrication of functional 1-D nanomaterials, Mater. Sci. Eng. R 61, 59–77 (2008)
21.232
Zurück zum Zitat T. Qiu, X. Wu, Y. Mei, P. Chu, G. Siu: Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method, Appl. Phys. A 81, 669–671 (2005) T. Qiu, X. Wu, Y. Mei, P. Chu, G. Siu: Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method, Appl. Phys. A 81, 669–671 (2005)
21.233
Zurück zum Zitat T. Witten, L. Sander: Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47(19), 1400–1403 (1981) T. Witten, L. Sander: Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47(19), 1400–1403 (1981)
21.234
Zurück zum Zitat T. Witten, L. Sander: Diffusion-limited aggregation, Phys. Rev. B 27(9), 5686–5697 (1983)MathSciNet T. Witten, L. Sander: Diffusion-limited aggregation, Phys. Rev. B 27(9), 5686–5697 (1983)MathSciNet
21.235
Zurück zum Zitat M. Saltzmann: Drug Delivery (Oxford University Press, Oxford 2001) M. Saltzmann: Drug Delivery (Oxford University Press, Oxford 2001)
21.236
Zurück zum Zitat P. Decuzzi, F. Gentile, A. Granaldi, A. Curcio, F. Causa, C. Indolfi, P. Netti, M. Ferrari: Flow chamber analysis of size effects in the adhesion of spherical particles, Int. J. Nanomed. 2(4), 689–696 (2007) P. Decuzzi, F. Gentile, A. Granaldi, A. Curcio, F. Causa, C. Indolfi, P. Netti, M. Ferrari: Flow chamber analysis of size effects in the adhesion of spherical particles, Int. J. Nanomed. 2(4), 689–696 (2007)
21.237
Zurück zum Zitat P. Meakin: Diffusion controlled deposition on surfaces: Cluster size distribution, interface exponents, and other properties, Phys. Rev. B 30(8), 4207–4214 (1984) P. Meakin: Diffusion controlled deposition on surfaces: Cluster size distribution, interface exponents, and other properties, Phys. Rev. B 30(8), 4207–4214 (1984)
21.238
Zurück zum Zitat Z. Racz, T. Vicsek: Diffusion controlled deposition: Cluster statistics and scaling, Phys. Rev. Lett. 51(26), 2382–2385 (1983) Z. Racz, T. Vicsek: Diffusion controlled deposition: Cluster statistics and scaling, Phys. Rev. Lett. 51(26), 2382–2385 (1983)
21.239
Zurück zum Zitat F. Gentile, E. Battista, A. Accardo, M. Coluccio, M. Asande, G. Perozziello, G. Das, C. Liberale, F. De Angelis, P. Candeloro, P. Decuzzi, E. Di Fabrizio: Fractal structure can explain the increased hydrophobicity of nanoporous silicon films, Microelectron. Eng. 88, 2537–2540 (2011) F. Gentile, E. Battista, A. Accardo, M. Coluccio, M. Asande, G. Perozziello, G. Das, C. Liberale, F. De Angelis, P. Candeloro, P. Decuzzi, E. Di Fabrizio: Fractal structure can explain the increased hydrophobicity of nanoporous silicon films, Microelectron. Eng. 88, 2537–2540 (2011)
21.240
Zurück zum Zitat F. Gentile, M.L. Coluccio, P. Candeloro, M. Barberio, G. Perozziello, M. Francardi, E. Di Fabrizio: Electroless deposition of metal nanoparticle clusters: Effect of pattern distance, J. Vacuum Sci. Technol. B 32(2), 031804 (2014) F. Gentile, M.L. Coluccio, P. Candeloro, M. Barberio, G. Perozziello, M. Francardi, E. Di Fabrizio: Electroless deposition of metal nanoparticle clusters: Effect of pattern distance, J. Vacuum Sci. Technol. B 32(2), 031804 (2014)
21.241
Zurück zum Zitat G. Simone, N. Malara, V. Trunzo, M. Renne, G. Perozziello, E. Di Fabrizio, A. Manz: Galectin-3 coats the membrane of breast cells and makes a signature of tumours, Mol. Biosys. 10(2), 258–265 (2014) G. Simone, N. Malara, V. Trunzo, M. Renne, G. Perozziello, E. Di Fabrizio, A. Manz: Galectin-3 coats the membrane of breast cells and makes a signature of tumours, Mol. Biosys. 10(2), 258–265 (2014)
21.242
Zurück zum Zitat G. Simone: An alternative approach to the phase change of proteins in an aqueous mixture with ethanol, Chem. Eng. Res. Design 105, 130–136 (2016) G. Simone: An alternative approach to the phase change of proteins in an aqueous mixture with ethanol, Chem. Eng. Res. Design 105, 130–136 (2016)
21.243
Zurück zum Zitat G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M.L. Coluccio, E. Carbone, E. Di Fabrizio: Microfluidic devices module tumor cell line susceptibility to NK cell recognition, Small 8(18), 2886–2894 (2012) G. Perozziello, R. La Rocca, G. Cojoc, C. Liberale, N. Malara, G. Simone, P. Candeloro, A. Anichini, L. Tirinato, F. Gentile, M.L. Coluccio, E. Carbone, E. Di Fabrizio: Microfluidic devices module tumor cell line susceptibility to NK cell recognition, Small 8(18), 2886–2894 (2012)
21.244
Zurück zum Zitat G. Perozziello, P. Candeloro, A. De Grazia, F. Esposito, M. Allione, M.L. Coluccio, R. Tallerico, I. Valpapuram, L. Tirinato, G. Das, A. Giugni, B. Torre, P. Veltri, U. Kruhne, G.D. Valle, E. Di Fabrizio: Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers, Opt. Express 24(2), A180–A190 (2016) G. Perozziello, P. Candeloro, A. De Grazia, F. Esposito, M. Allione, M.L. Coluccio, R. Tallerico, I. Valpapuram, L. Tirinato, G. Das, A. Giugni, B. Torre, P. Veltri, U. Kruhne, G.D. Valle, E. Di Fabrizio: Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers, Opt. Express 24(2), A180–A190 (2016)
21.245
Zurück zum Zitat G. Simone: Demonstrating microdroplet coalescence for tailored and biodegradable microgel fabrication, RSC Adv. 5(70), 56848–56854 (2015) G. Simone: Demonstrating microdroplet coalescence for tailored and biodegradable microgel fabrication, RSC Adv. 5(70), 56848–56854 (2015)
21.246
Zurück zum Zitat G. Simone: Micro analysis to map the glycome code, Proteomics 14(9), 994–1000 (2014) G. Simone: Micro analysis to map the glycome code, Proteomics 14(9), 994–1000 (2014)
21.247
Zurück zum Zitat R. Catalano, G. Perozziello, G. Simone, P. Candeloro, F. Gentile, M.L. Coluccio, F. Pardeo, M. Burghammer, G. Cuda, C. Riekel, E. Di Fabrizio: Optimized fabrication protocols of microfluidic devices for x-ray analysis, Microelectron. Eng. 124, 13–16 (2014) R. Catalano, G. Perozziello, G. Simone, P. Candeloro, F. Gentile, M.L. Coluccio, F. Pardeo, M. Burghammer, G. Cuda, C. Riekel, E. Di Fabrizio: Optimized fabrication protocols of microfluidic devices for x-ray analysis, Microelectron. Eng. 124, 13–16 (2014)
21.248
Zurück zum Zitat G. Keramas, G. Perozziello, O. Geschke, C.B.V. Christensen: Development of a multiplex microarray microsystem, Lab Chip 4(2), 152–158 (2004) G. Keramas, G. Perozziello, O. Geschke, C.B.V. Christensen: Development of a multiplex microarray microsystem, Lab Chip 4(2), 152–158 (2004)
21.249
Zurück zum Zitat G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A.M. Perri, M.L. Coluccio, E. Parrotta, A. De Grazia, M. Tallerico, F. Pardeo, R. Catalano, G. Cuda, E. Di Fabrizio: A microfluidic dialysis device for complex biological mixture SERS analysis, Microelectron. Eng. 144, 37–41 (2015) G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A.M. Perri, M.L. Coluccio, E. Parrotta, A. De Grazia, M. Tallerico, F. Pardeo, R. Catalano, G. Cuda, E. Di Fabrizio: A microfluidic dialysis device for complex biological mixture SERS analysis, Microelectron. Eng. 144, 37–41 (2015)
21.250
Zurück zum Zitat G. Simone, N. Malara, V. Trunzo, G. Perozziello, P. Neuzil, M. Francardi, L. Roveda, M. Renne, U. Prati, V. Mollace, A. Manz, E. Di Fabrizio: Protein–carbohydrate complex reveals circulating metastatic cells in a microfluidic assay, Small 9(12), 2152–2161 (2013) G. Simone, N. Malara, V. Trunzo, G. Perozziello, P. Neuzil, M. Francardi, L. Roveda, M. Renne, U. Prati, V. Mollace, A. Manz, E. Di Fabrizio: Protein–carbohydrate complex reveals circulating metastatic cells in a microfluidic assay, Small 9(12), 2152–2161 (2013)
21.251
Zurück zum Zitat G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M.L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H.D. Espinosa, G. Cuda, E. Di Fabrizio: Microfluidics and nanotechnology: Towards fully integrated analytical devices for the detection of cancer biomarkers, RSC Adv. 4(98), 55590–55598 (2014) G. Perozziello, P. Candeloro, F. Gentile, A. Nicastri, A. Perri, M.L. Coluccio, A. Adamo, F. Pardeo, R. Catalano, E. Parrotta, H.D. Espinosa, G. Cuda, E. Di Fabrizio: Microfluidics and nanotechnology: Towards fully integrated analytical devices for the detection of cancer biomarkers, RSC Adv. 4(98), 55590–55598 (2014)
21.252
Zurück zum Zitat G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, E. Di Fabrizio: A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells, Microelectron. Eng. 111, 314–319 (2013) G. Perozziello, R. Catalano, M. Francardi, E. Rondanina, F. Pardeo, F. De Angelis, N. Malara, P. Candeloro, G. Morrone, E. Di Fabrizio: A microfluidic device integrating plasmonic nanodevices for Raman spectroscopy analysis on trapped single living cells, Microelectron. Eng. 111, 314–319 (2013)
21.253
Zurück zum Zitat G. Perozziello, J. Møllenbach, S. Laursen, E. di Fabrizio, K. Gernaey, U. Krühne: Lab on a chip automates in vitro cell culturing, Microelectron. Eng. 98, 655–658 (2012) G. Perozziello, J. Møllenbach, S. Laursen, E. di Fabrizio, K. Gernaey, U. Krühne: Lab on a chip automates in vitro cell culturing, Microelectron. Eng. 98, 655–658 (2012)
21.254
Zurück zum Zitat G. Simone, G. Perozziello: UV/VIS transparent optical waveguides fabricated using organic–inorganic nanocomposite layers, J. Nanosci. Nanotechnol. 11, 2057–2063 (2011) G. Simone, G. Perozziello: UV/VIS transparent optical waveguides fabricated using organic–inorganic nanocomposite layers, J. Nanosci. Nanotechnol. 11, 2057–2063 (2011)
21.255
Zurück zum Zitat F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R.P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio: Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures, Nature Photonics 5, 682–687 (2011) F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R.P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio: Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures, Nature Photonics 5, 682–687 (2011)
Metadaten
Titel
Nano-Particles for Biomedical Applications
verfasst von
Paolo Decuzzi
Alessandro Coclite
Aeju Lee
Anna Lisa Palange
Daniele Di Mascolo
Ciro Chiappini
Hélder A. Santos
Maria Laura Coluccio
Gerardo Perozziello
Patrizio Candeloro
Enzo Di Fabrizio
Francesco Gentile
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54357-3_21

Neuer Inhalt