Skip to main content

2017 | OriginalPaper | Buchkapitel

23. Nanofillers

verfasst von : Roger Rothon

Erschienen in: Fillers for Polymer Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanofillers, especially those based on clays and carbon nanotubes, have received a great deal of attention recently. The accepted definition of nanoparticles is that they should have at least one dimension in the range 1–100 nm and that the others should be greater than 100 nm. This can be further divided; when three dimensions are in the nano range we have nanoparticles, when it is two then nanofibers, and when one then nanoplates.
The first thing to notice is that, despite all the recent publicity, nanofillers are nothing new, and nanoparticle fillers already have a very significant market presence. These include the carbon blacks, precipitated and fumed silicas, and precipitated calcium carbonates. More recently interest in using synthetic polymer nanoparticles has been revived.
Where the principal novelty lies today is with the nanoplates and nanofibers, which are more recent arrivals on the scene. Mineral derived nanoplate fillers are the more promising for volume applications, due to a relatively low cost compared to the fibers. Color is also a limiting factor for the nanocarbon fillers.
While a large number of layer minerals exist with the potential for delamination and dispersion as nanoplates, clays and especially those of the montmorillonite family have shown most promise and have been focused on commercially. Nanoclays offer the potential for high stiffness at low loadings, excellent barrier properties, and some useful flame retardant properties. However, after more than two decades of effort and some limited successes, their market penetration is well short of initial hopes and commercial interest is declining. This is due to the practical difficulties in fully delaminating and dispersing them, and thus realizing their potential benefits, in all but a few cases.
Among other nanoplates, graphite and ultimately graphene have promise for some advanced composite applications. Cost (and color) are likely to be limiting factors. The same factors will affect graphene fiber analogues, such as carbon nanofibers and tubes.
Extraction of nanocrystals such as starch and cellulose from abundant plant materials is also of interest, especially from the sustainability angle. Despite some promise, the current production processes are costly and far from truly “green.” They also face similar difficulties in redispersion into polymer matrices as the nanoclays.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Axelson JW (1987) Chapter 9. Asbestos. In: Milewski JV, Katz HS (eds) Handbook of reinforcements for plastics. Van Nostrand Reinhold, New York, pp 137–146. ISBN 0-442-26475-5 Axelson JW (1987) Chapter 9. Asbestos. In: Milewski JV, Katz HS (eds) Handbook of reinforcements for plastics. Van Nostrand Reinhold, New York, pp 137–146. ISBN 0-442-26475-5
Zurück zum Zitat Burke OW Jr (1965) Chapter 15, Reinforcement of rubber by organic fillers. In: Kraus G (ed) Reinforcement of Elastomers. Interscience/Wiley, USA, pp 491–527 Burke OW Jr (1965) Chapter 15, Reinforcement of rubber by organic fillers. In: Kraus G (ed) Reinforcement of Elastomers. Interscience/Wiley, USA, pp 491–527
Zurück zum Zitat Cui Y, Kumar S, Kona BR, van Houcke D (2015) Gas barrier properties of polymer/clay nanocomposites. RSC Adv 78:63669–63690. doi:10.1039/C5RA10333A, New York, First published online 20 Jul 2015 Cui Y, Kumar S, Kona BR, van Houcke D (2015) Gas barrier properties of polymer/clay nanocomposites. RSC Adv 78:63669–63690. doi:10.1039/C5RA10333A, New York, First published online 20 Jul 2015
Zurück zum Zitat DeArmitt C (2011) Chapter 5. Polyhedral oligomeric silsesquioxanes in plastics. In: Hartmann-Thompson C (ed) Applications of polyhedral oligomeric silsesquioxanes, vol 3, Advances in silicon science. Springer, New York, pp 209–228. doi:10.1007/978-90-481-3787-9_5 DeArmitt C (2011) Chapter 5. Polyhedral oligomeric silsesquioxanes in plastics. In: Hartmann-Thompson C (ed) Applications of polyhedral oligomeric silsesquioxanes, vol 3, Advances in silicon science. Springer, New York, pp 209–228. doi:10.1007/978-90-481-3787-9_5
Zurück zum Zitat Drzal LT, Fukushima H (2006) Exfoliated graphite nanoplates (xGnP): a carbon nanotube alternative. In: NSTI-Nanotech 2006, vol 1, pp 170–173, www.nsti.org. ISBN 0-9767985-6-5 Drzal LT, Fukushima H (2006) Exfoliated graphite nanoplates (xGnP): a carbon nanotube alternative. In: NSTI-Nanotech 2006, vol 1, pp 170–173, www.​nsti.​org. ISBN 0-9767985-6-5
Zurück zum Zitat Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582 Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582
Zurück zum Zitat Fujiwara S, Sakamoto T (1976) Japanese Patent No. JPA51-1009998 Fujiwara S, Sakamoto T (1976) Japanese Patent No. JPA51-1009998
Zurück zum Zitat Hari J, Pukanszky B (2011) Chapter 8. Nanocomposites: preparation, structure, and properties. In: Kutz M (ed) Applied plastics engineering handbook, processing and materials. Elsevier, Oxford, pp 109–142. ISBN 978-1-4377-3514-7CrossRef Hari J, Pukanszky B (2011) Chapter 8. Nanocomposites: preparation, structure, and properties. In: Kutz M (ed) Applied plastics engineering handbook, processing and materials. Elsevier, Oxford, pp 109–142. ISBN 978-1-4377-3514-7CrossRef
Zurück zum Zitat Iqbal Z, Goyal A (2010) Carbon nanotubes/nanofibers and carbon fibres. In: Xanthos M (ed) Functional fillers for plastics, 2nd edn. Wiley-VCH, Weinheim, Germany, pp 189–2010. ISBN 978-3-527-32361-6 Iqbal Z, Goyal A (2010) Carbon nanotubes/nanofibers and carbon fibres. In: Xanthos M (ed) Functional fillers for plastics, 2nd edn. Wiley-VCH, Weinheim, Germany, pp 189–2010. ISBN 978-3-527-32361-6
Zurück zum Zitat Jepson WB (1984) A comprehensive brief review of kaolin, its occurrence, properties and production. Philos Trans R Soc London, A 311:411–432; Published July 14 1984 Jepson WB (1984) A comprehensive brief review of kaolin, its occurrence, properties and production. Philos Trans R Soc London, A 311:411–432; Published July 14 1984
Zurück zum Zitat Kamena K (2010) Chapter 9. Nanoclays and their emerging markets. In: Xanthos M (ed) Functional fillers for plastics, 2nd edn. Wiley-VCH, Weinheim, pp 177–187. ISBN 978-3-527-32361-6 Kamena K (2010) Chapter 9. Nanoclays and their emerging markets. In: Xanthos M (ed) Functional fillers for plastics, 2nd edn. Wiley-VCH, Weinheim, pp 177–187. ISBN 978-3-527-32361-6
Zurück zum Zitat Kato M, Usuki A (2000) Chapter 5. Properties and applications of nanoclay composites. In: Pinnavaia TJ, Beall GW (eds) Polymer clay nanocomposites. Wiley, New York. ISBN 978-0-471-63700-4 Kato M, Usuki A (2000) Chapter 5. Properties and applications of nanoclay composites. In: Pinnavaia TJ, Beall GW (eds) Polymer clay nanocomposites. Wiley, New York. ISBN 978-0-471-63700-4
Zurück zum Zitat Lin N, Huang J, Chang PR, Anderson DP, Yu J (2011) Preparation, modification, and application of starch nanocrystals in nanomaterials: a review. J Nanomater 2011: 13 pages. Article ID 573687. doi:10.1155/2011/573687 Lin N, Huang J, Chang PR, Anderson DP, Yu J (2011) Preparation, modification, and application of starch nanocrystals in nanomaterials: a review. J Nanomater 2011: 13 pages. Article ID 573687. doi:10.1155/2011/573687
Zurück zum Zitat Mariano M, Kissi NE, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Poly Sci Part B: Polym Phys 52(12):791–806CrossRef Mariano M, Kissi NE, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Poly Sci Part B: Polym Phys 52(12):791–806CrossRef
Zurück zum Zitat Miller B, Hobbie EK (2013) Nanoparticles as macromolecules. J Poly Sci Part B: Polym Phys 51:1195–1208CrossRef Miller B, Hobbie EK (2013) Nanoparticles as macromolecules. J Poly Sci Part B: Polym Phys 51:1195–1208CrossRef
Zurück zum Zitat Napper DH (1983) Polymeric stabilisation of colloidal dispersions. Academic, London Napper DH (1983) Polymeric stabilisation of colloidal dispersions. Academic, London
Zurück zum Zitat NIOSH (2009) Approaches to safe nanotechnology, DHHS (NIOSH) publication No 2009-125 NIOSH (2009) Approaches to safe nanotechnology, DHHS (NIOSH) publication No 2009-125
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
Zurück zum Zitat Okada et al (1988) Composite material and process for manufacturing the same. US Patent 4,739,007 Okada et al (1988) Composite material and process for manufacturing the same. US Patent 4,739,007
Zurück zum Zitat Pasbakhsh P, Jock Churchman G (eds) (2015) Natural mineral nanotubes, properties and application. Apple Academic Press, Oakville. ISBN 13: 978-1-4822-6225-4 Pasbakhsh P, Jock Churchman G (eds) (2015) Natural mineral nanotubes, properties and application. Apple Academic Press, Oakville. ISBN 13: 978-1-4822-6225-4
Zurück zum Zitat Pinnavaia TJ, Beall GW (eds) (2000) Polymer-clay nanocomposites. Wiley, New York. ISBN 978-0-471-63700-4 Pinnavaia TJ, Beall GW (eds) (2000) Polymer-clay nanocomposites. Wiley, New York. ISBN 978-0-471-63700-4
Zurück zum Zitat Porter D, Metcalfe E, Thomas MJK (2000) Nanocomposite fire retardants - a review. Fire Mater 24(1):45 Porter D, Metcalfe E, Thomas MJK (2000) Nanocomposite fire retardants - a review. Fire Mater 24(1):45
Zurück zum Zitat Soldano C, Mahmood A, Dujandin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150CrossRef Soldano C, Mahmood A, Dujandin E (2010) Production, properties and potential of graphene. Carbon 48(8):2127–2150CrossRef
Zurück zum Zitat Torno O (2006) Synthetic boehmite aluminas and hydrotalcites as performance filler. In: Proceedings of the high performance fillers conference, Cologne, Mar 2006, Paper 5. Published by Rapra Technology Limited, Shawbury, 2003. ISBN 1-87957-560-9 Torno O (2006) Synthetic boehmite aluminas and hydrotalcites as performance filler. In: Proceedings of the high performance fillers conference, Cologne, Mar 2006, Paper 5. Published by Rapra Technology Limited, Shawbury, 2003. ISBN 1-87957-560-9
Metadaten
Titel
Nanofillers
verfasst von
Roger Rothon
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-28117-9_78

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.