Skip to main content

2011 | OriginalPaper | Buchkapitel

6. Nano-Photonics and Opto-Fluidics on Bio-Sensing

verfasst von : Ming C. Wu, Arash Jamshidi

Erschienen in: Nano-Bio-Sensing

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optofluidics is the integration of optical and microfluidic systems to achieve novel functionalities. An important ability of optofluidics is the manipulation, assembly, and patterning of objects of interest in a microfluidic environment. Recent advances in nanophotonics have introduced exciting methods for biological and chemical sensing with single molecule sensitivities. Therefore, the integration of nanophotonic sensors with optofluidic manipulation platforms is essential for sensing and monitoring of single cells and other biomaterials. In recent years, optoelectronic tweezers (OET) have emerged as a powerful technique for the manipulation of micro and nanoscopic particles. Here, we will present the capabilities of OET optofluidic platform for parallel manipulation of single cells and large-scale patterning of nanophotonic sensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Chronis and L. P. Lee, “Electrothermally activated SU-8 microgripper for single cell manipulation in solution,” IEEE Journal of Microelectromechanical Systems, vol. 14, pp. 857–863, 2005. N. Chronis and L. P. Lee, “Electrothermally activated SU-8 microgripper for single cell manipulation in solution,” IEEE Journal of Microelectromechanical Systems, vol. 14, pp. 857–863, 2005.
2.
Zurück zum Zitat C. G. Keller and R. T. Howe, “Hexsil tweezers for teleoperated micro-assembly,” in Tenth Annual IEEE International Workshop on Micro Electro Mechanical Systems (MEMS), 1997, pp. 72–77. C. G. Keller and R. T. Howe, “Hexsil tweezers for teleoperated micro-assembly,” in Tenth Annual IEEE International Workshop on Micro Electro Mechanical Systems (MEMS), 1997, pp. 72–77.
3.
Zurück zum Zitat C. J. Kim, A. P. Pisano, and R. S. Muller, “Silicon-processed overhanging microgripper,” IEEE Journal of Microelectromechanical Systems, vol. 1, pp. 31–36, 1992. C. J. Kim, A. P. Pisano, and R. S. Muller, “Silicon-processed overhanging microgripper,” IEEE Journal of Microelectromechanical Systems, vol. 1, pp. 31–36, 1992.
4.
Zurück zum Zitat J. Cheng, E. L. Sheldon, L. Wu, M. J. Heller, and J. P. O’Connell, “Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip,” Analytical Chemistry, vol. 70, pp. 2321–2326, 1998. J. Cheng, E. L. Sheldon, L. Wu, M. J. Heller, and J. P. O’Connell, “Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip,” Analytical Chemistry, vol. 70, pp. 2321–2326, 1998.
5.
Zurück zum Zitat P. R. C. Gascoyne and J. V. Vykoukal, “Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments,” Proceedings of the IEEE, vol. 92, pp. 22–42, 2004. P. R. C. Gascoyne and J. V. Vykoukal, “Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments,” Proceedings of the IEEE, vol. 92, pp. 22–42, 2004.
6.
Zurück zum Zitat P. R. C. Gascoyne, X.-B. Wang, Y. Huang, and F. F. Becker, “Dielectrophoretic separation of cancer cells from blood,” IEEE Transactions on Industry Applications, vol. 33, pp. 670–678, 1997. P. R. C. Gascoyne, X.-B. Wang, Y. Huang, and F. F. Becker, “Dielectrophoretic separation of cancer cells from blood,” IEEE Transactions on Industry Applications, vol. 33, pp. 670–678, 1997.
7.
Zurück zum Zitat R. Pethig, M. S. Talary, and R. S. Lee, “Enhancing traveling-wave dielectrophoresis with signal superposition,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, pp. 43–50, 2003. R. Pethig, M. S. Talary, and R. S. Lee, “Enhancing traveling-wave dielectrophoresis with signal superposition,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, pp. 43–50, 2003.
8.
Zurück zum Zitat R. Krupke, F. Hennrich, H. von Lohneysen, and M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301, pp. 344–347, Jul 18 2003. R. Krupke, F. Hennrich, H. von Lohneysen, and M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301, pp. 344–347, Jul 18 2003.
9.
Zurück zum Zitat S. Y. Lee, T. H. Kim, D. I. Suh, J. E. Park, J. H. Kim, C. J. Youn, B. K. Ahn, and S. K. Lee, “An electrical characterization of a hetero-junction nanowire (NW) PN diode (n-GaN NW/p-Si) formed by dielectrophoresis alignment,” Physica E-Low-Dimensional Systems & Nanostructures, vol. 36, pp. 194–198, Feb 2007. S. Y. Lee, T. H. Kim, D. I. Suh, J. E. Park, J. H. Kim, C. J. Youn, B. K. Ahn, and S. K. Lee, “An electrical characterization of a hetero-junction nanowire (NW) PN diode (n-GaN NW/p-Si) formed by dielectrophoresis alignment,” Physica E-Low-Dimensional Systems & Nanostructures, vol. 36, pp. 194–198, Feb 2007.
10.
Zurück zum Zitat P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Applied Physics Letters, vol. 77, pp. 1399–1401, Aug 28 2000. P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-field assisted assembly and alignment of metallic nanowires,” Applied Physics Letters, vol. 77, pp. 1399–1401, Aug 28 2000.
11.
Zurück zum Zitat S. J. Papadakis, Z. Gu, and D. H. Gracias, “Dielectrophoretic assembly of reversible and irreversible metal nanowire networks and vertically aligned arrays,” Applied Physics Letters, vol. 88, 2006. S. J. Papadakis, Z. Gu, and D. H. Gracias, “Dielectrophoretic assembly of reversible and irreversible metal nanowire networks and vertically aligned arrays,” Applied Physics Letters, vol. 88, 2006.
12.
Zurück zum Zitat C. R. Cabrera and P. Yager, “Continuous concentration of bacteria in a microfluidic flow cell using electrokinetic techniques,” Electrophoresis, vol. 22, pp. 355–362, 2001. C. R. Cabrera and P. Yager, “Continuous concentration of bacteria in a microfluidic flow cell using electrokinetic techniques,” Electrophoresis, vol. 22, pp. 355–362, 2001.
13.
Zurück zum Zitat C. R. Barry, J. Gu, and H. O. Jacobs, “Charging process and coulomb-force-directed printing of nanoparticles with sub-100-nm lateral resolution,” Nano Letters, vol. 5, pp. 2078–2084, 2005. C. R. Barry, J. Gu, and H. O. Jacobs, “Charging process and coulomb-force-directed printing of nanoparticles with sub-100-nm lateral resolution,” Nano Letters, vol. 5, pp. 2078–2084, 2005.
14.
Zurück zum Zitat N. G. Loucaides, A. Ramos, and G. E. Georghiou, “Trapping and manipulation of nanoparticles by using jointly dielectrophoresis and AC electroosmosis,” Journal of Physics: Conference Series, vol. 100, 2008. N. G. Loucaides, A. Ramos, and G. E. Georghiou, “Trapping and manipulation of nanoparticles by using jointly dielectrophoresis and AC electroosmosis,” Journal of Physics: Conference Series, vol. 100, 2008.
15.
Zurück zum Zitat A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnology, vol. 17, pp. 1109–1111, 1999. A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnology, vol. 17, pp. 1109–1111, 1999.
16.
Zurück zum Zitat H. Lee, A. M. Purdon, V. Chu, and R. M. Westervelt, “Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays,” Nano Letters, vol. 4, pp. 995–998, 2004. H. Lee, A. M. Purdon, V. Chu, and R. M. Westervelt, “Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays,” Nano Letters, vol. 4, pp. 995–998, 2004.
17.
Zurück zum Zitat M. Tanase, L. A. Bauer, A. Hultgren, D. M. Silevitch, L. Sun, D. H. Reich, P. C. Searson, and G. J. Meyer, “Magnetic alignment of fluorescent nanowires,” Nano Letters, vol. 1, pp. 155–158, 2001. M. Tanase, L. A. Bauer, A. Hultgren, D. M. Silevitch, L. Sun, D. H. Reich, P. C. Searson, and G. J. Meyer, “Magnetic alignment of fluorescent nanowires,” Nano Letters, vol. 1, pp. 155–158, 2001.
18.
Zurück zum Zitat A. K. Bentley, J. S. Trethewey, A. B. Ellis, and W. C. Crone, “Magnetic manipulation of copper-tin nanowires capped with nickel ends,” Nano Letters, vol. 4, pp. 487–490, 2004. A. K. Bentley, J. S. Trethewey, A. B. Ellis, and W. C. Crone, “Magnetic manipulation of copper-tin nanowires capped with nickel ends,” Nano Letters, vol. 4, pp. 487–490, 2004.
19.
Zurück zum Zitat D. D. Carlo, L. Y. Wu, and L. P. Lee, “Dynamic single cell culture array,” Lab on a Chip, vol. 6, pp. 1445–1449, 2006. D. D. Carlo, L. Y. Wu, and L. P. Lee, “Dynamic single cell culture array,” Lab on a Chip, vol. 6, pp. 1445–1449, 2006.
20.
Zurück zum Zitat A. R. Wheeler, W. R. Throndset, R. J. Whelan, A. M. Leach, R. N. Zare, Y. H. Liao, K. Farrell, I. D. Manger, and A. Daridon, “Microfluidic device for single-cell analysis,” Analytical Chemistry, vol. 75, pp. 3581–3586, 2003. A. R. Wheeler, W. R. Throndset, R. J. Whelan, A. M. Leach, R. N. Zare, Y. H. Liao, K. Farrell, I. D. Manger, and A. Daridon, “Microfluidic device for single-cell analysis,” Analytical Chemistry, vol. 75, pp. 3581–3586, 2003.
21.
Zurück zum Zitat A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Analytical Chemistry, vol. 74, pp. 2451–2457, 2002. A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated cell sorter,” Analytical Chemistry, vol. 74, pp. 2451–2457, 2002.
22.
Zurück zum Zitat A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical Review Letters, vol. 24, p. 156, 1970. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical Review Letters, vol. 24, p. 156, 1970.
23.
Zurück zum Zitat A. Ashkin, M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature, vol. 330, pp. 769–771, 1987. A. Ashkin, M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams,” Nature, vol. 330, pp. 769–771, 1987.
24.
Zurück zum Zitat S. K. Mohanty, A. Rapp, S. Monajembashi, P. K. Gupta, and K. O. Greulich, “Comet assay measurements of DNA damage in cells by laser microbeams and trapping beams with wavelengths spanning a range of 308 nm to 1064 nm,” Radiation Research, vol. 157, pp. 378–385, 2002. S. K. Mohanty, A. Rapp, S. Monajembashi, P. K. Gupta, and K. O. Greulich, “Comet assay measurements of DNA damage in cells by laser microbeams and trapping beams with wavelengths spanning a range of 308 nm to 1064 nm,” Radiation Research, vol. 157, pp. 378–385, 2002.
25.
Zurück zum Zitat K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophysical Journal, vol. 77, pp. 2856–2863, 1999. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophysical Journal, vol. 77, pp. 2856–2863, 1999.
26.
Zurück zum Zitat P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, pp. 370–372, Jul 21 2005. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, vol. 436, pp. 370–372, Jul 21 2005.
27.
Zurück zum Zitat S. Adachi, Optical properties of crystalline and amorphous semiconductors: materials and fundamental principles: Boston: Kluwer Academic Publishers, 1999. S. Adachi, Optical properties of crystalline and amorphous semiconductors: materials and fundamental principles: Boston: Kluwer Academic Publishers, 1999.
28.
Zurück zum Zitat R. Schwarz, F. Wang, and M. Reissner, “Fermi level dependence of the ambipolar diffusion length in silicon thin film transistors,” Applied Physics Letters, vol. 63, pp. 1083–1085, 1993. R. Schwarz, F. Wang, and M. Reissner, “Fermi level dependence of the ambipolar diffusion length in silicon thin film transistors,” Applied Physics Letters, vol. 63, pp. 1083–1085, 1993.
29.
Zurück zum Zitat A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nature Photonics, vol. 2, pp. 85–89, 2008. A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Y. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nature Photonics, vol. 2, pp. 85–89, 2008.
30.
Zurück zum Zitat H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab on a Chip, vol. 10, pp. 165–172, DOI 10.1039/b906593h, 2010. H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, S. L. Neale, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media,” Lab on a Chip, vol. 10, pp. 165–172, DOI 10.1039/b906593h, 2010.
31.
Zurück zum Zitat Y. Higuchi, T. Kusakabe, T. Tanemura, K. Sugano, T. Tsuchiya, and O. Tabata, “Manipulation system for nano/micro components integration via transportation and self-assembly,” in Conference on Micro Electro Mechanical Systems, 2008. Y. Higuchi, T. Kusakabe, T. Tanemura, K. Sugano, T. Tsuchiya, and O. Tabata, “Manipulation system for nano/micro components integration via transportation and self-assembly,” in Conference on Micro Electro Mechanical Systems, 2008.
32.
Zurück zum Zitat X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE Journal of Selected Topics in Quantum Electronics: Special Issue on Biophotonics, vol. 13, pp. 1655–1662, 2007. X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE Journal of Selected Topics in Quantum Electronics: Special Issue on Biophotonics, vol. 13, pp. 1655–1662, 2007.
33.
Zurück zum Zitat X. Miao, B. K. Wilson, S. H. Pun, and L. Y. Lin, “Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics,” Optics Express, vol. 16, p. 13517, 2008. X. Miao, B. K. Wilson, S. H. Pun, and L. Y. Lin, “Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics,” Optics Express, vol. 16, p. 13517, 2008.
34.
Zurück zum Zitat W. Wang, Y. H. Lin, T. F. Guo, and G. B. Lee, “Manipulation of biosamples and microparicles using optical images on polymer devices,” in IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009. W. Wang, Y. H. Lin, T. F. Guo, and G. B. Lee, “Manipulation of biosamples and microparicles using optical images on polymer devices,” in IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009.
35.
Zurück zum Zitat P. Y. Chiou, W. Wong, J. C. Liao, and M. C. Wu, “Cell addressing and trapping using novel optoelectronic tweezers,” IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, 17th, Maastricht, Netherlands, Jan. 25–29, 2004, pp. 21–24, 2004. P. Y. Chiou, W. Wong, J. C. Liao, and M. C. Wu, “Cell addressing and trapping using novel optoelectronic tweezers,” IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, 17th, Maastricht, Netherlands, Jan. 25–29, 2004, pp. 21–24, 2004.
36.
Zurück zum Zitat W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Lab-on-a-display: a new microparticle manipulation platform using a liquid crystal display (LCD),” Microfluidics and Nanofluidics, vol. 3, pp. 217–225, 2007. W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Lab-on-a-display: a new microparticle manipulation platform using a liquid crystal display (LCD),” Microfluidics and Nanofluidics, vol. 3, pp. 217–225, 2007.
37.
Zurück zum Zitat H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis, vol. 29, pp. 1203–1212, 2008. H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis, vol. 29, pp. 1203–1212, 2008.
38.
Zurück zum Zitat P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” Journal of Microelectromechanical Systems, vol. 17, 2008. P. Y. Chiou, A. T. Ohta, A. Jamshidi, H. Y. Hsu, and M. C. Wu, “Light-actuated AC electroosmosis for nanoparticle manipulation,” Journal of Microelectromechanical Systems, vol. 17, 2008.
39.
Zurück zum Zitat J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” Journal of Microelectromechanical Systems, vol. 17, 2008. J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” Journal of Microelectromechanical Systems, vol. 17, 2008.
40.
Zurück zum Zitat S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Optics Express, vol. 15, pp. 12619–12626 2007. S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Optics Express, vol. 15, pp. 12619–12626 2007.
41.
Zurück zum Zitat A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” Journal of Microelectromechanical Systems, vol. 16, pp. 491–499, 2007. A. T. Ohta, P. Y. Chiou, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, F. Q. Yu, R. Sun, and M. C. Wu, “Dynamic cell and microparticle control via optoelectronic tweezers,” Journal of Microelectromechanical Systems, vol. 16, pp. 491–499, 2007.
42.
Zurück zum Zitat A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically-controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 243, pp. 235–243, 2007. A. T. Ohta, P. Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, A. N. K. Lau, H. Y. Hsu, A. Jamshidi, and M. C. Wu, “Optically-controlled cell discrimination and trapping using optoelectronic tweezers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 243, pp. 235–243, 2007.
43.
Zurück zum Zitat Y.-S. Lu, Y.-P. Huang, J. A. Yeh, C. Lee, and Y.-H. Chang, “Controllability of non-contact cell manipulation by image dielectrophoresis (iDEP),” Optical and Quantum Electronics, vol. 37, pp. 1385–1395, 2005. Y.-S. Lu, Y.-P. Huang, J. A. Yeh, C. Lee, and Y.-H. Chang, “Controllability of non-contact cell manipulation by image dielectrophoresis (iDEP),” Optical and Quantum Electronics, vol. 37, pp. 1385–1395, 2005.
44.
Zurück zum Zitat H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for cell manipulation in highly conductive solution,” in Solid-State Sensors, Actuators and Microsystems Conference, 2007. H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, and M. C. Wu, “Phototransistor-based optoelectronic tweezers for cell manipulation in highly conductive solution,” in Solid-State Sensors, Actuators and Microsystems Conference, 2007.
45.
Zurück zum Zitat H. Y. Hsu, H. Lee, S. Pautot, K. Yu, S. Neale, A. T. Ohta, A. Jamshidi, J. Valley, E. Isocaff, and M. C. Wu, “Sorting of differentiated neurons using phototransistor based optoelectronic tweezers for cell replacement therapy of neurodegenerative diseases,” in The 15th International Conference on Solid-State Sensors, Actuators and Microsystems Denver, Colorado, 2009. H. Y. Hsu, H. Lee, S. Pautot, K. Yu, S. Neale, A. T. Ohta, A. Jamshidi, J. Valley, E. Isocaff, and M. C. Wu, “Sorting of differentiated neurons using phototransistor based optoelectronic tweezers for cell replacement therapy of neurodegenerative diseases,” in The 15th International Conference on Solid-State Sensors, Actuators and Microsystems Denver, Colorado, 2009.
46.
Zurück zum Zitat S. L. Neale, Z. Fan, A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, A. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics 2009. S. L. Neale, Z. Fan, A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, A. Javey, and M. C. Wu, “Optofluidic assembly of red/blue/green semiconductor nanowires,” in Conference on Lasers and Electro-Optics 2009.
47.
Zurück zum Zitat A. T. Ohta, A. Jamshidi, P. J. Pauzauskie, H. Y. Hsu, P. Yang, and M. C. Wu, “Trapping and transport of silicon nanowires using lateral-field optoelectronic tweezers,” in Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, 2007, pp. 828–829. A. T. Ohta, A. Jamshidi, P. J. Pauzauskie, H. Y. Hsu, P. Yang, and M. C. Wu, “Trapping and transport of silicon nanowires using lateral-field optoelectronic tweezers,” in Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, 2007, pp. 828–829.
48.
Zurück zum Zitat A. T. Ohta, S. L. Neale, H. Y. Hsu, J. K. Valley, and M. C. Wu, “Parallel assembly of nanowires using lateral-field optoelectronic tweezers,” in 2008 IEEE/LEOS International Conference on Optical MEMS and Nanopotonics, 2008. A. T. Ohta, S. L. Neale, H. Y. Hsu, J. K. Valley, and M. C. Wu, “Parallel assembly of nanowires using lateral-field optoelectronic tweezers,” in 2008 IEEE/LEOS International Conference on Optical MEMS and Nanopotonics, 2008.
49.
Zurück zum Zitat P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. Satcher, J. H. and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Applied Physics Letters, vol. 95, pp. 113104–1, 2009. P. J. Pauzauskie, A. Jamshidi, J. K. Valley, J. Satcher, J. H. and M. C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Applied Physics Letters, vol. 95, pp. 113104–1, 2009.
50.
Zurück zum Zitat A. Jamshidi, H. Y. Hsu, J. K. Valley, A. T. Ohta, S. Neale, and M. C. Wu, “Metallic nanoparticle manipulation using optoelectronic tweezers,” in IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009. A. Jamshidi, H. Y. Hsu, J. K. Valley, A. T. Ohta, S. Neale, and M. C. Wu, “Metallic nanoparticle manipulation using optoelectronic tweezers,” in IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009.
51.
Zurück zum Zitat M. Hoeb, J. O. Radler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophysical Journal, vol. 93, pp. 1032–1038, 2007. M. Hoeb, J. O. Radler, S. Klein, M. Stutzmann, and M. S. Brandt, “Light-induced dielectrophoretic manipulation of DNA,” Biophysical Journal, vol. 93, pp. 1032–1038, 2007.
52.
Zurück zum Zitat Y.-H. Lin, C.-M. Chang, and G.-B. Lee, “Manipulation of single DNA molecules by using optically projected images,” Optics Express, vol. 17, pp. 15318–15329, 2009. Y.-H. Lin, C.-M. Chang, and G.-B. Lee, “Manipulation of single DNA molecules by using optically projected images,” Optics Express, vol. 17, pp. 15318–15329, 2009.
53.
Zurück zum Zitat J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab on a Chip, vol. 9, pp. 1714–1720, 2009. J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab on a Chip, vol. 9, pp. 1714–1720, 2009.
54.
Zurück zum Zitat Y.-H. Lin and G. B. Lee, “An optically induced cell lysis device using dielectrophoresis,” Applied Physics Letters, vol. 94, p. 033901, 2009. Y.-H. Lin and G. B. Lee, “An optically induced cell lysis device using dielectrophoresis,” Applied Physics Letters, vol. 94, p. 033901, 2009.
55.
Zurück zum Zitat Y.-H. Lin and G.-B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosensors and Bioelectronics, vol. 24, pp. 572–578, 2008. Y.-H. Lin and G.-B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosensors and Bioelectronics, vol. 24, pp. 572–578, 2008.
56.
Zurück zum Zitat A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Letters, vol. 9, pp. 2921–2925, 2009. A. Jamshidi, S. L. Neale, K. Yu, P. J. Pauzauskie, P. J. Schuck, J. K. Valley, H. Y. Hsu, A. T. Ohta, and M. C. Wu, “NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles,” Nano Letters, vol. 9, pp. 2921–2925, 2009.
57.
Zurück zum Zitat S. Park, C. Pan, T.-H. Wu, C. Kloss, S. Kalim, C. E. Callahan, M. Teitell, and E. P. Y. Chiou, “Floating electrode optoelectronic tweezers: light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium,” Applied Physics Letters, vol. 92, pp. 151101–1511013, 2008. S. Park, C. Pan, T.-H. Wu, C. Kloss, S. Kalim, C. E. Callahan, M. Teitell, and E. P. Y. Chiou, “Floating electrode optoelectronic tweezers: light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium,” Applied Physics Letters, vol. 92, pp. 151101–1511013, 2008.
58.
Zurück zum Zitat H. Hwang, Y. Oh, J. J. Kim, W. Choi, J. K. Park, S. H. Kim, and J. Jang, “Reduction of nonspecific surface-particle interactions in optoelectronic tweezers,” Applied Physics Letters, vol. 92, p. 3, 2008. H. Hwang, Y. Oh, J. J. Kim, W. Choi, J. K. Park, S. H. Kim, and J. Jang, “Reduction of nonspecific surface-particle interactions in optoelectronic tweezers,” Applied Physics Letters, vol. 92, p. 3, 2008.
59.
Zurück zum Zitat G. J. Shah, A. T. Ohta, P. Y. Chiou, M. C. Wu, and C.-J. Kim, “EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis,” Lab on a Chip, vol. 9, pp. 1732–1739, 2009. G. J. Shah, A. T. Ohta, P. Y. Chiou, M. C. Wu, and C.-J. Kim, “EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis,” Lab on a Chip, vol. 9, pp. 1732–1739, 2009.
60.
Zurück zum Zitat G. J. Shah, P. Y. Chiou, J. Gong, A. T. Ohta, J. B. Chou, M. C. Wu and C.-J. Kim, in Proc. IEEE Int. Conf. MEMS, Istanbul, Turkey, pp. 129–132, 2006. G. J. Shah, P. Y. Chiou, J. Gong, A. T. Ohta, J. B. Chou, M. C. Wu and C.-J. Kim, in Proc. IEEE Int. Conf. MEMS, Istanbul, Turkey, pp. 129–132, 2006.
61.
Zurück zum Zitat T. B. Jones, Electromechanics of Particles: Cambridge University Press, 1995. T. B. Jones, Electromechanics of Particles: Cambridge University Press, 1995.
62.
Zurück zum Zitat P. Y. Chiou, A. T. Ohat, A. Jamshidi, H.-Y. Hsu, and J. W. Chou, M. C., “Light-actuated AC electroosmosis for optical manipulation of nanoscale particles,” in Proceedings of Solid-State Sensor, Actuator, and Microsystems Workshop 2006, pp. 56–59. P. Y. Chiou, A. T. Ohat, A. Jamshidi, H.-Y. Hsu, and J. W. Chou, M. C., “Light-actuated AC electroosmosis for optical manipulation of nanoscale particles,” in Proceedings of Solid-State Sensor, Actuator, and Microsystems Workshop 2006, pp. 56–59.
63.
Zurück zum Zitat J. Voldman, “Electrical forces for microscale cell manipulation,” Annual Review of Biomedical Engineering, vol. 8, pp. 425–454, 2006. J. Voldman, “Electrical forces for microscale cell manipulation,” Annual Review of Biomedical Engineering, vol. 8, pp. 425–454, 2006.
64.
Zurück zum Zitat G. Fuhr, H. Glassera, T. Müllera and T. Schnellea, “Cell manipulation and cultivation under a.c. electric field influence in highly conductive culture media”, vol. 1201, pp. 353–360, 1994. G. Fuhr, H. Glassera, T. Müllera and T. Schnellea, “Cell manipulation and cultivation under a.c. electric field influence in highly conductive culture media”, vol. 1201, pp. 353–360, 1994.
65.
Zurück zum Zitat J. A. Lundqvist, F. Sahlin, M. A. I. Aberg, A. Stromberg, P. S. Eriksson, and O. Orwar, “Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes,” Proceedings of the National Academy of Sciences, vol. 95, pp. 10356–10360, 1998. J. A. Lundqvist, F. Sahlin, M. A. I. Aberg, A. Stromberg, P. S. Eriksson, and O. Orwar, “Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes,” Proceedings of the National Academy of Sciences, vol. 95, pp. 10356–10360, 1998.
66.
Zurück zum Zitat E. Neumann, M. Schaeferridder, Y. Wang, and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO Journal, vol. 1, pp. 841–845, 1982. E. Neumann, M. Schaeferridder, Y. Wang, and P. H. Hofschneider, “Gene transfer into mouse lyoma cells by electroporation in high electric fields,” EMBO Journal, vol. 1, pp. 841–845, 1982.
67.
Zurück zum Zitat H. Q. He, D. C. Chang, and Y. K. Lee, “Using a micro electroporation chip to determine the optimal physical parameters in the uptake of biomolecules in HeLa cells,” Bioelectrochemistry, vol. 70, pp. 363–368, 2007. H. Q. He, D. C. Chang, and Y. K. Lee, “Using a micro electroporation chip to determine the optimal physical parameters in the uptake of biomolecules in HeLa cells,” Bioelectrochemistry, vol. 70, pp. 363–368, 2007.
68.
Zurück zum Zitat L. A. MacQueen, M. D. Buschmann, and M. R. Wertheimer, “Gene delivery by electroporation after dielectrophoretic positioning of cells in a non-uniform electric field,” Bioelectrochemistry, vol. 72, pp. 141–148, 2008. L. A. MacQueen, M. D. Buschmann, and M. R. Wertheimer, “Gene delivery by electroporation after dielectrophoretic positioning of cells in a non-uniform electric field,” Bioelectrochemistry, vol. 72, pp. 141–148, 2008.
69.
Zurück zum Zitat J. C. Weaver, “Electroporation of cells and tissue,” IEEE Transactions on Plasma Science, vol. 28, pp. 24–33, 2000. J. C. Weaver, “Electroporation of cells and tissue,” IEEE Transactions on Plasma Science, vol. 28, pp. 24–33, 2000.
70.
Zurück zum Zitat P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab on a Chip, vol. 6, pp. 207–212, 2006. P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, “Mixing with bubbles: a practical technology for use with portable microfluidic devices,” Lab on a Chip, vol. 6, pp. 207–212, 2006.
71.
Zurück zum Zitat S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, “Microfluidic actuation using electrochemically generated bubbles,” Analytical Chemistry, vol. 74, pp. 6392–6396, 2002. S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, “Microfluidic actuation using electrochemically generated bubbles,” Analytical Chemistry, vol. 74, pp. 6392–6396, 2002.
72.
Zurück zum Zitat T. K. Jun and C. J. Kim, “Microscale pumping with traversing bubbles in microchannels,” Journal of Applied Physics, vol. 83, 1998. T. K. Jun and C. J. Kim, “Microscale pumping with traversing bubbles in microchannels,” Journal of Applied Physics, vol. 83, 1998.
73.
Zurück zum Zitat M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science, vol. 315, pp. 832–835, 2007. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science, vol. 315, pp. 832–835, 2007.
74.
Zurück zum Zitat J. A. Schwartz, J. V. Vykoukal, and P. R. C. Gascoyne, “Droplet-based chemistry on a programmable micro-chip,” Lab on a Chip, vol. 4, pp. 11–17, 2004. J. A. Schwartz, J. V. Vykoukal, and P. R. C. Gascoyne, “Droplet-based chemistry on a programmable micro-chip,” Lab on a Chip, vol. 4, pp. 11–17, 2004.
75.
Zurück zum Zitat M. G. Pollack, A. D. Shenderov, and R. B. Fair, “Electrowetting-based actuation of droplets for integrated microfluidics,” Lab on a Chip, vol. 2, pp. 96–101, 2002. M. G. Pollack, A. D. Shenderov, and R. B. Fair, “Electrowetting-based actuation of droplets for integrated microfluidics,” Lab on a Chip, vol. 2, pp. 96–101, 2002.
76.
Zurück zum Zitat P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sensors and Actuators A: Physical, vol. 104, pp. 222–228, 2003. P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim, and M. C. Wu, “Light actuation of liquid by optoelectrowetting,” Sensors and Actuators A: Physical, vol. 104, pp. 222–228, 2003.
77.
Zurück zum Zitat G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nature Materials, vol. 5, 2006. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nature Materials, vol. 5, 2006.
78.
Zurück zum Zitat D. E. Kataoka, “Patterning liquid flow on the microscopic scale,” Nature, vol. 402, pp. 794–797, 1999. D. E. Kataoka, “Patterning liquid flow on the microscopic scale,” Nature, vol. 402, pp. 794–797, 1999.
79.
Zurück zum Zitat K. T. Kotz, K. A. Noble, and G. W. Faris, “Optical microfluidics,” Applied Physics Letters, vol. 85, pp. 2658–2660, 2004. K. T. Kotz, K. A. Noble, and G. W. Faris, “Optical microfluidics,” Applied Physics Letters, vol. 85, pp. 2658–2660, 2004.
80.
Zurück zum Zitat A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Applied Physics Letters, vol. 91, p. 074103, 2007. A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Applied Physics Letters, vol. 91, p. 074103, 2007.
81.
Zurück zum Zitat A. Jamshidi, A. T. Ohta, J. K. Valley, H. Y. Hsu, S. L. Neale, and M. C. Wu, “Optofluidics and optoelectronic tweezers,” in Proceedings of the SPIE, 2008. A. Jamshidi, A. T. Ohta, J. K. Valley, H. Y. Hsu, S. L. Neale, and M. C. Wu, “Optofluidics and optoelectronic tweezers,” in Proceedings of the SPIE, 2008.
82.
Zurück zum Zitat V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE Journal Of Selected Topics in Quantum Electronics, vol. 12, pp. 15–32, 2006. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE Journal Of Selected Topics in Quantum Electronics, vol. 12, pp. 15–32, 2006.
83.
Zurück zum Zitat A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Letters, vol. 7, pp. 394–397, 2007. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Letters, vol. 7, pp. 394–397, 2007.
84.
Zurück zum Zitat M. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Optics Express, vol. 15, pp. 4530–4535, 2007. M. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Optics Express, vol. 15, pp. 4530–4535, 2007.
85.
Zurück zum Zitat R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areasy,” Journal of Molecular Recognition, vol. 17, pp. 151–161, 2004. R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areasy,” Journal of Molecular Recognition, vol. 17, pp. 151–161, 2004.
86.
Zurück zum Zitat D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluid, vol. 4, pp. 33–52, 2008. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluid, vol. 4, pp. 33–52, 2008.
87.
Zurück zum Zitat K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment”,J. Phys. Chem. B, vol. 107, pp 668–677, 2003. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment”,J. Phys. Chem. B, vol. 107, pp 668–677, 2003.
88.
Zurück zum Zitat K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Physical Review Letters, vol. 78, pp. 1667–1670, 1997. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Physical Review Letters, vol. 78, pp. 1667–1670, 1997.
89.
Zurück zum Zitat S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, pp. 1102–1106, 1997. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science, vol. 275, pp. 1102–1106, 1997.
90.
Zurück zum Zitat L. Tong, M. Righini, M. U. Gonzalez, R. Quidantbc, and M. Kall, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab on a Chip, vol. 9, pp. 193–195, 2009. L. Tong, M. Righini, M. U. Gonzalez, R. Quidantbc, and M. Kall, “Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis,” Lab on a Chip, vol. 9, pp. 193–195, 2009.
91.
Zurück zum Zitat K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Optics Letters, vol. 19, pp. 930–932, 1994. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Optics Letters, vol. 19, pp. 930–932, 1994.
92.
Zurück zum Zitat P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Letters, vol. 5, pp. 1937–1942, 2005. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Letters, vol. 5, pp. 1937–1942, 2005.
93.
Zurück zum Zitat Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Optics Letters, vol. 31, pp. 2429–2431, 2006. Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Optics Letters, vol. 31, pp. 2429–2431, 2006.
94.
Zurück zum Zitat L. Zheng, S. Li, J. P. Brody, and P. J. Burke, “Manipulating nanoparticles in solution with electrically contacted nanotubes using dielectrophoresis,” Langmuir, vol. 20, pp. 8612–8619, 2004. L. Zheng, S. Li, J. P. Brody, and P. J. Burke, “Manipulating nanoparticles in solution with electrically contacted nanotubes using dielectrophoresis,” Langmuir, vol. 20, pp. 8612–8619, 2004.
95.
Zurück zum Zitat A. E. Cohen and W. E. Moerner, “Method for trapping and manipulating nanoscale objects in solution”, APL, vol. 86, pp. 093109, 2005. A. E. Cohen and W. E. Moerner, “Method for trapping and manipulating nanoscale objects in solution”, APL, vol. 86, pp. 093109, 2005.
96.
Zurück zum Zitat E. Ewen Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach Wiley, 2005. E. Ewen Smith and G. Dent, Modern Raman Spectroscopy: A Practical Approach Wiley, 2005.
97.
Zurück zum Zitat R. L. McCreery, Raman Spectroscopy for Chemical Analysis Wiley-Interscience, 2000. R. L. McCreery, Raman Spectroscopy for Chemical Analysis Wiley-Interscience, 2000.
98.
Zurück zum Zitat W. Yang, J. Hulteen, G. C. Schatz, and R. P. V. Duyne, “A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory,” The Journal of Chemical Physics, vol. 104, pp. 4313–4323, 1996. W. Yang, J. Hulteen, G. C. Schatz, and R. P. V. Duyne, “A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory,” The Journal of Chemical Physics, vol. 104, pp. 4313–4323, 1996.
99.
Zurück zum Zitat N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Letters, vol. 7, pp. 941–945, 2007. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Letters, vol. 7, pp. 941–945, 2007.
100.
Zurück zum Zitat H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proceedings of the National Academy of Sciences, vol. 102, pp. 15752–15756, 2005. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proceedings of the National Academy of Sciences, vol. 102, pp. 15752–15756, 2005.
101.
Zurück zum Zitat N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mechanics & Chemistry of Biosystems, vol. 2, pp. 17–25, 2005. N. Shen, D. Datta, C. B. Schaffer, P. LeDuc, D. E. Ingber, and E. Mazur, “Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor,” Mechanics & Chemistry of Biosystems, vol. 2, pp. 17–25, 2005.
102.
Zurück zum Zitat A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Applied Physics B: Lasers and Optics, vol. 81, pp. 1015–1047, 2005. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Applied Physics B: Lasers and Optics, vol. 81, pp. 1015–1047, 2005.
103.
Zurück zum Zitat S. A. Johnson and T. Hunter, “Kinomics: methods for deciphering the kinome,” Nature Methods, vol. 2, pp. 17–25, 2005. S. A. Johnson and T. Hunter, “Kinomics: methods for deciphering the kinome,” Nature Methods, vol. 2, pp. 17–25, 2005.
104.
Zurück zum Zitat P. O. Brown and D. Botstein, “Exploring the new world of the genome with DNA microarrays,” Nature Genetics, vol. 21, pp. 33–37, 1999. P. O. Brown and D. Botstein, “Exploring the new world of the genome with DNA microarrays,” Nature Genetics, vol. 21, pp. 33–37, 1999.
105.
Zurück zum Zitat M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, vol. 270, pp. 467–470, 1995. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, vol. 270, pp. 467–470, 1995.
106.
Zurück zum Zitat J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials, vol. 7, pp. 442–453, 2008. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials, vol. 7, pp. 442–453, 2008.
107.
Zurück zum Zitat M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, pp. 1897–1899, 2001. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, pp. 1897–1899, 2001.
108.
Zurück zum Zitat A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, pp. 654–657, 2003. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, pp. 654–657, 2003.
109.
Zurück zum Zitat P. Yang, “The chemistry and physics of semiconductor nanowires,” MRS Bulletin, vol. 30, pp. 85–91, 2005. P. Yang, “The chemistry and physics of semiconductor nanowires,” MRS Bulletin, vol. 30, pp. 85–91, 2005.
110.
Zurück zum Zitat B. Sun, A. T. Findikoglu, M. Sykora, D. J. Werder, and V. I. Klimov, “Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon,” Nano Letters, vol. 9, pp. 1235–1241, 2009. B. Sun, A. T. Findikoglu, M. Sykora, D. J. Werder, and V. I. Klimov, “Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon,” Nano Letters, vol. 9, pp. 1235–1241, 2009.
111.
Zurück zum Zitat R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, ““Dip-Pen” nanolithography,” Science, vol. 283, pp. 661–663, 1999. R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, ““Dip-Pen” nanolithography,” Science, vol. 283, pp. 661–663, 1999.
112.
Zurück zum Zitat K. Salaita, Y. Wang, and C. A. Mirkin, “Applications of dip-pen nanolithography,” Nature Nanotechnology, vol. 145, pp. 145–155, 2007. K. Salaita, Y. Wang, and C. A. Mirkin, “Applications of dip-pen nanolithography,” Nature Nanotechnology, vol. 145, pp. 145–155, 2007.
113.
Zurück zum Zitat B. Basnar and I. Willner, “Dip-Pen-nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces,” Small, vol. 5, p. 28, 2009. B. Basnar and I. Willner, “Dip-Pen-nanolithographic patterning of metallic, semiconductor, and metal oxide nanostructures on surfaces,” Small, vol. 5, p. 28, 2009.
114.
Zurück zum Zitat D. S. Ginger, H. Zhang, and C. A. Mirkin, “The evolution of Dip-Pen nanolithography,” Angewandte Chemie (International ed. in English), vol. 43, p. 30, 2004. D. S. Ginger, H. Zhang, and C. A. Mirkin, “The evolution of Dip-Pen nanolithography,” Angewandte Chemie (International ed. in English), vol. 43, p. 30, 2004.
115.
Zurück zum Zitat B. Li, C. F. Goh, X. Zhou, G. Lu, H. Tantang, Y. Chen, C. Xue, F. Y. C. Boey, and H. Zhang, “Patterning colloidal metal nanoparticles for controlled growth of carbon nanotubes,” Advanced Materials, vol. 20, pp. 4873–4878, 2008. B. Li, C. F. Goh, X. Zhou, G. Lu, H. Tantang, Y. Chen, C. Xue, F. Y. C. Boey, and H. Zhang, “Patterning colloidal metal nanoparticles for controlled growth of carbon nanotubes,” Advanced Materials, vol. 20, pp. 4873–4878, 2008.
116.
Zurück zum Zitat H. T. Wang, O. A. Nafday, J. R. Haaheim, E. Tevaarwerk, N. A. Amro, R. G. Sanedrin, C. Y. Chang, F. Ren, and S. J. Pearton, “Toward conductive traces: Dip Pen nanolithography of silver nanoparticle-based inks,” Applied Physics Letters, vol. 93, p. 143105, 2008. H. T. Wang, O. A. Nafday, J. R. Haaheim, E. Tevaarwerk, N. A. Amro, R. G. Sanedrin, C. Y. Chang, F. Ren, and S. J. Pearton, “Toward conductive traces: Dip Pen nanolithography of silver nanoparticle-based inks,” Applied Physics Letters, vol. 93, p. 143105, 2008.
117.
Zurück zum Zitat J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” The Journal of Physical Chemistry. B, vol. 103, pp. 3854–3863, 1999. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” The Journal of Physical Chemistry. B, vol. 103, pp. 3854–3863, 1999.
118.
Zurück zum Zitat J. H. Ahn, H. S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous Three-dimensional electronics by use of printed semiconductor nanomaterials,” Science, vol. 314, pp. 1754–1757, 2006. J. H. Ahn, H. S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo, and J. A. Rogers, “Heterogeneous Three-dimensional electronics by use of printed semiconductor nanomaterials,” Science, vol. 314, pp. 1754–1757, 2006.
119.
Zurück zum Zitat Z. Fan, J. C. Ho, Z. A. Jacobson, R. Roie Yerushalmi, R. L. Alley, H. Razavi, and A. Ali Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Letters, vol. 8, pp. 20–25, 2008. Z. Fan, J. C. Ho, Z. A. Jacobson, R. Roie Yerushalmi, R. L. Alley, H. Razavi, and A. Ali Javey, “Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing,” Nano Letters, vol. 8, pp. 20–25, 2008.
120.
Zurück zum Zitat H. X. He, Q. G. Li, Z. Y. Zhou, H. Zhang, W. Huang, S. F. Y. Li, and Z. F. Liu, “Fabrication of microelectrode arrays using microcontact printing,” Langmuir, vol. 16, p. 9683, 2000. H. X. He, Q. G. Li, Z. Y. Zhou, H. Zhang, W. Huang, S. F. Y. Li, and Z. F. Liu, “Fabrication of microelectrode arrays using microcontact printing,” Langmuir, vol. 16, p. 9683, 2000.
121.
Zurück zum Zitat Y. Xia and G. M. Whitesides, “Soft lithography,” Annual Review of Material Science, vol. 28, p. 153, 1998. Y. Xia and G. M. Whitesides, “Soft lithography,” Annual Review of Material Science, vol. 28, p. 153, 1998.
122.
Zurück zum Zitat R. Yerushalmi, J. C. Ho, Z. A. Jacobson, and A. Javey, “Generic nanomaterial positioning by carrier and stationary phase design,” Nano Letters, vol. 7, pp. 2764–2768, 2007. R. Yerushalmi, J. C. Ho, Z. A. Jacobson, and A. Javey, “Generic nanomaterial positioning by carrier and stationary phase design,” Nano Letters, vol. 7, pp. 2764–2768, 2007.
123.
Zurück zum Zitat E. Rabani, D. R. Reichman, P. L. Geissler, and L. E. Brus, “Drying-mediated self-assembly of nanoparticles,” Nature, vol. 426, pp. 271–274, 2003. E. Rabani, D. R. Reichman, P. L. Geissler, and L. E. Brus, “Drying-mediated self-assembly of nanoparticles,” Nature, vol. 426, pp. 271–274, 2003.
124.
Zurück zum Zitat C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science, vol. 277, pp. 1978–1981, 1997. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, “Reversible tuning of silver quantum dot monolayers through the metal-insulator transition,” Science, vol. 277, pp. 1978–1981, 1997.
125.
Zurück zum Zitat R. C. Hayward, D. A. Saville, and I. A. Aksay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature, vol. 404, pp. 56–59, 2000. R. C. Hayward, D. A. Saville, and I. A. Aksay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature, vol. 404, pp. 56–59, 2000.
126.
Zurück zum Zitat S. J. Williams, A. Kumar, and S. T. Wereley, “Electrokinetic patterning of colloidal particles with optical landscapes,” Lab on a Chip, vol. 8, pp. 1879–1882, 2008. S. J. Williams, A. Kumar, and S. T. Wereley, “Electrokinetic patterning of colloidal particles with optical landscapes,” Lab on a Chip, vol. 8, pp. 1879–1882, 2008.
127.
Zurück zum Zitat P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nature Materials, vol. 5, pp. 97–101, 2006. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nature Materials, vol. 5, pp. 97–101, 2006.
128.
Zurück zum Zitat S. Ito, H. Yoshikawa, and H. Masuhara, “Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates,” Applied Physics Letters, vol. 78, pp. 2566–2568, 2001. S. Ito, H. Yoshikawa, and H. Masuhara, “Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates,” Applied Physics Letters, vol. 78, pp. 2566–2568, 2001.
129.
Zurück zum Zitat B. K. Wilson, M. Hegg, X. Miao, G. Cao, and L. Y. Lin, “Scalable nano-particle assembly by efficient light-induced concentration and fusion,” Optics Express, vol. 16, pp. 17276–17281, 2008. B. K. Wilson, M. Hegg, X. Miao, G. Cao, and L. Y. Lin, “Scalable nano-particle assembly by efficient light-induced concentration and fusion,” Optics Express, vol. 16, pp. 17276–17281, 2008.
130.
Zurück zum Zitat Nanopartz, “Nanopartz accurate spherical gold nanoparticles,” 2008. Nanopartz, “Nanopartz accurate spherical gold nanoparticles,” 2008.
Metadaten
Titel
Nano-Photonics and Opto-Fluidics on Bio-Sensing
verfasst von
Ming C. Wu
Arash Jamshidi
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-6169-3_6

Neuer Inhalt