Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

8. Nanoparticle Synthesis by Biogenic Approach

verfasst von : Sarvesh Kumar Srivastava, Chiaki Ogino, Akihiko Kondo

Erschienen in: Green Processes for Nanotechnology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biological synthesis of nanoparticles has been present in living organisms over the course of evolution to serve a variety of purposes. In this chapter, we discuss the latest trends and application for nanoparticle synthesis via plants, algae, yeast, bacteria, fungi, etc. There exists several review articles among others documenting studies about various biogenic sources and associated nanoparticle synthesis; we have rather emphasized on recent research works which probed into novel applications of these bio-nanoparticles along with some important historical findings. Also, we have discussed the challenges faced by biogenic methods along with possible areas to tweak in order to standardize this synthesis technique. Biogenic synthesis of nanoparticles has the potential to provide cost-effective, eco-friendly alternative to work as “biological nanofactories”/functionalization method once the attention has been shifted to understand the underlying mechanism, its in vitro replication and obtaining shape/size control over the nanoparticles being synthesized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Hong W, Bai H, Xu Y et al (2010) Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J Phys Chem C 114:1822–1826. doi:10.1021/jp9101724 CrossRef Hong W, Bai H, Xu Y et al (2010) Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J Phys Chem C 114:1822–1826. doi:10.​1021/​jp9101724 CrossRef
4.
Zurück zum Zitat Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharyaa R, Mukherjee P (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41:2943–2970. doi:10.1039/C2CS15355F Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharyaa R, Mukherjee P (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41:2943–2970. doi:10.​1039/​C2CS15355F
6.
Zurück zum Zitat Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley-VCH Verlag GmbH & Co KGaA, WeinheimCrossRef Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley-VCH Verlag GmbH & Co KGaA, WeinheimCrossRef
7.
Zurück zum Zitat Liu K, Zhang J-J, Cheng F-F et al (2011) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21:12034. doi:10.1039/c1jm10749f CrossRef Liu K, Zhang J-J, Cheng F-F et al (2011) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21:12034. doi:10.​1039/​c1jm10749f CrossRef
9.
Zurück zum Zitat Pompe W, Rodel G, Weiss H, Mertig M (2013) Bio-nanomaterials. Wiley-VCH Verlag GmbH & Co KGaA, WeinheimCrossRef Pompe W, Rodel G, Weiss H, Mertig M (2013) Bio-nanomaterials. Wiley-VCH Verlag GmbH & Co KGaA, WeinheimCrossRef
10.
Zurück zum Zitat Eduardo R-H, Margarita D, Pilar A (2008) An introduction to Bio-nanohybrid materials. In: Katsuhiko Ariga YML (ed) Eduardo ruiz-hitzky Bio-inorganic hybrid nanomater. Strateg. Synth. Charact. Appl. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 1–40 Eduardo R-H, Margarita D, Pilar A (2008) An introduction to Bio-nanohybrid materials. In: Katsuhiko Ariga YML (ed) Eduardo ruiz-hitzky Bio-inorganic hybrid nanomater. Strateg. Synth. Charact. Appl. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 1–40
11.
13.
Zurück zum Zitat Hallmann J, Hallmann AQ, Mahaffee WFKJ (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRef Hallmann J, Hallmann AQ, Mahaffee WFKJ (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRef
15.
Zurück zum Zitat Klaus-Joerger T, Joerger R (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20CrossRef Klaus-Joerger T, Joerger R (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20CrossRef
17.
18.
Zurück zum Zitat Romano C, D’Imperio S, Woyke T et al (2013) Comparative genomic analysis of phylogenetically closely related Hydrogenobaculum sp. Isolates from Yellowstone National Park. Appl Environ Microbiol 79:2932–2943. doi:10.1128/AEM. 03591-12 CrossRef Romano C, D’Imperio S, Woyke T et al (2013) Comparative genomic analysis of phylogenetically closely related Hydrogenobaculum sp. Isolates from Yellowstone National Park. Appl Environ Microbiol 79:2932–2943. doi:10.​1128/​AEM.​ 03591-12 CrossRef
21.
22.
Zurück zum Zitat Parikh RY, Singh S, Prasad BLV et al (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chembiochem 9:1415–1422. doi:10.1002/cbic.200700592 CrossRef Parikh RY, Singh S, Prasad BLV et al (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chembiochem 9:1415–1422. doi:10.​1002/​cbic.​200700592 CrossRef
23.
24.
Zurück zum Zitat Saha S, Pal A, Kundu S et al (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893. doi:10.1021/la902950x CrossRef Saha S, Pal A, Kundu S et al (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893. doi:10.​1021/​la902950x CrossRef
26.
Zurück zum Zitat Ahmad A, Senapati S, Khan MI et al (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553CrossRef Ahmad A, Senapati S, Khan MI et al (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553CrossRef
27.
Zurück zum Zitat Lahr RH, Vikesland PJ (2014) Surface-enhanced Raman spectroscopy (SERS) cellular imaging of intracellularly biosynthesized gold nanoparticles. ACS Sustain Chem Eng 2:1599–1608. doi:10.1021/sc500105n CrossRef Lahr RH, Vikesland PJ (2014) Surface-enhanced Raman spectroscopy (SERS) cellular imaging of intracellularly biosynthesized gold nanoparticles. ACS Sustain Chem Eng 2:1599–1608. doi:10.​1021/​sc500105n CrossRef
30.
Zurück zum Zitat Srivastava SK, Constanti M (2012) Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanoparticle Res 14:831. doi:10.1007/s11051-012-0831-7 CrossRef Srivastava SK, Constanti M (2012) Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanoparticle Res 14:831. doi:10.​1007/​s11051-012-0831-7 CrossRef
32.
Zurück zum Zitat Shenton W, Pum D, Sleytr UB (1997) Letters to Nature: Synthesis of cadmium sulphide superlattices using bacterial S-layers. Nature 389:585–587CrossRef Shenton W, Pum D, Sleytr UB (1997) Letters to Nature: Synthesis of cadmium sulphide superlattices using bacterial S-layers. Nature 389:585–587CrossRef
40.
Zurück zum Zitat Sweeney RY, Mao C, Gao X et al (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11:1553–1559CrossRef Sweeney RY, Mao C, Gao X et al (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11:1553–1559CrossRef
41.
Zurück zum Zitat Hosseinkhani B, Søbjerg LS, Rotaru A-E et al (2012) Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles. Biotechnol Bioeng 109:45–52. doi:10.1002/bit.23293 CrossRef Hosseinkhani B, Søbjerg LS, Rotaru A-E et al (2012) Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles. Biotechnol Bioeng 109:45–52. doi:10.​1002/​bit.​23293 CrossRef
42.
Zurück zum Zitat Deplanche K (2012) Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J R Soc Interface 9:1705–1712CrossRef Deplanche K (2012) Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry. J R Soc Interface 9:1705–1712CrossRef
43.
Zurück zum Zitat Carmona F, Mart M, Ga N, Dominguez-vera JM (2014) Bioinspired magneto-optical bacteria. Inorg Chem 53:8565–8569CrossRef Carmona F, Mart M, Ga N, Dominguez-vera JM (2014) Bioinspired magneto-optical bacteria. Inorg Chem 53:8565–8569CrossRef
44.
Zurück zum Zitat Srivastava SK, Yamada R, Ogino C, Kondo A (2013) Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res Lett 8:70. doi:10.1186/1556-276X-8-70 CrossRef Srivastava SK, Yamada R, Ogino C, Kondo A (2013) Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res Lett 8:70. doi:10.​1186/​1556-276X-8-70 CrossRef
45.
Zurück zum Zitat He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24:476–480. doi:10.1021/bp0703174 CrossRef He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24:476–480. doi:10.​1021/​bp0703174 CrossRef
46.
Zurück zum Zitat Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298CrossRef Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298CrossRef
47.
Zurück zum Zitat Cunningham D, Lundie L (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14 Cunningham D, Lundie L (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14
49.
Zurück zum Zitat Yong P, Rowson NA, Farr JPG et al (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80:369–379. doi:10.1002/bit.10369 CrossRef Yong P, Rowson NA, Farr JPG et al (2002) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80:369–379. doi:10.​1002/​bit.​10369 CrossRef
50.
Zurück zum Zitat Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3:168–171. doi:10.1016/j.nano.2007.02.001 CrossRef Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3:168–171. doi:10.​1016/​j.​nano.​2007.​02.​001 CrossRef
52.
Zurück zum Zitat Waghmare S, Deshmukh A (2011) Biosynthesis and characterization of manganese and zinc nanoparticles. Univers J Environ Res Technol 1:64–69 Waghmare S, Deshmukh A (2011) Biosynthesis and characterization of manganese and zinc nanoparticles. Univers J Environ Res Technol 1:64–69
53.
Zurück zum Zitat Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJSM (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRef Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJSM (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRef
56.
Zurück zum Zitat Kowshik M, Vogel W, Urban J (2002) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818CrossRef Kowshik M, Vogel W, Urban J (2002) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818CrossRef
57.
Zurück zum Zitat Mukherjee P, Ahmad A, Mandal D et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519. doi:10.1021/nl0155274 CrossRef Mukherjee P, Ahmad A, Mandal D et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519. doi:10.​1021/​nl0155274 CrossRef
58.
Zurück zum Zitat Ahmad A, Mukherjee P, Mandal D et al (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109. doi:10.1021/ja027296o CrossRef Ahmad A, Mukherjee P, Mandal D et al (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109. doi:10.​1021/​ja027296o CrossRef
59.
Zurück zum Zitat Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111:16858–16865. doi:10.1021/jp0752668 CrossRef Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111:16858–16865. doi:10.​1021/​jp0752668 CrossRef
60.
Zurück zum Zitat Maliszewska I, Aniszkiewicz Ł, Sadowski Z (2009) Biological synthesis of gold nanostructures using the extract of Trichoderma koningii. Acta Phys Pol A 116:S163–S165 Maliszewska I, Aniszkiewicz Ł, Sadowski Z (2009) Biological synthesis of gold nanostructures using the extract of Trichoderma koningii. Acta Phys Pol A 116:S163–S165
62.
63.
Zurück zum Zitat Vigneshwaran N, Kathe AA, Varadarajan PV et al (2007) Silver—protein (core—shell) nanoparticle production using spent mushroom substrate. Langmuir 23:7113–7117CrossRef Vigneshwaran N, Kathe AA, Varadarajan PV et al (2007) Silver—protein (core—shell) nanoparticle production using spent mushroom substrate. Langmuir 23:7113–7117CrossRef
65.
Zurück zum Zitat Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132CrossRef Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132CrossRef
66.
Zurück zum Zitat Mata YN, Torres E, Blázquez ML, Ballester A, González F, Muñoz JA (2009) Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166(2–3):612–618. doi:10.1016/j.jhazmat.2008.11.064 Mata YN, Torres E, Blázquez ML, Ballester A, González F, Muñoz JA (2009) Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166(2–3):612–618. doi:10.​1016/​j.​jhazmat.​2008.​11.​064
67.
Zurück zum Zitat Satapathy S, Shukla SP, Sandeep KP et al (2014) Evaluation of the performance of an algal bioreactor for silver nanoparticle production. J Appl Phycol. doi:10.1007/s10811-014-0311-9 Satapathy S, Shukla SP, Sandeep KP et al (2014) Evaluation of the performance of an algal bioreactor for silver nanoparticle production. J Appl Phycol. doi:10.​1007/​s10811-014-0311-9
68.
Zurück zum Zitat Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122. doi:10.1007/s10853-008-2745-4 CrossRef Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122. doi:10.​1007/​s10853-008-2745-4 CrossRef
69.
Zurück zum Zitat Parsons JG, Peralta-Videa JR, Gardea-Torresdey JL (2007) Chapter 21 Use of plants in biotechnology: Synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. In: Dibyendu Sarkar RD and RHBT-D in ES (ed) Concepts Appl. Environ. Geochemistry. Elsevier, pp 463–485 Parsons JG, Peralta-Videa JR, Gardea-Torresdey JL (2007) Chapter 21 Use of plants in biotechnology: Synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. In: Dibyendu Sarkar RD and RHBT-D in ES (ed) Concepts Appl. Environ. Geochemistry. Elsevier, pp 463–485
70.
Zurück zum Zitat Hersrald RL, Ftnll BJ, Ni AJ (1969) Extractability of nickel added to soils and its concentration in plants. Can J Soil Sci 49:335–342CrossRef Hersrald RL, Ftnll BJ, Ni AJ (1969) Extractability of nickel added to soils and its concentration in plants. Can J Soil Sci 49:335–342CrossRef
72.
Zurück zum Zitat Mucalo MR, Bullen CR, Manley-harris M (2002) Arabinogalactan from the Western larch tree: A new, purified and highly water-soluble polysaccharide-based protecting agent for maintaining precious metal nanoparticles in colloidal suspension. J Mater Sci 37:493–504CrossRef Mucalo MR, Bullen CR, Manley-harris M (2002) Arabinogalactan from the Western larch tree: A new, purified and highly water-soluble polysaccharide-based protecting agent for maintaining precious metal nanoparticles in colloidal suspension. J Mater Sci 37:493–504CrossRef
74.
Zurück zum Zitat Gardea-Torresdey JL, Gomez E, Peralta-Videa JR et al (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361. doi:10.1021/la020835i CrossRef Gardea-Torresdey JL, Gomez E, Peralta-Videa JR et al (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361. doi:10.​1021/​la020835i CrossRef
76.
Zurück zum Zitat Shankar SS, Rai A, Ahmad A et al (2005) Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17:566–572CrossRef Shankar SS, Rai A, Ahmad A et al (2005) Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17:566–572CrossRef
78.
Zurück zum Zitat Gangula A, Podila R, Ramakrishna M et al (2011) Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27:15268–15274CrossRef Gangula A, Podila R, Ramakrishna M et al (2011) Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27:15268–15274CrossRef
82.
Zurück zum Zitat Soundarrajan C, Sankari A, Dhandapani P et al (2012) Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess Biosyst Eng 35:827–833. doi:10.1007/s00449-011-0666-0 CrossRef Soundarrajan C, Sankari A, Dhandapani P et al (2012) Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess Biosyst Eng 35:827–833. doi:10.​1007/​s00449-011-0666-0 CrossRef
83.
Zurück zum Zitat Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20:385601. doi:10.1088/0957-4484/20/38/385601 CrossRef Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20:385601. doi:10.​1088/​0957-4484/​20/​38/​385601 CrossRef
84.
Zurück zum Zitat Coccia F, Tonucci L, Bosco D et al (2012) One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem 14:1073. doi:10.1039/c2gc16524d CrossRef Coccia F, Tonucci L, Bosco D et al (2012) One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem 14:1073. doi:10.​1039/​c2gc16524d CrossRef
85.
Zurück zum Zitat Li Q (2014) Plant-mediated synthesis of Ag − Pd alloy nanoparticles and their application as catalyst toward selective hydrogenation. ACS Sustain Chem Eng 2:1212–1218CrossRef Li Q (2014) Plant-mediated synthesis of Ag − Pd alloy nanoparticles and their application as catalyst toward selective hydrogenation. ACS Sustain Chem Eng 2:1212–1218CrossRef
87.
Zurück zum Zitat Sheny DS, Mathew J, Philip D (2011) Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta A Mol Biomol Spectrosc 79:254–262. doi:10.1016/j.saa.2011.02.051 CrossRef Sheny DS, Mathew J, Philip D (2011) Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta A Mol Biomol Spectrosc 79:254–262. doi:10.​1016/​j.​saa.​2011.​02.​051 CrossRef
88.
Zurück zum Zitat Patel VK, Bhattacharya S (2013) High-performance nanothermite composites based on aloe-vera-directed CuO nanorods. ACS Appl Mater Interfaces 5:13364–13374. doi:10.1021/am404308s CrossRef Patel VK, Bhattacharya S (2013) High-performance nanothermite composites based on aloe-vera-directed CuO nanorods. ACS Appl Mater Interfaces 5:13364–13374. doi:10.​1021/​am404308s CrossRef
89.
90.
Zurück zum Zitat Hong Y, Jing X, Huang J et al (2014) Biosynthesized bimetallic Au − Pd nanoparticles supported on TiO 2 for solvent-free oxidation of benzyl alcohol. ACS Sustain Chem Eng 2:1752–1759CrossRef Hong Y, Jing X, Huang J et al (2014) Biosynthesized bimetallic Au − Pd nanoparticles supported on TiO 2 for solvent-free oxidation of benzyl alcohol. ACS Sustain Chem Eng 2:1752–1759CrossRef
99.
Zurück zum Zitat Kim J-H, Twaddle KM, Hu J, Byun H (2014) Sunlight-induced synthesis of various gold nanoparticles and their heterogeneous catalytic properties on a paper-based substrate. ACS Appl Mater Interfaces 6:11514–11522. doi:10.1021/am503745w CrossRef Kim J-H, Twaddle KM, Hu J, Byun H (2014) Sunlight-induced synthesis of various gold nanoparticles and their heterogeneous catalytic properties on a paper-based substrate. ACS Appl Mater Interfaces 6:11514–11522. doi:10.​1021/​am503745w CrossRef
100.
Zurück zum Zitat Genç R, Clergeaud G, Ortiz M, O’Sullivan CK (2011) Green synthesis of gold nanoparticles using glycerol-incorporated nanosized liposomes. Langmuir 27:10894–10900. doi:10.1021/la201771s CrossRef Genç R, Clergeaud G, Ortiz M, O’Sullivan CK (2011) Green synthesis of gold nanoparticles using glycerol-incorporated nanosized liposomes. Langmuir 27:10894–10900. doi:10.​1021/​la201771s CrossRef
101.
Zurück zum Zitat Bastús NG, Merkoçi F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26:2836–2846. doi:10.1021/cm500316k CrossRef Bastús NG, Merkoçi F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26:2836–2846. doi:10.​1021/​cm500316k CrossRef
102.
Zurück zum Zitat Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131:17042–17043CrossRef Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131:17042–17043CrossRef
Metadaten
Titel
Nanoparticle Synthesis by Biogenic Approach
verfasst von
Sarvesh Kumar Srivastava
Chiaki Ogino
Akihiko Kondo
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-15461-9_8

Neuer Inhalt