Skip to main content

2011 | OriginalPaper | Buchkapitel

2. Nano-scale Force Spectroscopy Applied to Biological Samples

verfasst von : Sandor Kasas, Charles Roduit, Giovanni Dietler

Erschienen in: Nano-Bio-Sensing

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter covers the field of AFM-based force spectroscopy (FS) as applied to biological samples ranging from single molecules up to cells. After a brief introduction to atomic force microscopy and to the basic physical phenomena that are involved in FS measurements, we describe some FS experiments that have been conducted using biological systems of increasing complexities. Several experiments describing FS analysis of DNA, proteins, polysaccharides, and whole cells are successively presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ashkin, A. (1980) Applications of laser-radiation pressure. Science 210: 1081–1088.CrossRef Ashkin, A. (1980) Applications of laser-radiation pressure. Science 210: 1081–1088.CrossRef
2.
Zurück zum Zitat Amblard, F., B. Yurke, A. Pargellis, et al. (1996) A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Review of Scientific Instruments 67: 818–827.CrossRef Amblard, F., B. Yurke, A. Pargellis, et al. (1996) A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Review of Scientific Instruments 67: 818–827.CrossRef
3.
Zurück zum Zitat Smith, S. B., L. Finzi and C. Bustamante (1992) Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic-beads. Science 258: 1122–1126.CrossRef Smith, S. B., L. Finzi and C. Bustamante (1992) Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic-beads. Science 258: 1122–1126.CrossRef
4.
Zurück zum Zitat Ishijima, A., T. Doi, K. Sakurada, et al. (1991) Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352: 301–306.CrossRef Ishijima, A., T. Doi, K. Sakurada, et al. (1991) Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352: 301–306.CrossRef
5.
Zurück zum Zitat Florin, E. L., V. T. Moy and H. E. Gaub (1994) Adhesion forces between individual ligand-receptorpairs. Science 264: 415–417.CrossRef Florin, E. L., V. T. Moy and H. E. Gaub (1994) Adhesion forces between individual ligand-receptorpairs. Science 264: 415–417.CrossRef
6.
Zurück zum Zitat Binnig, G., C. F. Quate and C. Gerber (1986) Atomic force microscopy. Physical Review Letters 56: 930–933.CrossRef Binnig, G., C. F. Quate and C. Gerber (1986) Atomic force microscopy. Physical Review Letters 56: 930–933.CrossRef
7.
Zurück zum Zitat Kasas, S., L. Alonso, P. Jacquet, et al. (2010) Microcontroller-driven fluid-injection system for atomic force microscopy. Review of Scientific Instruments 81. Kasas, S., L. Alonso, P. Jacquet, et al. (2010) Microcontroller-driven fluid-injection system for atomic force microscopy. Review of Scientific Instruments 81.
8.
Zurück zum Zitat Cappella, B. and G. Dietler (1999) Force-distance curves by atomic force microscopy. Surface Science Reports 34: 1–104.CrossRef Cappella, B. and G. Dietler (1999) Force-distance curves by atomic force microscopy. Surface Science Reports 34: 1–104.CrossRef
9.
Zurück zum Zitat EssevazRoulet, B., U. Bockelmann and F. Heslot (1997) Mechanical separation of the complementary strands of DNA. Proceedings of the National Academy of Sciences of the United States of America 94: 11935–11940.CrossRef EssevazRoulet, B., U. Bockelmann and F. Heslot (1997) Mechanical separation of the complementary strands of DNA. Proceedings of the National Academy of Sciences of the United States of America 94: 11935–11940.CrossRef
10.
Zurück zum Zitat Yan, H., S. H. Park, G. Finkelstein, et al. (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301: 1882–1884.CrossRef Yan, H., S. H. Park, G. Finkelstein, et al. (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301: 1882–1884.CrossRef
11.
Zurück zum Zitat Liu, Q. H., L. M. Wang, A. G. Frutos, et al. (2000) DNA computing on surfaces. Nature 403: 175–179.CrossRef Liu, Q. H., L. M. Wang, A. G. Frutos, et al. (2000) DNA computing on surfaces. Nature 403: 175–179.CrossRef
12.
Zurück zum Zitat Rief, M., H. Clausen-Schaumann and H. E. Gaub (1999) Sequence-dependent mechanics of single DNA molecules. Nature Structural Biology 6: 346–349.CrossRef Rief, M., H. Clausen-Schaumann and H. E. Gaub (1999) Sequence-dependent mechanics of single DNA molecules. Nature Structural Biology 6: 346–349.CrossRef
13.
Zurück zum Zitat Krautbauer, R., M. Rief and H. E. Gaub (2003) Unzipping DNA oligomers. Nano Letters 3: 493–496.CrossRef Krautbauer, R., M. Rief and H. E. Gaub (2003) Unzipping DNA oligomers. Nano Letters 3: 493–496.CrossRef
14.
Zurück zum Zitat Cluzel, P., A. Lebrun, C. Heller, et al. (1996) DNA: an extensible molecule. Science 271: 792–794. Cluzel, P., A. Lebrun, C. Heller, et al. (1996) DNA: an extensible molecule. Science 271: 792–794.
15.
Zurück zum Zitat Smith, S.B., Y. Cui, and C. Bustamante (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271: 795-799. Smith, S.B., Y. Cui, and C. Bustamante (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271: 795-799.
16.
Zurück zum Zitat Cocco, S., J. Yan, J. Léger, D. Chatenay and J.F. Marko (2004) Overstretching and force-driven strand separation of double-helix DNA. Phys. Rev. E 70: 011910. Cocco, S., J. Yan, J. Léger, D. Chatenay and J.F. Marko (2004) Overstretching and force-driven strand separation of double-helix DNA. Phys. Rev. E 70: 011910.
17.
Zurück zum Zitat Sulkowska, J. I. and M. Cieplak (2007) Mechanical stretching of proteins – a theoretical survey of the Protein Data Bank. Journal of Physics-Condensed Matter 19. Sulkowska, J. I. and M. Cieplak (2007) Mechanical stretching of proteins – a theoretical survey of the Protein Data Bank. Journal of Physics-Condensed Matter 19.
18.
Zurück zum Zitat Bizzarri, A. R. and S. Cannistraro (2009) Atomic force spectroscopy in biological complex formation: strategies and perspectives. Journal of Physical Chemistry B 113: 16449–16464.CrossRef Bizzarri, A. R. and S. Cannistraro (2009) Atomic force spectroscopy in biological complex formation: strategies and perspectives. Journal of Physical Chemistry B 113: 16449–16464.CrossRef
19.
Zurück zum Zitat Livadaru, L., R. R. Netz and H. J. Kreuzer (2003) Stretching response of discrete semiflexible polymers. Macromolecules 36: 3732–3744.CrossRef Livadaru, L., R. R. Netz and H. J. Kreuzer (2003) Stretching response of discrete semiflexible polymers. Macromolecules 36: 3732–3744.CrossRef
20.
Zurück zum Zitat Bustamante, C., J. F. Marko, E. D. Siggia, et al. (1994) Entropic elasticity of lambda-phage DNA. Science 265: 1599–1600.CrossRef Bustamante, C., J. F. Marko, E. D. Siggia, et al. (1994) Entropic elasticity of lambda-phage DNA. Science 265: 1599–1600.CrossRef
21.
Zurück zum Zitat West, D. K., D. J. Brockwell, P. D. Olmsted, et al. (2006) Mechanical resistance of proteins explained using simple molecular models. Biophysical Journal 90: 287–297.CrossRef West, D. K., D. J. Brockwell, P. D. Olmsted, et al. (2006) Mechanical resistance of proteins explained using simple molecular models. Biophysical Journal 90: 287–297.CrossRef
22.
Zurück zum Zitat Schlierf, M. and M. Rief (2005) Temperature softening of a protein in single-molecule experiments. Journal of Molecular Biology 354: 497–503.CrossRef Schlierf, M. and M. Rief (2005) Temperature softening of a protein in single-molecule experiments. Journal of Molecular Biology 354: 497–503.CrossRef
23.
Zurück zum Zitat Dougan, L., G. Feng, H. Lu, et al. (2008) Solvent molecules bridge the mechanical unfolding transition state of a protein. Proceedings of the National Academy of Sciences of the United States of America 105: 3185–3190.CrossRef Dougan, L., G. Feng, H. Lu, et al. (2008) Solvent molecules bridge the mechanical unfolding transition state of a protein. Proceedings of the National Academy of Sciences of the United States of America 105: 3185–3190.CrossRef
24.
Zurück zum Zitat Evans, E. and K. Ritchie (1997) Dynamic strength of molecular adhesion bonds. Biophysical Journal 72: 1541–1555.CrossRef Evans, E. and K. Ritchie (1997) Dynamic strength of molecular adhesion bonds. Biophysical Journal 72: 1541–1555.CrossRef
25.
Zurück zum Zitat Carrion-Vazquez, M., P. E. Marszalek, A. F. Oberhauser, et al. (1999) Atomic force microscopy captures length phenotypes in single proteins. Proceedings of the National Academy of Sciences of the United States of America 96: 11288–11292.CrossRef Carrion-Vazquez, M., P. E. Marszalek, A. F. Oberhauser, et al. (1999) Atomic force microscopy captures length phenotypes in single proteins. Proceedings of the National Academy of Sciences of the United States of America 96: 11288–11292.CrossRef
26.
Zurück zum Zitat Brockwell, D. J., E. Paci, R. C. Zinober, et al. (2003) Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nature Structural Biology 10: 731–737.CrossRef Brockwell, D. J., E. Paci, R. C. Zinober, et al. (2003) Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nature Structural Biology 10: 731–737.CrossRef
27.
Zurück zum Zitat Marszalek, P. E., H. B. Li, A. F. Oberhauser, et al. (2002) Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proceedings of the National Academy of Sciences of the United States of America 99: 4278–4283.CrossRef Marszalek, P. E., H. B. Li, A. F. Oberhauser, et al. (2002) Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proceedings of the National Academy of Sciences of the United States of America 99: 4278–4283.CrossRef
28.
Zurück zum Zitat Oberhauser, A. F., P. K. Hansma, M. Carrion-Vazquez, et al. (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 98: 468–472.CrossRef Oberhauser, A. F., P. K. Hansma, M. Carrion-Vazquez, et al. (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 98: 468–472.CrossRef
29.
Zurück zum Zitat Fernandez, J. M. and H. B. Li (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303: 1674–1678.CrossRef Fernandez, J. M. and H. B. Li (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303: 1674–1678.CrossRef
30.
Zurück zum Zitat Garcia-Manyes, S., J. Brujic, C. L. Badilla, et al. (2007) Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin. Biophysical Journal 93: 2436–2446.CrossRef Garcia-Manyes, S., J. Brujic, C. L. Badilla, et al. (2007) Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin. Biophysical Journal 93: 2436–2446.CrossRef
31.
Zurück zum Zitat Bullard, B., T. Garcia, V. Benes, et al. (2006) The molecular elasticity of the insect flight muscle proteins projectin and kettin. Proceedings of the National Academy of Sciences of the United States of America 103: 4451–4456.CrossRef Bullard, B., T. Garcia, V. Benes, et al. (2006) The molecular elasticity of the insect flight muscle proteins projectin and kettin. Proceedings of the National Academy of Sciences of the United States of America 103: 4451–4456.CrossRef
32.
Zurück zum Zitat Cao, Y. and H. B. Li (2006) Single molecule force spectroscopy reveals a weakly populated microstate of the FnIII domains of tenascin. Journal of Molecular Biology 361: 372–381.CrossRef Cao, Y. and H. B. Li (2006) Single molecule force spectroscopy reveals a weakly populated microstate of the FnIII domains of tenascin. Journal of Molecular Biology 361: 372–381.CrossRef
33.
Zurück zum Zitat Rief, M., J. Pascual, M. Saraste, et al. (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. Journal of Molecular Biology 286: 553–561.CrossRef Rief, M., J. Pascual, M. Saraste, et al. (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. Journal of Molecular Biology 286: 553–561.CrossRef
34.
Zurück zum Zitat Brujic, J., R. I. Z. Hermans, S. Garcia-Manyes, et al. (2007) Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy. Biophysical Journal 92: 2896–2903.CrossRef Brujic, J., R. I. Z. Hermans, S. Garcia-Manyes, et al. (2007) Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy. Biophysical Journal 92: 2896–2903.CrossRef
35.
Zurück zum Zitat Brown, A. E. X., R. I. Litvinov, D. E. Discher, et al. (2007) Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM. Biophysical Journal 92: L39–L41.CrossRef Brown, A. E. X., R. I. Litvinov, D. E. Discher, et al. (2007) Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM. Biophysical Journal 92: L39–L41.CrossRef
36.
Zurück zum Zitat Rief, M., M. Gautel, F. Oesterhelt, et al. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276: 1109–1112.CrossRef Rief, M., M. Gautel, F. Oesterhelt, et al. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276: 1109–1112.CrossRef
37.
Zurück zum Zitat Linke, W. A. and A. Grutzner (2008) Pulling single molecules of titin by AFM – recent advances and physiological implications. Pflugers Archiv-European Journal of Physiology 456: 101–115.CrossRef Linke, W. A. and A. Grutzner (2008) Pulling single molecules of titin by AFM – recent advances and physiological implications. Pflugers Archiv-European Journal of Physiology 456: 101–115.CrossRef
38.
Zurück zum Zitat Schwesinger, F., R. Ros, T. Strunz, et al. (2000) Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proceedings of the National Academy of Sciences of the United States of America 97: 9972–9977.CrossRef Schwesinger, F., R. Ros, T. Strunz, et al. (2000) Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proceedings of the National Academy of Sciences of the United States of America 97: 9972–9977.CrossRef
39.
Zurück zum Zitat Lee, C. K., Y. M. Wang, L. S. Huang, et al. (2007) Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein-ligand interaction. Micron 38: 446–461.CrossRef Lee, C. K., Y. M. Wang, L. S. Huang, et al. (2007) Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein-ligand interaction. Micron 38: 446–461.CrossRef
40.
Zurück zum Zitat Yersin, A., H. Hirling, P. Steiner, et al. (2003) Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 100: 8736–8741.CrossRef Yersin, A., H. Hirling, P. Steiner, et al. (2003) Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 100: 8736–8741.CrossRef
41.
Zurück zum Zitat Rief, M., F. Oesterhelt, B. Heymann, et al. (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275: 1295–1297.CrossRef Rief, M., F. Oesterhelt, B. Heymann, et al. (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275: 1295–1297.CrossRef
42.
Zurück zum Zitat Marszalek, P. E., H. B. Li and J. M. Fernandez (2001) Fingerprinting polysaccharides with single-molecule atomic force microscopy. Nature Biotechnology 19: 258–262.CrossRef Marszalek, P. E., H. B. Li and J. M. Fernandez (2001) Fingerprinting polysaccharides with single-molecule atomic force microscopy. Nature Biotechnology 19: 258–262.CrossRef
43.
Zurück zum Zitat Sletmoen, M., G. Maurstad, P. Sikorski, et al. (2003) Characterisation of bacterial polysaccharides: steps towards single-molecular studies. Carbohydrate Research 338: 2459–2475.CrossRef Sletmoen, M., G. Maurstad, P. Sikorski, et al. (2003) Characterisation of bacterial polysaccharides: steps towards single-molecular studies. Carbohydrate Research 338: 2459–2475.CrossRef
44.
Zurück zum Zitat Abu-Lail, N. I. and T. A. Camesano (2003) Polysaccharide properties probed with atomic force microscopy. Journal of Microscopy-Oxford 212: 217–238.CrossRefMathSciNet Abu-Lail, N. I. and T. A. Camesano (2003) Polysaccharide properties probed with atomic force microscopy. Journal of Microscopy-Oxford 212: 217–238.CrossRefMathSciNet
45.
Zurück zum Zitat Ikai, A., R. Afrin, A. Itoh, et al. (2002) Force measurements for membrane protein manipulation. Colloids and Surfaces B-Biointerfaces 23: 165–171.CrossRef Ikai, A., R. Afrin, A. Itoh, et al. (2002) Force measurements for membrane protein manipulation. Colloids and Surfaces B-Biointerfaces 23: 165–171.CrossRef
46.
Zurück zum Zitat Muller, D. J., M. Krieg, D. Alsteens, et al. (2009) New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Current Opinion in Biotechnology 20: 4–13.CrossRef Muller, D. J., M. Krieg, D. Alsteens, et al. (2009) New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Current Opinion in Biotechnology 20: 4–13.CrossRef
47.
Zurück zum Zitat Verbelen, C. and Y. F. Dufrene (2009) Direct measurement of Mycobacterium–fibronectin interactions. Integrative Biology 1: 296–300.CrossRef Verbelen, C. and Y. F. Dufrene (2009) Direct measurement of Mycobacterium–fibronectin interactions. Integrative Biology 1: 296–300.CrossRef
48.
Zurück zum Zitat Roduit, C., G. van der Goot, P. de Los Rios, et al. (2008) Elastic Membrane Heterogeneity of Living Cells Revealed by Stiff Nanoscale Membrane Domains. Biophysical Journal 94: 1521–1532. Roduit, C., G. van der Goot, P. de Los Rios, et al. (2008) Elastic Membrane Heterogeneity of Living Cells Revealed by Stiff Nanoscale Membrane Domains. Biophysical Journal 94: 1521–1532.
49.
Zurück zum Zitat Carrion-Vazquez, M., A. F. Oberhauser, T. E. Fisher, et al. (2000) Mechanical design of proteins-studied by single-molecule force spectroscopy and protein engineering. Progress in Biophysics and Molecular Biology 74: 63–91.CrossRef Carrion-Vazquez, M., A. F. Oberhauser, T. E. Fisher, et al. (2000) Mechanical design of proteins-studied by single-molecule force spectroscopy and protein engineering. Progress in Biophysics and Molecular Biology 74: 63–91.CrossRef
50.
Zurück zum Zitat Greenleaf, W. J., M. T. Woodside and S. M. Block (2007) High-resolution, single-molecule measurements of biomolecular motion. Annual Review of Biophysics and Biomolecular Structure 36: 171–190.CrossRef Greenleaf, W. J., M. T. Woodside and S. M. Block (2007) High-resolution, single-molecule measurements of biomolecular motion. Annual Review of Biophysics and Biomolecular Structure 36: 171–190.CrossRef
51.
Zurück zum Zitat Ikai, A. and R. Afrin (2003) Toward mechanical manipulations of cell membranes and membrane proteins using an atomic force microscope – an invited review. Cell Biochemistry and Biophysics 39: 257–277.CrossRef Ikai, A. and R. Afrin (2003) Toward mechanical manipulations of cell membranes and membrane proteins using an atomic force microscope – an invited review. Cell Biochemistry and Biophysics 39: 257–277.CrossRef
52.
Zurück zum Zitat Puchner, E. M. and H. E. Gaub (2009) Force and function: probing proteins with AFM-based force spectroscopy. Current Opinion in Structural Biology 19: 605–614.CrossRef Puchner, E. M. and H. E. Gaub (2009) Force and function: probing proteins with AFM-based force spectroscopy. Current Opinion in Structural Biology 19: 605–614.CrossRef
53.
Zurück zum Zitat Afrin, R. and A. Ikai (2006) Force profiles of protein pulling with or without cytoskeletal links studied by AFM. Biochemical and Biophysical Research Communications 348: 238–244.CrossRef Afrin, R. and A. Ikai (2006) Force profiles of protein pulling with or without cytoskeletal links studied by AFM. Biochemical and Biophysical Research Communications 348: 238–244.CrossRef
Metadaten
Titel
Nano-scale Force Spectroscopy Applied to Biological Samples
verfasst von
Sandor Kasas
Charles Roduit
Giovanni Dietler
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-6169-3_2

Neuer Inhalt