Skip to main content

2018 | Supplement | Buchkapitel

4. Nanostructured Silver Sulfide Ag2S

verfasst von : Stanislav I. Sadovnikov, Andrey A. Rempel, Aleksandr I. Gusev

Erschienen in: Nanostructured Lead, Cadmium, and Silver Sulfides

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The well known silver sulfide Ag2S is one of the most requisite semiconducting sulfides [1, 2] along with lead, zinc, copper, and cadmium sulfides [35].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Tang, A., Wang, Yu., Ye, H., Zhou, C., Yang, C., Li, X., Peng, H., Zhang, F., Hou, Y., Teng, F.: Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds. Nanotechnology 24(35), 355602–355612 (2013)CrossRef Tang, A., Wang, Yu., Ye, H., Zhou, C., Yang, C., Li, X., Peng, H., Zhang, F., Hou, Y., Teng, F.: Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds. Nanotechnology 24(35), 355602–355612 (2013)CrossRef
2.
Zurück zum Zitat Cui, C., Li, X., Liu, J., Hou, Y., Zhao, Y., Zhong, G.: Synthesis and functions of Ag2S nanostructures. Nanoscale Res. Lett. 10, 431–21 (2015)CrossRef Cui, C., Li, X., Liu, J., Hou, Y., Zhao, Y., Zhong, G.: Synthesis and functions of Ag2S nanostructures. Nanoscale Res. Lett. 10, 431–21 (2015)CrossRef
3.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Nanostructured lead sulfide: synthesis, structure, and properties. Russ. Chem. Rev. 85(7), 731–758 (2016)CrossRef Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Nanostructured lead sulfide: synthesis, structure, and properties. Russ. Chem. Rev. 85(7), 731–758 (2016)CrossRef
4.
Zurück zum Zitat Shi, X., Zheng, S., Gao, W., Wei, W., Chem, M., Deng, F., Liu, X., Xiao, Q.: Excitation wavelength and intensity dependence of photo-spectral blue shift in single CdSe/ZnS quantum dots. J. Nanopart. Res. 16(12), 2741–2749 (2014)CrossRef Shi, X., Zheng, S., Gao, W., Wei, W., Chem, M., Deng, F., Liu, X., Xiao, Q.: Excitation wavelength and intensity dependence of photo-spectral blue shift in single CdSe/ZnS quantum dots. J. Nanopart. Res. 16(12), 2741–2749 (2014)CrossRef
5.
Zurück zum Zitat Kozhevnikova, N.S., Vorokh, A.S., Uritskaya, A.A.: Cadmium sulfide nanoparticles prepared by chemical bath deposition. Russ. Chem. Rev. 84(3), 225–250 (2015)CrossRef Kozhevnikova, N.S., Vorokh, A.S., Uritskaya, A.A.: Cadmium sulfide nanoparticles prepared by chemical bath deposition. Russ. Chem. Rev. 84(3), 225–250 (2015)CrossRef
6.
Zurück zum Zitat Sharma, R.C., Chang, Y.A.: The Ag-S (silver-sulfur) system. Bull. Alloy Phase Diagrams. 7(3), 263–269 (1986)CrossRef Sharma, R.C., Chang, Y.A.: The Ag-S (silver-sulfur) system. Bull. Alloy Phase Diagrams. 7(3), 263–269 (1986)CrossRef
7.
Zurück zum Zitat Sharma, R.C., Chang, Y.A.: Ag-S (Silver-Sulphur). In: Massalski, T.B., Okamoto, H., Kacprzak, L. (eds.) Binary Alloy Phase Diagrams, pp. 86–87. ASM International Publisher, Materials Park (1990) Sharma, R.C., Chang, Y.A.: Ag-S (Silver-Sulphur). In: Massalski, T.B., Okamoto, H., Kacprzak, L. (eds.) Binary Alloy Phase Diagrams, pp. 86–87. ASM International Publisher, Materials Park (1990)
8.
Zurück zum Zitat Frueh, A.J.: The crystallography of silver sulfide, Ag2S. Ztschr. Kristallographie 110(1), 136–144 (1958)CrossRef Frueh, A.J.: The crystallography of silver sulfide, Ag2S. Ztschr. Kristallographie 110(1), 136–144 (1958)CrossRef
9.
Zurück zum Zitat Reye, H., Schmalzried, H.: On the nonstoichiometry of α-Ag2S. Ztschr. Physik. Chemie. Neue Folge 128(1), 93–100 (1981)CrossRef Reye, H., Schmalzried, H.: On the nonstoichiometry of α-Ag2S. Ztschr. Physik. Chemie. Neue Folge 128(1), 93–100 (1981)CrossRef
10.
Zurück zum Zitat Junod, P.: Relations entre la structure crystalline et les propriétiés électroniques des combinaisond Ag2S, Ag2Se, Cu2Se. Phys. Acta 32(6–7), 567–600 (1959) Junod, P.: Relations entre la structure crystalline et les propriétiés électroniques des combinaisond Ag2S, Ag2Se, Cu2Se. Phys. Acta 32(6–7), 567–600 (1959)
11.
Zurück zum Zitat Junod, P., Hediger, H., Kilchör, B., Wullschleger, J.: Metal-non-metal transition in silver chalcogenides. Philos. Mag 36(4), 941–958 (1977)CrossRef Junod, P., Hediger, H., Kilchör, B., Wullschleger, J.: Metal-non-metal transition in silver chalcogenides. Philos. Mag 36(4), 941–958 (1977)CrossRef
12.
Zurück zum Zitat Akamatsu, K., Takei, Sh, Mizuhata, M., Kajinami, A., Deki, Sh, Takeoka, Sh, Fujii, M., Hayashi, Sh, Yamamoto, K.: Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Sol. Films 359(1), 55–60 (2000)CrossRef Akamatsu, K., Takei, Sh, Mizuhata, M., Kajinami, A., Deki, Sh, Takeoka, Sh, Fujii, M., Hayashi, Sh, Yamamoto, K.: Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Sol. Films 359(1), 55–60 (2000)CrossRef
13.
Zurück zum Zitat Kashida, S., Watanabe, N., Hasegawa, T., Iida, H., Mori, M., Savrasov, S.: Electronic structure of Ag2S, band calculation and photoelectron spectroscopy. Sol. State Ionics 158, 167–175 (2003)CrossRef Kashida, S., Watanabe, N., Hasegawa, T., Iida, H., Mori, M., Savrasov, S.: Electronic structure of Ag2S, band calculation and photoelectron spectroscopy. Sol. State Ionics 158, 167–175 (2003)CrossRef
14.
Zurück zum Zitat Wagner, C.: Investigations on silver sulfide. J. Chem. Phys. 21(10), 1819–1827 (1953)CrossRef Wagner, C.: Investigations on silver sulfide. J. Chem. Phys. 21(10), 1819–1827 (1953)CrossRef
15.
Zurück zum Zitat Rau, H.: Defect equilibria in silver sulphide. J. Phys. Chem. Solids 35(11), 1553–1559 (1974)CrossRef Rau, H.: Defect equilibria in silver sulphide. J. Phys. Chem. Solids 35(11), 1553–1559 (1974)CrossRef
16.
Zurück zum Zitat Bonnecaze, G., Lichanot, A., Gromb, S.: Proprietes electrogalvaniques et electroniques du sulfure d’argent β: Domaine d’existence. J. Phys. Chem. Solids 39(3), 299–310 (1978)CrossRef Bonnecaze, G., Lichanot, A., Gromb, S.: Proprietes electrogalvaniques et electroniques du sulfure d’argent β: Domaine d’existence. J. Phys. Chem. Solids 39(3), 299–310 (1978)CrossRef
17.
Zurück zum Zitat Bonnecaze, G., Lichanot, A., Gromb, S.: Proprietes electroniques et electrogalvaniques du sulfure d’argent α: Domaine d’existence. J. Phys. Chem. Solids 39(8), 813–821 (1978)CrossRef Bonnecaze, G., Lichanot, A., Gromb, S.: Proprietes electroniques et electrogalvaniques du sulfure d’argent α: Domaine d’existence. J. Phys. Chem. Solids 39(8), 813–821 (1978)CrossRef
18.
Zurück zum Zitat Ditman, A.V., Kulikova, I.N.: Investigation of dissociation of solid and melted silver sulfide by a dew–point method. Zh. Fizich. Khimii. 53(1), 260–261 (1979). (in Russian) Ditman, A.V., Kulikova, I.N.: Investigation of dissociation of solid and melted silver sulfide by a dew–point method. Zh. Fizich. Khimii. 53(1), 260–261 (1979). (in Russian)
19.
Zurück zum Zitat Mitteilung, K.: Zustandsdiagramm Ag-S im Bereich der Verbindung Ag2 ± δ. S. Ztschr. Physik. Chemie. Neue Folge. 119(2), 251–255 (1980)CrossRef Mitteilung, K.: Zustandsdiagramm Ag-S im Bereich der Verbindung Ag2 ± δ. S. Ztschr. Physik. Chemie. Neue Folge. 119(2), 251–255 (1980)CrossRef
20.
Zurück zum Zitat Van Doorselaer, M.K.: Solid state properties and photographic activiti of crystalline Ag2S and (Ag, Au)2S-specks at the surface of silver halide crystalls. J. Photographic Sci 35(2), 42–52 (1987)CrossRef Van Doorselaer, M.K.: Solid state properties and photographic activiti of crystalline Ag2S and (Ag, Au)2S-specks at the surface of silver halide crystalls. J. Photographic Sci 35(2), 42–52 (1987)CrossRef
21.
Zurück zum Zitat Ramsdell, L.S.: The crystallography of acanthite, Ag2S. Amer. Mineralogist 28(7–8), 401–425 (1943) Ramsdell, L.S.: The crystallography of acanthite, Ag2S. Amer. Mineralogist 28(7–8), 401–425 (1943)
22.
Zurück zum Zitat Sadanaga, R., Sueno, S.: X-ray study on the & α-β transition of Ag2S. Mineralog. J. Japan 5(2), 124–148 (1967)CrossRef Sadanaga, R., Sueno, S.: X-ray study on the & α-β transition of Ag2S. Mineralog. J. Japan 5(2), 124–148 (1967)CrossRef
23.
Zurück zum Zitat Rahlfs, P.: Über die kubischen Hochtemperaturmodifikationen der Sulfide, Selenide und Telluride des Silbers und des einwertigen Kupfers. Ztschr. Physik. Chemie. 31(3), 157–194 (1936) Rahlfs, P.: Über die kubischen Hochtemperaturmodifikationen der Sulfide, Selenide und Telluride des Silbers und des einwertigen Kupfers. Ztschr. Physik. Chemie. 31(3), 157–194 (1936)
24.
Zurück zum Zitat Strock, L.W.: Kristallstructur des Hochtemperatur-Jodsilbers & α-AgJ. Ztschr. Physik. Chemie. 25(5/6), 411–459 (1934) Strock, L.W.: Kristallstructur des Hochtemperatur-Jodsilbers & α-AgJ. Ztschr. Physik. Chemie. 25(5/6), 411–459 (1934)
25.
Zurück zum Zitat Strock, L.W.: Erganzung und Berichtigung zu: “Kristallstruktur des Hochtemperatur-Jodsilbers α-AgJ”. Ztschr. Physik. Chemie. 31(2), 132–136 (1936) Strock, L.W.: Erganzung und Berichtigung zu: “Kristallstruktur des Hochtemperatur-Jodsilbers α-AgJ”. Ztschr. Physik. Chemie. 31(2), 132–136 (1936)
26.
Zurück zum Zitat Cava, R.J., Reidinger, F., Wuensch, B.J.: Single-crystal neutron diffraction study of the fast-ion conductor β-Ag2S between 186 and 325°C. J. Solid State Chem. 31(1), 69–80 (1980)CrossRef Cava, R.J., Reidinger, F., Wuensch, B.J.: Single-crystal neutron diffraction study of the fast-ion conductor β-Ag2S between 186 and 325°C. J. Solid State Chem. 31(1), 69–80 (1980)CrossRef
27.
Zurück zum Zitat Blanton, T., Misture, S., Dontula, N., Zdzieszynski, S.: In situ high-temperature X-ray diffraction characterization of silver sulfide, Ag2S. Powder Diffr. 26(2), 110–118 (2011) Blanton, T., Misture, S., Dontula, N., Zdzieszynski, S.: In situ high-temperature X-ray diffraction characterization of silver sulfide, Ag2S. Powder Diffr. 26(2), 110–118 (2011)
28.
Zurück zum Zitat Frueh, A.J.: The use of zone theory in Problems of sulfide mineralogy. Part III: Polymorphism of Ag2Te and Ag2S. Am. Mineral. 46(5–6), 654–660 (1961) Frueh, A.J.: The use of zone theory in Problems of sulfide mineralogy. Part III: Polymorphism of Ag2Te and Ag2S. Am. Mineral. 46(5–6), 654–660 (1961)
29.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Artificial silver sulfide Ag2S: crystal structure and particle size in deposited powders. Superlat. Microstr 83, 35–47 (2015)CrossRef Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Artificial silver sulfide Ag2S: crystal structure and particle size in deposited powders. Superlat. Microstr 83, 35–47 (2015)CrossRef
30.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Nonstoichiometry of nanocrystalline monoclinic silver sulfide. Phys. Chem. Chem. Phys. 17(19), 12466–12471 (2015)CrossRef Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Nonstoichiometry of nanocrystalline monoclinic silver sulfide. Phys. Chem. Chem. Phys. 17(19), 12466–12471 (2015)CrossRef
31.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: An in situ high-temperature scanning electron microscopy study of acanthite–argentite phase transformation in nanocrystalline silver sulfide powder. Phys. Chem. Chem. Phys. 17(32), 20495–20501 (2015)CrossRef Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: An in situ high-temperature scanning electron microscopy study of acanthite–argentite phase transformation in nanocrystalline silver sulfide powder. Phys. Chem. Chem. Phys. 17(32), 20495–20501 (2015)CrossRef
32.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Nanocrystalline silver sulfide Ag2S. Rev. Adv. Mater. Sci. 41(1), 7–19 (2015) Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Nanocrystalline silver sulfide Ag2S. Rev. Adv. Mater. Sci. 41(1), 7–19 (2015)
33.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Structure and stoichiometry of nanocrystalline silver sulfide. Dokl. Akad. Nauk. 464(5), 568–573 (2015). (in Russian). (Engl. Transl.: Dokl. Phys. Chem. 464(2), 238–243 (2015)) Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Structure and stoichiometry of nanocrystalline silver sulfide. Dokl. Akad. Nauk. 464(5), 568–573 (2015). (in Russian). (Engl. Transl.: Dokl. Phys. Chem. 464(2), 238–243 (2015))
34.
Zurück zum Zitat Sadovnikov, S.I., Chukin, A.V., Rempel, A.A., Gusev, A.I.: Polymorphic transformation in nanocrystalline silver sulfide. Fiz. Tverd. Tela. 58(1), 32–38 (2016). (in Russian) (Engl. Transl.: Phys. Solid State. 58(1), 30–36 (2016)) Sadovnikov, S.I., Chukin, A.V., Rempel, A.A., Gusev, A.I.: Polymorphic transformation in nanocrystalline silver sulfide. Fiz. Tverd. Tela. 58(1), 32–38 (2016). (in Russian) (Engl. Transl.: Phys. Solid State. 58(1), 30–36 (2016))
35.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I., Chukin, A.V.: Rempel, A.A: High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α-Ag2S and argentite β-Ag2S. Phys. Chem. Chem. Phys. 18(6), 4617–4626 (2016)CrossRef Sadovnikov, S.I., Gusev, A.I., Chukin, A.V.: Rempel, A.A: High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α-Ag2S and argentite β-Ag2S. Phys. Chem. Chem. Phys. 18(6), 4617–4626 (2016)CrossRef
36.
Zurück zum Zitat Aliev, F.F., Jafarov, M.B., Tairov, B.A., Pashaev, G.P., Saddinova, A.A., Kuliev, A.A.: Effect of a phase transition on the electron energy spectrum in Ag2S. Fiz. Tekhn. Poluprovodnikov. 42(10), 1165–1167 (2008). (in Russian) (Engl. Transl.: Semiconductors. 42(10), 1146–1148 (2008)) Aliev, F.F., Jafarov, M.B., Tairov, B.A., Pashaev, G.P., Saddinova, A.A., Kuliev, A.A.: Effect of a phase transition on the electron energy spectrum in Ag2S. Fiz. Tekhn. Poluprovodnikov. 42(10), 1165–1167 (2008). (in Russian) (Engl. Transl.: Semiconductors. 42(10), 1146–1148 (2008))
37.
Zurück zum Zitat Ehrlich, S.H.: Spectroscopic studies of AgBr with quantum-size clusters of iodide, silver, and silver sulfides. J. Imaging Sci. Technol. 37(1), 73–91 (1993) Ehrlich, S.H.: Spectroscopic studies of AgBr with quantum-size clusters of iodide, silver, and silver sulfides. J. Imaging Sci. Technol. 37(1), 73–91 (1993)
38.
Zurück zum Zitat Rickert, H.: Elektrische Eigenschaften von festen Stoffen mit gemischter Elektronen- und Ionenleitung, z.B. Ag2S. In: Madelung, O. (ed.) Festkörperprobleme, vol. VI, pp. 85–105. Braunschweig: F. Vieweg (1967) Rickert, H.: Elektrische Eigenschaften von festen Stoffen mit gemischter Elektronen- und Ionenleitung, z.B. Ag2S. In: Madelung, O. (ed.) Festkörperprobleme, vol. VI, pp. 85–105. Braunschweig: F. Vieweg (1967)
39.
Zurück zum Zitat Lim, W.P., Zhang, Z., Low, H.Y., Chin, W.S.: Preparation of Ag2S nanocrystals of predictable shape and size. Angew. Chem. Int. Ed. 43(42), 5685–5689 (2004)CrossRef Lim, W.P., Zhang, Z., Low, H.Y., Chin, W.S.: Preparation of Ag2S nanocrystals of predictable shape and size. Angew. Chem. Int. Ed. 43(42), 5685–5689 (2004)CrossRef
40.
Zurück zum Zitat Yang, J., Ying, J.Y.: Nanocomposites of Ag2S and noble metals. Angew. Chem. Int. Ed. 50(20), 4637–4643 (2011)CrossRef Yang, J., Ying, J.Y.: Nanocomposites of Ag2S and noble metals. Angew. Chem. Int. Ed. 50(20), 4637–4643 (2011)CrossRef
41.
Zurück zum Zitat Zhu, G.X., Xu, Z.: Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host. J. Am. Chem. Soc. 133(1), 148–157 (2011)CrossRef Zhu, G.X., Xu, Z.: Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host. J. Am. Chem. Soc. 133(1), 148–157 (2011)CrossRef
42.
Zurück zum Zitat Kryukov, A.I., Stroyuk, A.L., Zin’chuk, N.N., Korzhak, A.V., Kuchmii, S.Y.: Optical and catalytic properties of Ag2S nanoparticles. J. Mol. Catal. A: Chem. 221(1–2), 209–221 (2004)CrossRef Kryukov, A.I., Stroyuk, A.L., Zin’chuk, N.N., Korzhak, A.V., Kuchmii, S.Y.: Optical and catalytic properties of Ag2S nanoparticles. J. Mol. Catal. A: Chem. 221(1–2), 209–221 (2004)CrossRef
43.
Zurück zum Zitat Shen, S., Zhang, Y., Liu, Y., Peng, L., Chen, X., Wang, Q.: Manganese-doped Ag2S-ZnS heteronanostructures. Chem. Mater. 24(12), 2407–2413 (2012)CrossRef Shen, S., Zhang, Y., Liu, Y., Peng, L., Chen, X., Wang, Q.: Manganese-doped Ag2S-ZnS heteronanostructures. Chem. Mater. 24(12), 2407–2413 (2012)CrossRef
44.
Zurück zum Zitat Nasrallah, T.B., Dlala, H., Amlouk, M., Belgacem, S., Bernede, J.C.: Some physical investigations on Ag2S thin films prepared by sequential thermal evaporation. Synth. Met. 151(3), 225–230 (2005)CrossRef Nasrallah, T.B., Dlala, H., Amlouk, M., Belgacem, S., Bernede, J.C.: Some physical investigations on Ag2S thin films prepared by sequential thermal evaporation. Synth. Met. 151(3), 225–230 (2005)CrossRef
45.
Zurück zum Zitat Hsu, T-Y., Buhay, H., Murarka, N.P.: Characteristics and applications of Ag2S films in the milli-meter wavelength region. In: Tanton, G.A. (ed.) Millimeter Optic, pp. 38–45. SPIE Proc. 259 (1980) Hsu, T-Y., Buhay, H., Murarka, N.P.: Characteristics and applications of Ag2S films in the milli-meter wavelength region. In: Tanton, G.A. (ed.) Millimeter Optic, pp. 38–45. SPIE Proc. 259 (1980)
46.
Zurück zum Zitat Karashanova, D., Nihtianova, D., Starbova, K., Starbov, N.: Crystalline structure and phase composition of epitaxially grown Ag2S thin films. Sol. State Ionics 171(3–4), 269–275 (2004)CrossRef Karashanova, D., Nihtianova, D., Starbova, K., Starbov, N.: Crystalline structure and phase composition of epitaxially grown Ag2S thin films. Sol. State Ionics 171(3–4), 269–275 (2004)CrossRef
47.
Zurück zum Zitat Liu, L., Hu, S., Dou, Y.-P., Liu, T., Lin, J., Wang, Y.: Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses. Beilst. J. Nanotechnol 6, 1781–1787 (2015)CrossRef Liu, L., Hu, S., Dou, Y.-P., Liu, T., Lin, J., Wang, Y.: Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses. Beilst. J. Nanotechnol 6, 1781–1787 (2015)CrossRef
48.
Zurück zum Zitat Liang, C.H., Terabe, K., Hasegawa, T.: Aono, M: Resistance switching of an individual Ag2S/Ag nanowire heterostructure. Nanotechnology. 18(48), 5 (2007). Paper 485202CrossRef Liang, C.H., Terabe, K., Hasegawa, T.: Aono, M: Resistance switching of an individual Ag2S/Ag nanowire heterostructure. Nanotechnology. 18(48), 5 (2007). Paper 485202CrossRef
49.
Zurück zum Zitat Xu, Z., Bando, Y., Wang, W., Bai, X., Golberg, D.: Real-time in situ HRTEM-resolved resistance switching of Ag2S Nanoscale ionic conductor. ACS Nano 4(5), 2515–2522 (2010)CrossRef Xu, Z., Bando, Y., Wang, W., Bai, X., Golberg, D.: Real-time in situ HRTEM-resolved resistance switching of Ag2S Nanoscale ionic conductor. ACS Nano 4(5), 2515–2522 (2010)CrossRef
50.
Zurück zum Zitat Belov, A.N., Pyatilova, O.V., Vorobiev, M.I.: Synthesis of Ag/Ag2S nanoclusters resistive switches for memory cells. Advanc. Nanoparticles 3, 1–4 (2014)CrossRef Belov, A.N., Pyatilova, O.V., Vorobiev, M.I.: Synthesis of Ag/Ag2S nanoclusters resistive switches for memory cells. Advanc. Nanoparticles 3, 1–4 (2014)CrossRef
51.
Zurück zum Zitat El-Nahass, M.M., Farag, A.A.M., Ibrahim, E.M., Abd-El-Rahman, S.: Structural, optical and electrical properties of thermally evaporated Ag2S thin films. Vacuum 72(4), 453–460 (2004)CrossRef El-Nahass, M.M., Farag, A.A.M., Ibrahim, E.M., Abd-El-Rahman, S.: Structural, optical and electrical properties of thermally evaporated Ag2S thin films. Vacuum 72(4), 453–460 (2004)CrossRef
52.
Zurück zum Zitat Jadhav, U.M., Patel, S.N., Patil, R.S.: Synthesis of silver sulphide nanoparticles by modified chemical route for solar cell applications. Res. J. Chem. Sci. 3(7), 69–74 (2013) Jadhav, U.M., Patel, S.N., Patil, R.S.: Synthesis of silver sulphide nanoparticles by modified chemical route for solar cell applications. Res. J. Chem. Sci. 3(7), 69–74 (2013)
53.
Zurück zum Zitat Leidinger, P., Popescu, R., Gerthsen, D., Feldmann, C.: Nanoscale Ag2S hollow spheres and Ag2S nanodiscs assembled to three-dimensional nanoparticle superlattices. Chem. Mater. 25(21), 4173–4180 (2013)CrossRef Leidinger, P., Popescu, R., Gerthsen, D., Feldmann, C.: Nanoscale Ag2S hollow spheres and Ag2S nanodiscs assembled to three-dimensional nanoparticle superlattices. Chem. Mater. 25(21), 4173–4180 (2013)CrossRef
54.
Zurück zum Zitat Xie, Y., Heo, S.H., Kim, Y.N., Yoo, S.H., Cho, S.O.: Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires. Nanotechnology. 21(1), 7 (2010). Paper 015703CrossRef Xie, Y., Heo, S.H., Kim, Y.N., Yoo, S.H., Cho, S.O.: Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires. Nanotechnology. 21(1), 7 (2010). Paper 015703CrossRef
55.
Zurück zum Zitat Zhu, L., Meng, Z., Trisha, G., Oh, W.-C.: Hydrothermal synthesis of porous Ag2S sensitized TiO2 catalysts and their photocatalytic activities in the visible light range. Chin. J. Catal. 33(2), 254–2604 (2012)CrossRef Zhu, L., Meng, Z., Trisha, G., Oh, W.-C.: Hydrothermal synthesis of porous Ag2S sensitized TiO2 catalysts and their photocatalytic activities in the visible light range. Chin. J. Catal. 33(2), 254–2604 (2012)CrossRef
56.
Zurück zum Zitat Pourahmad, A.: Ag2S nanoparticle encapsulated in mesoporous material nanoparticles and its application for photocatalytic degradation of dye in aqueous solution. Superlatt. Mictostr. 52(2), 276–287 (2012)CrossRef Pourahmad, A.: Ag2S nanoparticle encapsulated in mesoporous material nanoparticles and its application for photocatalytic degradation of dye in aqueous solution. Superlatt. Mictostr. 52(2), 276–287 (2012)CrossRef
57.
Zurück zum Zitat Pang, M.L., Hu, J.Y., Zeng, H.C.: Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J. Am. Chem. Soc. 132(31), 10771–10785 (2010)CrossRef Pang, M.L., Hu, J.Y., Zeng, H.C.: Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J. Am. Chem. Soc. 132(31), 10771–10785 (2010)CrossRef
58.
Zurück zum Zitat Xiong, S., Xi, B., Zhang, K., Chen, Y., Jiang, J., Hu, J., Zeng, H.C.: Ag nanoprisms with Ag2S attachment. Sci. Rep 3, 2177–2179 (2013)CrossRef Xiong, S., Xi, B., Zhang, K., Chen, Y., Jiang, J., Hu, J., Zeng, H.C.: Ag nanoprisms with Ag2S attachment. Sci. Rep 3, 2177–2179 (2013)CrossRef
59.
Zurück zum Zitat Jiang, P., Zhu, C.-N., Zhang, Z.-L., Tian, Z.-Q., Pang, D.-W.: Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 33(20), 5130–5135 (2012)CrossRef Jiang, P., Zhu, C.-N., Zhang, Z.-L., Tian, Z.-Q., Pang, D.-W.: Water-soluble Ag2S quantum dots for near-infrared fluorescence imaging in vivo. Biomaterials 33(20), 5130–5135 (2012)CrossRef
60.
Zurück zum Zitat Li, C., Zhang, Y., Wang, M., Zhang, Y., Chen, G., Li, L., Wu, D., Wang, Q.: In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35(1), 393–400 (2014)CrossRef Li, C., Zhang, Y., Wang, M., Zhang, Y., Chen, G., Li, L., Wu, D., Wang, Q.: In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35(1), 393–400 (2014)CrossRef
61.
Zurück zum Zitat Jang, J., Cho, K., Lee, S.H., Kim, S.: Synthesis and electrical characteristics of Ag2S nanocrystals. Mater. Lett. 62(8–9), 1438–1440 (2008)CrossRef Jang, J., Cho, K., Lee, S.H., Kim, S.: Synthesis and electrical characteristics of Ag2S nanocrystals. Mater. Lett. 62(8–9), 1438–1440 (2008)CrossRef
62.
Zurück zum Zitat Han, L., Lv, Y., Asiri, A.M., Al-Youbi, A.O., Tu, B., Zhao, D.Y.: Novel preparation and near-infrared photoluminescence of uniform core-shell silver sulfide nanoparticle@mesoporous silica nanospheres. J. Mater. Chem. 22(15), 7274–7279 (2012)CrossRef Han, L., Lv, Y., Asiri, A.M., Al-Youbi, A.O., Tu, B., Zhao, D.Y.: Novel preparation and near-infrared photoluminescence of uniform core-shell silver sulfide nanoparticle@mesoporous silica nanospheres. J. Mater. Chem. 22(15), 7274–7279 (2012)CrossRef
63.
Zurück zum Zitat Sadovnikov, S.I., Rempel, A.A.: Synthesis of nanocrystalline silver sulfide. Neorgan. Materialy. 51(8), 829–837 (2015). (in Russian) (Engl. Transl.: Inorg. Mater. 51(8), 759–766 (2015)) Sadovnikov, S.I., Rempel, A.A.: Synthesis of nanocrystalline silver sulfide. Neorgan. Materialy. 51(8), 829–837 (2015). (in Russian) (Engl. Transl.: Inorg. Mater. 51(8), 759–766 (2015))
64.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I., Gerasimov, EYu., Rempel, A.A.: Facile synthesis of Ag2S nanoparticles functionalized by carbon-containing citrate shell. Chem. Phys. Lett. 642, 17–21 (2015)CrossRef Sadovnikov, S.I., Gusev, A.I., Gerasimov, EYu., Rempel, A.A.: Facile synthesis of Ag2S nanoparticles functionalized by carbon-containing citrate shell. Chem. Phys. Lett. 642, 17–21 (2015)CrossRef
65.
Zurück zum Zitat Chen, R., Nuhfer, N.T., Moussa, L., Morris, H.R., Whitmore, P.M.: Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas. Nanotechnology 19(45), 11 (2008). Paper 455604CrossRef Chen, R., Nuhfer, N.T., Moussa, L., Morris, H.R., Whitmore, P.M.: Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas. Nanotechnology 19(45), 11 (2008). Paper 455604CrossRef
66.
Zurück zum Zitat Zhang, W., Zhang, L., Hui, Z., Zhang, X., Qian, Y.: Synthesis of nanocrystalline Ag2S in aqueous solution. Sol. State Ionics. 130(1–2), 111–114 (2000)CrossRef Zhang, W., Zhang, L., Hui, Z., Zhang, X., Qian, Y.: Synthesis of nanocrystalline Ag2S in aqueous solution. Sol. State Ionics. 130(1–2), 111–114 (2000)CrossRef
67.
Zurück zum Zitat Qian, X.F., Yin, J., Huang, J.C., Yang, Y.F., Guo, X.X., Zhu, Z.K.: Preparation and characterization of PVA/Ag2S nanocomposite. Mater. Chem. Phys. 68(1–3), 95–97 (2001)CrossRef Qian, X.F., Yin, J., Huang, J.C., Yang, Y.F., Guo, X.X., Zhu, Z.K.: Preparation and characterization of PVA/Ag2S nanocomposite. Mater. Chem. Phys. 68(1–3), 95–97 (2001)CrossRef
68.
Zurück zum Zitat Qian, X.F., Yin, J., Feng, S., Liu, S.H., Zhu, Z.K.: Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles. J. Mater. Chem. 11(10), 2504–2506 (2001)CrossRef Qian, X.F., Yin, J., Feng, S., Liu, S.H., Zhu, Z.K.: Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles. J. Mater. Chem. 11(10), 2504–2506 (2001)CrossRef
69.
Zurück zum Zitat Xu, C., Zhang, Z., Ye, Q.: A novel facile method to metal sulfide (metal = Cd, Ag, Hg) nano-crystallite. Mater. Lett. 58(11), 1671–1676 (2004)CrossRef Xu, C., Zhang, Z., Ye, Q.: A novel facile method to metal sulfide (metal = Cd, Ag, Hg) nano-crystallite. Mater. Lett. 58(11), 1671–1676 (2004)CrossRef
70.
Zurück zum Zitat Lu, X., Li, L., Zhang, W., Wang, C.: Preparation and characterization of Ag2S nanoparticles embedded in polymer fibre matrices by electrospinning. Nanotechnology. 16(10), 2233–2237 (2005)CrossRef Lu, X., Li, L., Zhang, W., Wang, C.: Preparation and characterization of Ag2S nanoparticles embedded in polymer fibre matrices by electrospinning. Nanotechnology. 16(10), 2233–2237 (2005)CrossRef
71.
Zurück zum Zitat Prabhune, V.B., Shinde, N.S., Fulari, V.J.: Studies on electrodeposited silver sulphide thin films by double exposure holographic interferometry. Appl. Surf. Sci. 255(5), 1819–1823 (2008)CrossRef Prabhune, V.B., Shinde, N.S., Fulari, V.J.: Studies on electrodeposited silver sulphide thin films by double exposure holographic interferometry. Appl. Surf. Sci. 255(5), 1819–1823 (2008)CrossRef
72.
Zurück zum Zitat Meherzi-Maghraoui, H., Dachraoui, M., Belgacem, S., Buhre, K.D., Kunst, R., Cowache, P., Lincot, D.: Structural, optical and transport properties of Ag2S films deposited chemically from aqueous solution. Thin Solid Films 288(1–2), 217–223 (1996)CrossRef Meherzi-Maghraoui, H., Dachraoui, M., Belgacem, S., Buhre, K.D., Kunst, R., Cowache, P., Lincot, D.: Structural, optical and transport properties of Ag2S films deposited chemically from aqueous solution. Thin Solid Films 288(1–2), 217–223 (1996)CrossRef
73.
Zurück zum Zitat Li, X.H., Li, J.X., Li, G.D., Liu, D.P., Chen, J.S.: Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres. Chem. – Europ. J. 13(31), 8754–8761 (2007) Li, X.H., Li, J.X., Li, G.D., Liu, D.P., Chen, J.S.: Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres. Chem. – Europ. J. 13(31), 8754–8761 (2007)
74.
Zurück zum Zitat Dhumure, S.S., Lokhande, C.D.: Chemical deposition of Ag2S films from acidic bath. Mater. Chem. Phys. 28(1), 141–144 (1991)CrossRef Dhumure, S.S., Lokhande, C.D.: Chemical deposition of Ag2S films from acidic bath. Mater. Chem. Phys. 28(1), 141–144 (1991)CrossRef
75.
Zurück zum Zitat Lyu, L.-M., Huang, M.H.: Formation of Ag2S cages from polyhedral Ag2O nanocrystals and their electrochemical properties. Chem. Asian J. 8(8), 1847–1853 (2013)CrossRef Lyu, L.-M., Huang, M.H.: Formation of Ag2S cages from polyhedral Ag2O nanocrystals and their electrochemical properties. Chem. Asian J. 8(8), 1847–1853 (2013)CrossRef
76.
Zurück zum Zitat Lismont, M., Paez, C.A., Dreesen, L.: A one-step short-time synthesis of Ag@SiO2 core-shell nanoparticles. J. Colloid Interface Sci. 447, 40–49 (2015)CrossRef Lismont, M., Paez, C.A., Dreesen, L.: A one-step short-time synthesis of Ag@SiO2 core-shell nanoparticles. J. Colloid Interface Sci. 447, 40–49 (2015)CrossRef
77.
Zurück zum Zitat Li, Z., Jia, L., Li, Y., He, T., Li, X.-M.: Ammonia-free preparation of Ag@SiO2 core/shell nanoparticles. Appl. Surf. Sci. 345, 122–126 (2015)CrossRef Li, Z., Jia, L., Li, Y., He, T., Li, X.-M.: Ammonia-free preparation of Ag@SiO2 core/shell nanoparticles. Appl. Surf. Sci. 345, 122–126 (2015)CrossRef
78.
Zurück zum Zitat Peng, X., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P.: Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119(30), 7019–7029 (1997)CrossRef Peng, X., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P.: Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119(30), 7019–7029 (1997)CrossRef
79.
Zurück zum Zitat Pinaud, F., King, D., Moore, H.P., Weiss, S.: Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126(19), 6115–6123 (2004)CrossRef Pinaud, F., King, D., Moore, H.P., Weiss, S.: Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126(19), 6115–6123 (2004)CrossRef
80.
Zurück zum Zitat Hota, G., Jain, S., Khilara, K.C.: Synthesis of CdS-Ag2S core-shell/composite nanoparticles using AOT/n-heptane/water microemulsions. Colloids Surf. A: Physicoch. Eng. Asp. 232(2–3), 119–127 (2004)CrossRef Hota, G., Jain, S., Khilara, K.C.: Synthesis of CdS-Ag2S core-shell/composite nanoparticles using AOT/n-heptane/water microemulsions. Colloids Surf. A: Physicoch. Eng. Asp. 232(2–3), 119–127 (2004)CrossRef
81.
Zurück zum Zitat Demchenko, D.O., Robinson, R.D., Sadtler, B., Erdonmez, C.K., Alivisatos, A.P., Wang, L.-W.: Formation mechanism and properties of CdS-Ag2S nanorod superlattices. ACS Nano 2(4), 627–636 (2008)CrossRef Demchenko, D.O., Robinson, R.D., Sadtler, B., Erdonmez, C.K., Alivisatos, A.P., Wang, L.-W.: Formation mechanism and properties of CdS-Ag2S nanorod superlattices. ACS Nano 2(4), 627–636 (2008)CrossRef
82.
Zurück zum Zitat Emamdoust, A., Shayesteh, S.F., Marandi, M.: Synthesis and characterization of aqueous MPA-capped CdS-ZnS core-shell quantum dots. Pramana J. Phys. 80(4), 713–721 (2013)CrossRef Emamdoust, A., Shayesteh, S.F., Marandi, M.: Synthesis and characterization of aqueous MPA-capped CdS-ZnS core-shell quantum dots. Pramana J. Phys. 80(4), 713–721 (2013)CrossRef
83.
Zurück zum Zitat Gerion, D., Pinaud, F., Williams, S.C., Parak, W.J., Zanchet, D., Weiss, S., Alivisatos, A.P.: Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. 105(37), 8861–8871 (2001)CrossRef Gerion, D., Pinaud, F., Williams, S.C., Parak, W.J., Zanchet, D., Weiss, S., Alivisatos, A.P.: Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. 105(37), 8861–8871 (2001)CrossRef
84.
Zurück zum Zitat Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechn. 22(8), 969–976 (2004)CrossRef Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechn. 22(8), 969–976 (2004)CrossRef
85.
Zurück zum Zitat Tipcompor, N., Thongtem, S., Thongtem, T.: Characterization of cubic AgSbS2 nanostructured flowers synthesized by microwave-assisted refluxing method. J. Nanomaterials (Hindawi) 2013, 6 (2013). Paper 970489 Tipcompor, N., Thongtem, S., Thongtem, T.: Characterization of cubic AgSbS2 nanostructured flowers synthesized by microwave-assisted refluxing method. J. Nanomaterials (Hindawi) 2013, 6 (2013). Paper 970489
86.
Zurück zum Zitat Xiang, J., Cao, H., Wu, Q., Zhang, S., Zhang, X., Watt, A.A.R.: L-cysteine-assisted synthesis and optical properties of Ag2S nanospheres. J. Phys. Chem. C 112(10), 3580–3584 (2008)CrossRef Xiang, J., Cao, H., Wu, Q., Zhang, S., Zhang, X., Watt, A.A.R.: L-cysteine-assisted synthesis and optical properties of Ag2S nanospheres. J. Phys. Chem. C 112(10), 3580–3584 (2008)CrossRef
87.
Zurück zum Zitat Yu, Y., Zhang, K., Sun, S.: One-pot aqueous synthesis of near infrared emitting PbS quantum dots. Appl. Surf. Sci. 258, 7181–7187 (2012)CrossRef Yu, Y., Zhang, K., Sun, S.: One-pot aqueous synthesis of near infrared emitting PbS quantum dots. Appl. Surf. Sci. 258, 7181–7187 (2012)CrossRef
88.
Zurück zum Zitat Deng, D., Xia, J., Cao, J., Qu, L., Tian, J., Qian, Z., Gu, Y., Gu, Z.: Forming highly fluorescent near-infrared emitting PbS quantum dots in water using glutathione as surface-modifying molecule. J. Coll. Interf. Sci. 367(1), 234–240 (2012)CrossRef Deng, D., Xia, J., Cao, J., Qu, L., Tian, J., Qian, Z., Gu, Y., Gu, Z.: Forming highly fluorescent near-infrared emitting PbS quantum dots in water using glutathione as surface-modifying molecule. J. Coll. Interf. Sci. 367(1), 234–240 (2012)CrossRef
89.
Zurück zum Zitat Sadjadi, M.S., Khalilzadegan, A.: The effect of capping agents, EDTA and EG on the structure and morphology of CdS nanoparticles. J. Non-Oxide Glass. 7(4), 55–63 (2015) Sadjadi, M.S., Khalilzadegan, A.: The effect of capping agents, EDTA and EG on the structure and morphology of CdS nanoparticles. J. Non-Oxide Glass. 7(4), 55–63 (2015)
90.
Zurück zum Zitat Zeng, J., Zheng, Y., Rycenga, M., Tao, J., Li, Z.Y., Zhang, Q., Zhu, Y., Xia, Y.: Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 132(25), 8552–8853 (2010)CrossRef Zeng, J., Zheng, Y., Rycenga, M., Tao, J., Li, Z.Y., Zhang, Q., Zhu, Y., Xia, Y.: Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 132(25), 8552–8853 (2010)CrossRef
91.
Zurück zum Zitat Gutierrez, L., Aubry, C., Cornejo, M., Croue, J.-P.: Citrate-coated silver nanoparticles interactions with effluent organic matter: Influence of capping agent and solution conditions. Langmuir 31(32), 8865–8872 (2015)CrossRef Gutierrez, L., Aubry, C., Cornejo, M., Croue, J.-P.: Citrate-coated silver nanoparticles interactions with effluent organic matter: Influence of capping agent and solution conditions. Langmuir 31(32), 8865–8872 (2015)CrossRef
92.
Zurück zum Zitat D’Souza, S., Mashazi, P., Britton, J., Nyokong, T.: Effects of differently shaped silver nanoparticles on the photophysics of pyridylsulfanyl-substituted phthalocyanines. Polyhedron 99, 112–121 (2015)CrossRef D’Souza, S., Mashazi, P., Britton, J., Nyokong, T.: Effects of differently shaped silver nanoparticles on the photophysics of pyridylsulfanyl-substituted phthalocyanines. Polyhedron 99, 112–121 (2015)CrossRef
93.
Zurück zum Zitat Philip, D.: Honey mediated green synthesis of gold nanoparticles. Spectrochim. Acta, Part A 73(4), 650–653 (2009)CrossRef Philip, D.: Honey mediated green synthesis of gold nanoparticles. Spectrochim. Acta, Part A 73(4), 650–653 (2009)CrossRef
94.
Zurück zum Zitat Philip, D.: Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta, Part A 75(3), 1078–1081 (2010)CrossRef Philip, D.: Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta, Part A 75(3), 1078–1081 (2010)CrossRef
95.
Zurück zum Zitat Shenya, D.S., Mathew, J., Philip, D.: Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta, Part A 79(1), 254–262 (2011)CrossRef Shenya, D.S., Mathew, J., Philip, D.: Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta, Part A 79(1), 254–262 (2011)CrossRef
96.
Zurück zum Zitat Ganeshkumar, M., Sathishkumar, M., Ponrasu, T., Girija, Dinesh M., Suguna, L.: Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids Surf. B: Biointerf. 2013(106), 208–216 (2013)CrossRef Ganeshkumar, M., Sathishkumar, M., Ponrasu, T., Girija, Dinesh M., Suguna, L.: Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids Surf. B: Biointerf. 2013(106), 208–216 (2013)CrossRef
97.
Zurück zum Zitat Annamalai, A., Christina, V.L.P., Sudha, D., Kalpana, M., Lakshmi, P.T.V.: Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf. B: Biointerf. 108, 60–65 (2013) Annamalai, A., Christina, V.L.P., Sudha, D., Kalpana, M., Lakshmi, P.T.V.: Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf. B: Biointerf. 108, 60–65 (2013)
98.
Zurück zum Zitat Mendoza-Reséndez, R., Gómez-Treviño, A., Barriga-Castro, E.D., Núñez, N.O., Luna, C.: Synthesis of antibacterial silver-based nanodisks and dendritic structures mediated by royal jelly. RSC Advances. 4(4), 1650–1658 (2014)CrossRef Mendoza-Reséndez, R., Gómez-Treviño, A., Barriga-Castro, E.D., Núñez, N.O., Luna, C.: Synthesis of antibacterial silver-based nanodisks and dendritic structures mediated by royal jelly. RSC Advances. 4(4), 1650–1658 (2014)CrossRef
99.
Zurück zum Zitat Ayodhya, D., Veerabhadram, G.: Green synthesis, characterization, photocatalytic, fluorescence and antimicrobial activities of Cochlospermum gossypium capped Ag2S nanoparticles. J. Photochem. Photobiol. B: Biology. 157, 57–69 (2016)CrossRef Ayodhya, D., Veerabhadram, G.: Green synthesis, characterization, photocatalytic, fluorescence and antimicrobial activities of Cochlospermum gossypium capped Ag2S nanoparticles. J. Photochem. Photobiol. B: Biology. 157, 57–69 (2016)CrossRef
100.
Zurück zum Zitat Yang, H.-Y., Zhao, Y.-W., Zhang, Z.-Y., Xiong, H.-M., Yu, S.-N.: One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology. 24(5), 055706–055710 (2013)CrossRef Yang, H.-Y., Zhao, Y.-W., Zhang, Z.-Y., Xiong, H.-M., Yu, S.-N.: One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology. 24(5), 055706–055710 (2013)CrossRef
101.
Zurück zum Zitat Esteves, A.C.C., Trindade, T.: Synthesis studies on II/VI semiconductor quantum dots. Curr. Opinion Solid State Mater. Sci. 6(4), 347–353 (2002)CrossRef Esteves, A.C.C., Trindade, T.: Synthesis studies on II/VI semiconductor quantum dots. Curr. Opinion Solid State Mater. Sci. 6(4), 347–353 (2002)CrossRef
102.
Zurück zum Zitat Tang, Q., Yoon, S.M., Yang, H.J., Lee, Y., Song, H.J., Byon, H.R., Choi, H.C.: Selective degradation of chemical bonds: From single source molecular precursors to metallic Ag and semiconducting Ag2S nanocrystals via instant thermal activation. Langmuir 22(6), 2802–2805 (2006)CrossRef Tang, Q., Yoon, S.M., Yang, H.J., Lee, Y., Song, H.J., Byon, H.R., Choi, H.C.: Selective degradation of chemical bonds: From single source molecular precursors to metallic Ag and semiconducting Ag2S nanocrystals via instant thermal activation. Langmuir 22(6), 2802–2805 (2006)CrossRef
103.
Zurück zum Zitat Wang, T.X., Xiao, H., Zhang, Y.C.: Simple solid state synthesis of Ag2S crystallites using a single source molecular precursor. Mater. Lett. 62(21–22), 3736–3738 (2008)CrossRef Wang, T.X., Xiao, H., Zhang, Y.C.: Simple solid state synthesis of Ag2S crystallites using a single source molecular precursor. Mater. Lett. 62(21–22), 3736–3738 (2008)CrossRef
104.
Zurück zum Zitat Zhang, C.L., Zhang, S.M., Yu, L.G., Zhang, Z.J.: Size-controlled synthesis of monodisperse Ag2S nanoparticles by a solventless thermolytic method. Mater. Lett. 85, 77–80 (2012)CrossRef Zhang, C.L., Zhang, S.M., Yu, L.G., Zhang, Z.J.: Size-controlled synthesis of monodisperse Ag2S nanoparticles by a solventless thermolytic method. Mater. Lett. 85, 77–80 (2012)CrossRef
105.
Zurück zum Zitat Burda, C., Chen, X.B., Narayanan, R., Sayed, E.I.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)CrossRef Burda, C., Chen, X.B., Narayanan, R., Sayed, E.I.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)CrossRef
106.
Zurück zum Zitat Zhao, Y., Zhang, D.W., Shi, W.F.: A gamma-ray irradiation reduction route to prepare rod-like Ag2S nanocrystallines at room temperature. Mater. Lett. 61(14–15), 3232–3234 (2007)CrossRef Zhao, Y., Zhang, D.W., Shi, W.F.: A gamma-ray irradiation reduction route to prepare rod-like Ag2S nanocrystallines at room temperature. Mater. Lett. 61(14–15), 3232–3234 (2007)CrossRef
107.
Zurück zum Zitat Xu, C.G., Zhang, Z.C., Ye, Q.: A novel facile method to metal sulfide (metal = Cd, Ag, Hg) nanocrystallite. Mater. Lett. 58(11), 1671–1676 (2004)CrossRef Xu, C.G., Zhang, Z.C., Ye, Q.: A novel facile method to metal sulfide (metal = Cd, Ag, Hg) nanocrystallite. Mater. Lett. 58(11), 1671–1676 (2004)CrossRef
108.
Zurück zum Zitat Chen, M.H., Gao, L.: Synthesis of leaf-like Ag2S nanosheets by hydrothermal method in water alcohol homogenous medium. Mater. Lett. 60(8), 1059–1062 (2006)CrossRef Chen, M.H., Gao, L.: Synthesis of leaf-like Ag2S nanosheets by hydrothermal method in water alcohol homogenous medium. Mater. Lett. 60(8), 1059–1062 (2006)CrossRef
109.
Zurück zum Zitat Zhai, H.J., Wang, H.S.: Ag2S morphology controllable via simple template-free solution route. Mater. Res. Bull. 43(8–9), 2354–2360 (2008)CrossRef Zhai, H.J., Wang, H.S.: Ag2S morphology controllable via simple template-free solution route. Mater. Res. Bull. 43(8–9), 2354–2360 (2008)CrossRef
110.
Zurück zum Zitat Wang, X.B., Liu, W.M., Hao, J.C., Fu, X.G., Xu, B.S.: A simple large-scale synthesis of well-defined silver sulfide semiconductor nanoparticles with adjustable size. Chem. Lett. 34(12), 1664–1665 (2005)CrossRef Wang, X.B., Liu, W.M., Hao, J.C., Fu, X.G., Xu, B.S.: A simple large-scale synthesis of well-defined silver sulfide semiconductor nanoparticles with adjustable size. Chem. Lett. 34(12), 1664–1665 (2005)CrossRef
111.
Zurück zum Zitat Dong, L.H., Chu, Y., Liu, Y.: Synthesis of faceted and cubic Ag2S nanocrystals in aqueous solution. J. Colloid. Interf. Sci. 317(2), 485–492 (2008)CrossRef Dong, L.H., Chu, Y., Liu, Y.: Synthesis of faceted and cubic Ag2S nanocrystals in aqueous solution. J. Colloid. Interf. Sci. 317(2), 485–492 (2008)CrossRef
112.
Zurück zum Zitat Fang, Y., Bai, C., Zhang, Y.: Preparation of metal sulfide-polymer composite microspheres with patterned surface structures. Chem. Commun. 7, 804–805 (2004)CrossRef Fang, Y., Bai, C., Zhang, Y.: Preparation of metal sulfide-polymer composite microspheres with patterned surface structures. Chem. Commun. 7, 804–805 (2004)CrossRef
113.
Zurück zum Zitat Sun, Y.Z., Zhou, B.B.: Single-crystalline Ag2S hollow nanohexagons and their assembly into ordered arrays. Mater. Lett. 64(12), 1347–1349 (2010)CrossRef Sun, Y.Z., Zhou, B.B.: Single-crystalline Ag2S hollow nanohexagons and their assembly into ordered arrays. Mater. Lett. 64(12), 1347–1349 (2010)CrossRef
114.
Zurück zum Zitat Zhuang, Z., Peng, Q., Wang, X., Li, Y.: Tetrahedral colloidal crystals of Ag2S nanocrystals. Angew. Chem. Int. Ed. 46(43), 8174–8177 (2007)CrossRef Zhuang, Z., Peng, Q., Wang, X., Li, Y.: Tetrahedral colloidal crystals of Ag2S nanocrystals. Angew. Chem. Int. Ed. 46(43), 8174–8177 (2007)CrossRef
115.
Zurück zum Zitat Chaudhuri, R.G., Paria, S.: A novel method for the templated synthesis of Ag2S hollow nanospheres in aqueous surfactant media. J. Colloid. Interf. Sci. 369(1), 117–122 (2012)CrossRef Chaudhuri, R.G., Paria, S.: A novel method for the templated synthesis of Ag2S hollow nanospheres in aqueous surfactant media. J. Colloid. Interf. Sci. 369(1), 117–122 (2012)CrossRef
116.
Zurück zum Zitat Liu, M.Y., Xu, Z.L., Li, B.N., Lin, C.M.: Synthesis of worm-like Ag2S nanocrystals in W/O reverse microemulsion. Mater. Lett. 65(3), 555–558 (2011)CrossRef Liu, M.Y., Xu, Z.L., Li, B.N., Lin, C.M.: Synthesis of worm-like Ag2S nanocrystals in W/O reverse microemulsion. Mater. Lett. 65(3), 555–558 (2011)CrossRef
117.
Zurück zum Zitat Lv, L.Y., Wang, H.: Ag2S nanorice: hydrothermal synthesis and characterization study. Mater. Lett. 121, 105–108 (2014)CrossRef Lv, L.Y., Wang, H.: Ag2S nanorice: hydrothermal synthesis and characterization study. Mater. Lett. 121, 105–108 (2014)CrossRef
118.
Zurück zum Zitat Yarema, M., Pichler, S., Sytnyk, M., Seyrkammer, R., Lechner, R.T., Fritz-Popovski, G., Jarzab, D., Szendrei, K., Resel, R., Korovyanko, O., Loi, M.A., Paris, O., Hesser, G., Heiss, W.: Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 5(5), 3758–3765 (2011)CrossRef Yarema, M., Pichler, S., Sytnyk, M., Seyrkammer, R., Lechner, R.T., Fritz-Popovski, G., Jarzab, D., Szendrei, K., Resel, R., Korovyanko, O., Loi, M.A., Paris, O., Hesser, G., Heiss, W.: Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis. ACS Nano 5(5), 3758–3765 (2011)CrossRef
119.
Zurück zum Zitat Du, Y., Xu, B., Fu, T., Cai, M., Li, F., Zhang, Y., Wang, Q.: Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 132(5), 1470–1471 (2010)CrossRef Du, Y., Xu, B., Fu, T., Cai, M., Li, F., Zhang, Y., Wang, Q.: Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 132(5), 1470–1471 (2010)CrossRef
120.
Zurück zum Zitat Cai, W., Shin, D.W., Chen, K., Gheysens, O., Cao, Q., Wang, S.X., Gambhir, S.S., Chen, X.: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6(4), 669–676 (2006)CrossRef Cai, W., Shin, D.W., Chen, K., Gheysens, O., Cao, Q., Wang, S.X., Gambhir, S.S., Chen, X.: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6(4), 669–676 (2006)CrossRef
121.
Zurück zum Zitat Chen, J., Zhang, T., Feng, L.L., Zhang, M., Zhang, X., Su, H., Cui, D.: Synthesis of ribonuclease-A conjugate Ag2S quantum dots clusters via biomimetic route. Mater. Lett. 96, 224–227 (2013)CrossRef Chen, J., Zhang, T., Feng, L.L., Zhang, M., Zhang, X., Su, H., Cui, D.: Synthesis of ribonuclease-A conjugate Ag2S quantum dots clusters via biomimetic route. Mater. Lett. 96, 224–227 (2013)CrossRef
122.
Zurück zum Zitat Siva, C., Iswarya, C.N., Baraneedharan, P., Sivakumar, M.: L-cysteine assisted formation of mesh like Ag2S and Ag3AuS2 nanocrystals through hydrogen bonds. Mater. Lett. 134, 56–59 (2014)CrossRef Siva, C., Iswarya, C.N., Baraneedharan, P., Sivakumar, M.: L-cysteine assisted formation of mesh like Ag2S and Ag3AuS2 nanocrystals through hydrogen bonds. Mater. Lett. 134, 56–59 (2014)CrossRef
123.
Zurück zum Zitat Koneswaran, M., Narayanaswamy, R.: L-cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sens. Actuator B: Chem. 139(1), 104–109 (2009)CrossRef Koneswaran, M., Narayanaswamy, R.: L-cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sens. Actuator B: Chem. 139(1), 104–109 (2009)CrossRef
124.
Zurück zum Zitat Hou, X.M., Zhang, X.L., Yang, W., Liu, Y.: Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent reducing agent and stabilizer. Mater. Res. Bull. 47(9), 2579–2583 (2012)CrossRef Hou, X.M., Zhang, X.L., Yang, W., Liu, Y.: Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent reducing agent and stabilizer. Mater. Res. Bull. 47(9), 2579–2583 (2012)CrossRef
125.
Zurück zum Zitat Shakouri-Arani, M., Salavati-Niasari, M.: Structural and spectroscopic characterization of prepared Ag2S nanoparticles with a novel sulfuring agent. Spectrochim. Acta A: Mol Biomol Spectrosc. 133, 463–471 (2014)CrossRef Shakouri-Arani, M., Salavati-Niasari, M.: Structural and spectroscopic characterization of prepared Ag2S nanoparticles with a novel sulfuring agent. Spectrochim. Acta A: Mol Biomol Spectrosc. 133, 463–471 (2014)CrossRef
126.
Zurück zum Zitat Yan, Zhang: Hong G., Zhang Y., Chen G., Li F., Dai H., Wang Q. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6(5), 3695–3702 (2012)CrossRef Yan, Zhang: Hong G., Zhang Y., Chen G., Li F., Dai H., Wang Q. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 6(5), 3695–3702 (2012)CrossRef
127.
Zurück zum Zitat Hocaoglu, I., Çizmeciyan, M.N., Erdem, R., Ozen, C., Kurt, A., Sennaroglu, A., Acar, H.Y.: Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. J. Mater. Chem. 22(29), 14674–14681 (2012)CrossRef Hocaoglu, I., Çizmeciyan, M.N., Erdem, R., Ozen, C., Kurt, A., Sennaroglu, A., Acar, H.Y.: Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. J. Mater. Chem. 22(29), 14674–14681 (2012)CrossRef
128.
Zurück zum Zitat Wang, C., Zhang, X., Qian, X., Wang, W., Qian, Y.: Ultrafine powder of silver sulfide semiconductor prepared in alcohol solution. Mater. Res. Bull. 33(7), 1083–1086 (1998)CrossRef Wang, C., Zhang, X., Qian, X., Wang, W., Qian, Y.: Ultrafine powder of silver sulfide semiconductor prepared in alcohol solution. Mater. Res. Bull. 33(7), 1083–1086 (1998)CrossRef
129.
Zurück zum Zitat Krylova, V., Samuolaitiene, L.: Investigation of optical and electrical properties of silver sulfide films deposited on polyamide substrates. Mat. Sci. (Lithuania) 19(1), 10–14 (2013) Krylova, V., Samuolaitiene, L.: Investigation of optical and electrical properties of silver sulfide films deposited on polyamide substrates. Mat. Sci. (Lithuania) 19(1), 10–14 (2013)
130.
Zurück zum Zitat Grocholl, L., Wang, J., Gillan, E.G.: Synthesis of sub-micron silver and silver sulfide particles via solvothermal silver azide decomposition. Mater. Res. Bull. 38(5), 213–220 (2003)CrossRef Grocholl, L., Wang, J., Gillan, E.G.: Synthesis of sub-micron silver and silver sulfide particles via solvothermal silver azide decomposition. Mater. Res. Bull. 38(5), 213–220 (2003)CrossRef
131.
Zurück zum Zitat Kim, B., Park, C.-S., Murayama, M., Hochella, M.F.: Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ. Sci. Technol. 44(19), 7509–7514 (2010)CrossRef Kim, B., Park, C.-S., Murayama, M., Hochella, M.F.: Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ. Sci. Technol. 44(19), 7509–7514 (2010)CrossRef
132.
Zurück zum Zitat Martínez-Castañón, G.A., Sánchez-Loredo, M.G., Dorantes, H.J., Martínez-Mendoza, J.R., Ortega-Zarzosa, G.: Ruiz Facundo. Characterization of silver sulfide nanoparticles synthesized by a simple precipitation method. Mater. Lett. 59(4), 529–534 (2005)CrossRef Martínez-Castañón, G.A., Sánchez-Loredo, M.G., Dorantes, H.J., Martínez-Mendoza, J.R., Ortega-Zarzosa, G.: Ruiz Facundo. Characterization of silver sulfide nanoparticles synthesized by a simple precipitation method. Mater. Lett. 59(4), 529–534 (2005)CrossRef
133.
134.
135.
Zurück zum Zitat Trandafilović, L.V., Djoković, V., Bibić, N., Georges, M.K., Radhakrishnan, T.: Confined growth of Ag2S semiconductor nanocrystals in the presence of PDMAEMA-co-AA polyampholyte co-polymer. Mater. Lett. 64(9), 1123–1126 (2010)CrossRef Trandafilović, L.V., Djoković, V., Bibić, N., Georges, M.K., Radhakrishnan, T.: Confined growth of Ag2S semiconductor nanocrystals in the presence of PDMAEMA-co-AA polyampholyte co-polymer. Mater. Lett. 64(9), 1123–1126 (2010)CrossRef
136.
Zurück zum Zitat Buerger, M.J.: Elementary Crystallography, pp. 15–16. John Wiley @ Sons, New York (1956) Buerger, M.J.: Elementary Crystallography, pp. 15–16. John Wiley @ Sons, New York (1956)
137.
Zurück zum Zitat Vainshtein, B.K.: Modern Crystallography. Vol. 1. Fundamentals of Crystals. Symmetry, and Methods of Structural Crystallography. 2nd edn, pp. 480. Springer-Verlag, Berlin (1994) Vainshtein, B.K.: Modern Crystallography. Vol. 1. Fundamentals of Crystals. Symmetry, and Methods of Structural Crystallography. 2nd edn, pp. 480. Springer-Verlag, Berlin (1994)
138.
Zurück zum Zitat Delaunay, B.: Sur la généralisation de la théorie des paralléloèdres. Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et naturelles. 5, 641–646 (1933) Delaunay, B.: Sur la généralisation de la théorie des paralléloèdres. Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et naturelles. 5, 641–646 (1933)
139.
Zurück zum Zitat Delaunay, B.: Neue Darstellung der geometrischen Kristallographie. Erste Abhandlung. Ztschr. Kristallographie. 84(1), 109–149 (1933) Delaunay, B.: Neue Darstellung der geometrischen Kristallographie. Erste Abhandlung. Ztschr. Kristallographie. 84(1), 109–149 (1933)
140.
Zurück zum Zitat Delaunay, B.: Sur la sphère vide. A la mémoire de Georges Voronoï. Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et naturelles. 6, 793–800 (1934) Delaunay, B.: Sur la sphère vide. A la mémoire de Georges Voronoï. Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et naturelles. 6, 793–800 (1934)
141.
Zurück zum Zitat Delaunay, B.N.: The geometry of positive quadratic forms. Uspekhi Mat. Nauk. 3, 16–62 (1937) Uspekhi Mat. Nauk. 4, 102–164 (1938) (in Russian) Delaunay, B.N.: The geometry of positive quadratic forms. Uspekhi Mat. Nauk. 3, 16–62 (1937) Uspekhi Mat. Nauk. 4, 102–164 (1938) (in Russian)
142.
Zurück zum Zitat Patterson, A.L., Lowe, W.E.: Remarks on the Delaunay reduction. Acta Crystallogr. 10(2), 111–116 (1957)CrossRef Patterson, A.L., Lowe, W.E.: Remarks on the Delaunay reduction. Acta Crystallogr. 10(2), 111–116 (1957)CrossRef
143.
Zurück zum Zitat X’Pert Plus Version 1.0. Program for Crystallography and Rietveld analysis Philips Analytical B. V. Koninklijke Philips Electronics N. V. (1999) X’Pert Plus Version 1.0. Program for Crystallography and Rietveld analysis Philips Analytical B. V. Koninklijke Philips Electronics N. V. (1999)
144.
Zurück zum Zitat Hall, W.H., Williamson, G.K.: The diffraction pattern of cold worked metals: I. The nature of extinction. Proc. Phys. Soc. London. Sect.B. 64(11). Part 11 383B, 937–946 (1951) Hall, W.H., Williamson, G.K.: The diffraction pattern of cold worked metals: I. The nature of extinction. Proc. Phys. Soc. London. Sect.B. 64(11). Part 11 383B, 937–946 (1951)
145.
Zurück zum Zitat Gusev, A.I., Rempel, A.A.: Nanocrysnalline Materials, p. 351. Cambridge Intern. Science Publ, Cambridge (2004) Gusev, A.I., Rempel, A.A.: Nanocrysnalline Materials, p. 351. Cambridge Intern. Science Publ, Cambridge (2004)
146.
Zurück zum Zitat Gusev, A.I., Kurlov, A.S.: Certification of nanocrystalline materials on the size of particles (grains). Metallofizika i Noveishie Tekhnologii. 30(5), 679–694 (2008) (in Russian) Gusev, A.I., Kurlov, A.S.: Certification of nanocrystalline materials on the size of particles (grains). Metallofizika i Noveishie Tekhnologii. 30(5), 679–694 (2008) (in Russian)
147.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I.: Chemical deposition of nanocrystalline lead sulfide powders with controllable particle size. J. Alloys Comp. 586, 105–112 (2014)CrossRef Sadovnikov, S.I., Gusev, A.I.: Chemical deposition of nanocrystalline lead sulfide powders with controllable particle size. J. Alloys Comp. 586, 105–112 (2014)CrossRef
148.
Zurück zum Zitat Perrott, C.M., Fletcher, N.H.: Heat capacity of silver sulfide. J. Chem. Phys. 50(6), 2344–2350 (1969)CrossRef Perrott, C.M., Fletcher, N.H.: Heat capacity of silver sulfide. J. Chem. Phys. 50(6), 2344–2350 (1969)CrossRef
149.
Zurück zum Zitat Thompson, W.T., Flengas, S.N.: Drop calorimetric measurements on some chlorides, sulfides, and binary melts. Can. J. Chem. 49(9), 1550–1563 (1971)CrossRef Thompson, W.T., Flengas, S.N.: Drop calorimetric measurements on some chlorides, sulfides, and binary melts. Can. J. Chem. 49(9), 1550–1563 (1971)CrossRef
150.
Zurück zum Zitat Mills, K.C.: Thermodynamic Data for Inorganic Sulfides, Selenides, and Tellurides, p. 845. Butterworths, London (1974) Mills, K.C.: Thermodynamic Data for Inorganic Sulfides, Selenides, and Tellurides, p. 845. Butterworths, London (1974)
151.
Zurück zum Zitat Okazaki, H., Takano, A.: The specific heat of Ag2S in & α-phase. Ztsch. Naturforsch. A. 40(10), 986–988 (1985) Okazaki, H., Takano, A.: The specific heat of Ag2S in & α-phase. Ztsch. Naturforsch. A. 40(10), 986–988 (1985)
152.
Zurück zum Zitat Grønvold, F., Westrum, E.F.: Silver(I) sulfide: Ag2S Heat capacity from 5 to 1000 K, thermodynamic properties, and transitions. J. Chem. Therm. 18(4), 381–401 (1986)CrossRef Grønvold, F., Westrum, E.F.: Silver(I) sulfide: Ag2S Heat capacity from 5 to 1000 K, thermodynamic properties, and transitions. J. Chem. Therm. 18(4), 381–401 (1986)CrossRef
153.
Zurück zum Zitat Match! Version 1.10. Phase Identification from Powder Diffraction © 2003–2010 Crystal Impact Match! Version 1.10. Phase Identification from Powder Diffraction © 2003–2010 Crystal Impact
155.
Zurück zum Zitat Gusev, A.I., Sadovnikov, S.I., Chukin, A.V., Rempel, A.A.: Thermal expansion of nanocrystalline and coarse-crystalline silver sulfide Ag2S. Fiz. Tverd. Tela. 58(2), 246–251 (2016). (in Russian). (Engl. Transl.: Phys. Solid State. 58(2), 251–257 (2016)) Gusev, A.I., Sadovnikov, S.I., Chukin, A.V., Rempel, A.A.: Thermal expansion of nanocrystalline and coarse-crystalline silver sulfide Ag2S. Fiz. Tverd. Tela. 58(2), 246–251 (2016). (in Russian). (Engl. Transl.: Phys. Solid State. 58(2), 251–257 (2016))
156.
Zurück zum Zitat Honma, K., Iida, K.: Specific heat of superionic conductor Ag2S, Ag2Se and Ag2Te in α-phase. J. Phys. Soc. Japan. 56(5), 1828–1836 (1987)CrossRef Honma, K., Iida, K.: Specific heat of superionic conductor Ag2S, Ag2Se and Ag2Te in α-phase. J. Phys. Soc. Japan. 56(5), 1828–1836 (1987)CrossRef
157.
Zurück zum Zitat X’Pert HighScore Plus. Version 2.2e (2.2.5). 2009 PANalytical B. V. Almedo, the Netherlands X’Pert HighScore Plus. Version 2.2e (2.2.5). 2009 PANalytical B. V. Almedo, the Netherlands
158.
Zurück zum Zitat Sadovnikov, S.I., Kozhevnikova, N.S., Rempel, A.A., Magerl, A.: Thermal expansion of a lead sulfide nanofilm. Thin Solid Films 548, 230–234 (2013)CrossRef Sadovnikov, S.I., Kozhevnikova, N.S., Rempel, A.A., Magerl, A.: Thermal expansion of a lead sulfide nanofilm. Thin Solid Films 548, 230–234 (2013)CrossRef
159.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I.: Effect of particle size on the thermal expansion of nanostructured lead sulfide films. J. Alloys Comp. 610, 196–202 (2014)CrossRef Sadovnikov, S.I., Gusev, A.I.: Effect of particle size on the thermal expansion of nanostructured lead sulfide films. J. Alloys Comp. 610, 196–202 (2014)CrossRef
160.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I.: Thermal expansion of nanostructured PbS films and anharmonicity of atomic vibrations. Fiz. Tverd. Tela. 56(11), 2274–2278 (2014). (in Russian). (Engl. Transl.: Phys. Sol. State. 56(11), 2353–2358 (2014)) Sadovnikov, S.I., Gusev, A.I.: Thermal expansion of nanostructured PbS films and anharmonicity of atomic vibrations. Fiz. Tverd. Tela. 56(11), 2274–2278 (2014). (in Russian). (Engl. Transl.: Phys. Sol. State. 56(11), 2353–2358 (2014))
161.
Zurück zum Zitat Montrol, E.W.: Size effect in low temperature heat capacities. J. Chem. Phys. 18(2), 183–185 (1950)CrossRef Montrol, E.W.: Size effect in low temperature heat capacities. J. Chem. Phys. 18(2), 183–185 (1950)CrossRef
162.
Zurück zum Zitat Gmelin’s Handbuch der anorganischen Chemie. 5th edn. In: Silber. Verlag Chemie GmbH, Weinheim, Teil B3 (1973) Gmelin’s Handbuch der anorganischen Chemie. 5th edn. In: Silber. Verlag Chemie GmbH, Weinheim, Teil B3 (1973)
163.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I.: Universal approach to the synthesis of silver sulfide in the forms of nanopowders, quantum dots, core-shell nanoparticles, and heteronanostructures. Eur. J. Inorg. Chem. 2016(31), 4944–4957 (2016)CrossRef Sadovnikov, S.I., Gusev, A.I.: Universal approach to the synthesis of silver sulfide in the forms of nanopowders, quantum dots, core-shell nanoparticles, and heteronanostructures. Eur. J. Inorg. Chem. 2016(31), 4944–4957 (2016)CrossRef
164.
Zurück zum Zitat Sadovnikov, S.I., Kuznetsova, YuV, Rempel, A.A.: Ag2S silver sulfide nanoparticles and colloidal solutions: Synthesis and properties. Nanostr. Nano-Obj. 7, 81–91 (2016)CrossRef Sadovnikov, S.I., Kuznetsova, YuV, Rempel, A.A.: Ag2S silver sulfide nanoparticles and colloidal solutions: Synthesis and properties. Nanostr. Nano-Obj. 7, 81–91 (2016)CrossRef
165.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I.: Facile synthesis, structure, and properties of Ag2S/Ag heteronanostructure. J. Nanopart. Res. 18(9), 277–12 (2016)CrossRef Sadovnikov, S.I., Gusev, A.I.: Facile synthesis, structure, and properties of Ag2S/Ag heteronanostructure. J. Nanopart. Res. 18(9), 277–12 (2016)CrossRef
166.
Zurück zum Zitat Gusev, A.I., Sadovnikov, S.I.: Acanthite-argentite transformation in nanocrystalline silver sulfide and the Ag2S/Ag nanoheterostructure. Fiz. Tekhn. Poluprovodnikov. 50(5), 694–699 (2016). (in Russian). (Engl. Transl.: Semiconductors. 50(5), 682–687 (2016)) Gusev, A.I., Sadovnikov, S.I.: Acanthite-argentite transformation in nanocrystalline silver sulfide and the Ag2S/Ag nanoheterostructure. Fiz. Tekhn. Poluprovodnikov. 50(5), 694–699 (2016). (in Russian). (Engl. Transl.: Semiconductors. 50(5), 682–687 (2016))
167.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I., Gerasimov, E.Yu., Rempel, A.A.: Silver sulfide nanoparticles with a carbon-containing shell. Neorgan. Materialy. 52(5), 487–492 (2016). (in Russian). (Engl. Transl.: Inorg. Mater. 52(5), 441–446 (2016)) Sadovnikov, S.I., Gusev, A.I., Gerasimov, E.Yu., Rempel, A.A.: Silver sulfide nanoparticles with a carbon-containing shell. Neorgan. Materialy. 52(5), 487–492 (2016). (in Russian). (Engl. Transl.: Inorg. Mater. 52(5), 441–446 (2016))
168.
Zurück zum Zitat Gusev, A.I., Sadovnikov, S.I.: Structure and properties of nanoscale Ag2S/Ag heterostructures. Mater. Lett. 188, 351–354 (2017)CrossRef Gusev, A.I., Sadovnikov, S.I.: Structure and properties of nanoscale Ag2S/Ag heterostructures. Mater. Lett. 188, 351–354 (2017)CrossRef
169.
Zurück zum Zitat Anastas, P., Eghbali, N.: Green chemistry: Principles and practice. Chem. Soc. Rev. 39(1), 301–312 (2010)CrossRef Anastas, P., Eghbali, N.: Green chemistry: Principles and practice. Chem. Soc. Rev. 39(1), 301–312 (2010)CrossRef
170.
Zurück zum Zitat Patnaik P.: Dean’s Analytical Chemistry Handbook. 2nd edn., p. 1280. McGraw-Hill, New York (2004) Table 4.2. Patnaik P.: Dean’s Analytical Chemistry Handbook. 2nd edn., p. 1280. McGraw-Hill, New York (2004) Table 4.2.
171.
Zurück zum Zitat Lee, P.C., Meisel, D.: Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86(17), 3391–3395 (1982)CrossRef Lee, P.C., Meisel, D.: Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86(17), 3391–3395 (1982)CrossRef
172.
Zurück zum Zitat Gatan Misroscopy Suite. Gatan Inc Version 2.31.734.0 Gatan Misroscopy Suite. Gatan Inc Version 2.31.734.0
174.
Zurück zum Zitat Sadovnikov. S.I., Rempel. A.A.: Method of production of nanocrystalline powder of silver sulfide. Patent No. 2572421 of Russian Federation. 1–4 (2016) Sadovnikov. S.I., Rempel. A.A.: Method of production of nanocrystalline powder of silver sulfide. Patent No. 2572421 of Russian Federation. 1–4 (2016)
175.
Zurück zum Zitat Kayanuma, Y.: Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B. 38(14), 9797–9805 (1988)CrossRef Kayanuma, Y.: Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys. Rev. B. 38(14), 9797–9805 (1988)CrossRef
176.
Zurück zum Zitat Chang, S., Li, Q., Xiao, X., Wong, K.Y., Chen, T.: Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorod. Energy Environm. Sci. 5(11), 9444–9448 (2012)CrossRef Chang, S., Li, Q., Xiao, X., Wong, K.Y., Chen, T.: Enhancement of low energy sunlight harvesting in dye-sensitized solar cells using plasmonic gold nanorod. Energy Environm. Sci. 5(11), 9444–9448 (2012)CrossRef
177.
Zurück zum Zitat Zhang, Y., Liu, Y., Li, C., Chen, X., Wang, Q.: Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton Bohr radius. J. Phys. Chem. C 118(9), 4918–4923 (2014)CrossRef Zhang, Y., Liu, Y., Li, C., Chen, X., Wang, Q.: Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton Bohr radius. J. Phys. Chem. C 118(9), 4918–4923 (2014)CrossRef
178.
Zurück zum Zitat Faraday, M.: The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philosoph. Trans. Roy. Soc. (London) 147, 145–181 (1857)CrossRef Faraday, M.: The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philosoph. Trans. Roy. Soc. (London) 147, 145–181 (1857)CrossRef
179.
Zurück zum Zitat Sadovnikov, S.I., Kuznetsova, Yu.V., Gusev A.I., Rempel A.A.: Method of production of aqueous colloidal solutions of silver sulfide nanoparticles. Patent No. 2600761 of Russian Federation. 1–11 (2016) Sadovnikov, S.I., Kuznetsova, Yu.V., Gusev A.I., Rempel A.A.: Method of production of aqueous colloidal solutions of silver sulfide nanoparticles. Patent No. 2600761 of Russian Federation. 1–11 (2016)
180.
Zurück zum Zitat Wang, H., Qi, L.: Controlled synthesis of Ag2S, Ag2Se, and Ag nanofibers by using a general sacrificial template and their application in electronic device fabrication. Adv. Func. Mater. 18(8), 1249–1256 (2008)CrossRef Wang, H., Qi, L.: Controlled synthesis of Ag2S, Ag2Se, and Ag nanofibers by using a general sacrificial template and their application in electronic device fabrication. Adv. Func. Mater. 18(8), 1249–1256 (2008)CrossRef
181.
Zurück zum Zitat Henglein, A.: Nanoclusters of semiconductors and metals: Colloidal nano-particles of semiconductors and metals: Electronic structure and processes. Ber. Bunsenges. Phys. Chem. 101(4), 1562–1572 (1997)CrossRef Henglein, A.: Nanoclusters of semiconductors and metals: Colloidal nano-particles of semiconductors and metals: Electronic structure and processes. Ber. Bunsenges. Phys. Chem. 101(4), 1562–1572 (1997)CrossRef
182.
Zurück zum Zitat Krutyakov, Y.A., Kudrinskiy, A.A., Olenin, A.Y., Lisichkin, G.V.: Synthesis and properties of silver nanoparticles: advances and prospects. Usp. Khim. 77(3), 242–269 (2008). (in Russian). (Engl. Transl.: Rus. Chem. Rev. 77(3), 233–257 (2008))CrossRef Krutyakov, Y.A., Kudrinskiy, A.A., Olenin, A.Y., Lisichkin, G.V.: Synthesis and properties of silver nanoparticles: advances and prospects. Usp. Khim. 77(3), 242–269 (2008). (in Russian). (Engl. Transl.: Rus. Chem. Rev. 77(3), 233–257 (2008))CrossRef
183.
Zurück zum Zitat Lukashin, A.V., Eliseev, A.A., Zhuravleva, N.G., Vertegel, A.A., Tretyakov, YuD, Lebedev, O.I., van Tendeloo, G.: One-step synthesis of shelled PbS nanoparticles in a layered double hydroxide matrix. Mend. Commun. 14(4), 174–176 (2004)CrossRef Lukashin, A.V., Eliseev, A.A., Zhuravleva, N.G., Vertegel, A.A., Tretyakov, YuD, Lebedev, O.I., van Tendeloo, G.: One-step synthesis of shelled PbS nanoparticles in a layered double hydroxide matrix. Mend. Commun. 14(4), 174–176 (2004)CrossRef
184.
Zurück zum Zitat Hayes, R., Ahmed, A., Edge, T., Zhang, H.: Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. J. Chromatogr. A 1357, 36–52 (2014)CrossRef Hayes, R., Ahmed, A., Edge, T., Zhang, H.: Core–shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. J. Chromatogr. A 1357, 36–52 (2014)CrossRef
185.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Silver sulfide nanoparticles in ligand organic shell and method of its production. Patent No. 2603666 of Russian Federation. 1–13 (2016) Sadovnikov, S.I., Gusev, A.I., Rempel, A.A.: Silver sulfide nanoparticles in ligand organic shell and method of its production. Patent No. 2603666 of Russian Federation. 1–13 (2016)
186.
Zurück zum Zitat Faraday, M.: Experimental researches in electricity. Fourth series. Phil. Trans. Royal Soc. London. 123, 507–522 (1833) Art. 433–438 Faraday, M.: Experimental researches in electricity. Fourth series. Phil. Trans. Royal Soc. London. 123, 507–522 (1833) Art. 433–438
187.
Zurück zum Zitat Faraday M.: Experimental researches in electricity. Twelfth series. Phil. Trans. Royal Soc. London. 128, 83–123 (1938) Art. 1340 Faraday M.: Experimental researches in electricity. Twelfth series. Phil. Trans. Royal Soc. London. 128, 83–123 (1938) Art. 1340
188.
Zurück zum Zitat Liu, B., Ma, Z.: Synthesis of Ag2S-Ag nanoprisms and their use as DNA hybridization probes. Small 7(11), 1587–1592 (2011)CrossRef Liu, B., Ma, Z.: Synthesis of Ag2S-Ag nanoprisms and their use as DNA hybridization probes. Small 7(11), 1587–1592 (2011)CrossRef
189.
Zurück zum Zitat Wang D., Liu L., Kim Y., Huang Z., Pantel D., Hesse D., Alexe M.: Fabrication and characterization of extended arrays of Ag2S/Ag nanodot resistive switches. Appl. Phys. Lett. 98(24), 3 (2011) Paper 243109 Wang D., Liu L., Kim Y., Huang Z., Pantel D., Hesse D., Alexe M.: Fabrication and characterization of extended arrays of Ag2S/Ag nanodot resistive switches. Appl. Phys. Lett. 98(24), 3 (2011) Paper 243109
190.
Zurück zum Zitat Morales-Masis, M., Molen, S.J., Fu, W.T., Hesselberth, M.B., Ruitenbeek,J.M.: Conductance switching in Ag2S devices fabricated by in situ sulfurization. Nanotechnology 20(9), 6 (2009) Paper 095710 Morales-Masis, M., Molen, S.J., Fu, W.T., Hesselberth, M.B., Ruitenbeek,J.M.: Conductance switching in Ag2S devices fabricated by in situ sulfurization. Nanotechnology 20(9), 6 (2009) Paper 095710
191.
Zurück zum Zitat Tanaka, H., Akai, T., Tanaka, D., Ogawa, T.: Sequential phase transition during fabricating β-Ag2S film on Ag electrode by wet chemical process. e-J. Surf. Sci. Nanotechn. 12, 185–188 (2014) Tanaka, H., Akai, T., Tanaka, D., Ogawa, T.: Sequential phase transition during fabricating β-Ag2S film on Ag electrode by wet chemical process. e-J. Surf. Sci. Nanotechn. 12, 185–188 (2014)
192.
Zurück zum Zitat Ma, X., Zhao, Y., Jiang, X., Liu, W., Liu, S., Tang, Z.: Facile preparation of Ag2S/Ag semiconductor/metal heteronanostructures with remarkable antibacterial properties. ChemPhysChem 13(10), 2531–2535 (2012)CrossRef Ma, X., Zhao, Y., Jiang, X., Liu, W., Liu, S., Tang, Z.: Facile preparation of Ag2S/Ag semiconductor/metal heteronanostructures with remarkable antibacterial properties. ChemPhysChem 13(10), 2531–2535 (2012)CrossRef
193.
Zurück zum Zitat Horvath, B., Kawakita, J., Chikyow, T.: Diffusion barrier and adhesion properties of SiO x N y and SiO x layers between Ag/polypyrrole composites and Si substrates. ACS Appl. Mat. Interf. 6(12), 9201–9206 (2014)CrossRef Horvath, B., Kawakita, J., Chikyow, T.: Diffusion barrier and adhesion properties of SiO x N y and SiO x layers between Ag/polypyrrole composites and Si substrates. ACS Appl. Mat. Interf. 6(12), 9201–9206 (2014)CrossRef
194.
Zurück zum Zitat Sadovnikov, S.I., Gusev, A.I.: Structure and properties of Ag2S/Ag semiconductor/metal heteronanostructure. Biointerf. Res. Appl. Chem. 6(6), 1797–1804 (2016) Sadovnikov, S.I., Gusev, A.I.: Structure and properties of Ag2S/Ag semiconductor/metal heteronanostructure. Biointerf. Res. Appl. Chem. 6(6), 1797–1804 (2016)
195.
Zurück zum Zitat Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: Quantized conductance atomic switch. Nature 433(7021), 47–50 (2005)CrossRef Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: Quantized conductance atomic switch. Nature 433(7021), 47–50 (2005)CrossRef
196.
Zurück zum Zitat Kharkats, YuI: Electric-field induced transition to superionic conductive state. Fiz Tverd Tela. 23(7), 2190–2192 (1981). (in Russian) Kharkats, YuI: Electric-field induced transition to superionic conductive state. Fiz Tverd Tela. 23(7), 2190–2192 (1981). (in Russian)
197.
Zurück zum Zitat Gurevich, Y.Y., Kharkats, Y.I.: Features of the thermodynamics of superionic conductors. Usp. Fiz. Nauk. 136(4), 693–728 (1982). (in Russian). (Engl. Transl.: Sov. Phys. Uspekhi. 25(4), 257–276 (1982))CrossRef Gurevich, Y.Y., Kharkats, Y.I.: Features of the thermodynamics of superionic conductors. Usp. Fiz. Nauk. 136(4), 693–728 (1982). (in Russian). (Engl. Transl.: Sov. Phys. Uspekhi. 25(4), 257–276 (1982))CrossRef
198.
Zurück zum Zitat Hu, M., Chen, J.Y., Li, Z.Y., Au, L., Hartland, G.V., Li, X.D., Marquez, M., Xia, Y.N.: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35(11), 1084–1094 (2006)CrossRef Hu, M., Chen, J.Y., Li, Z.Y., Au, L., Hartland, G.V., Li, X.D., Marquez, M., Xia, Y.N.: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35(11), 1084–1094 (2006)CrossRef
199.
Zurück zum Zitat Song, S.P., Yu, Q., He, Y., Huang, Q., Fan, C.H., Chen, H.Y.: Functional nanoprobes for ultrasensitive detection of biomolecules. Chem. Soc. Rev. 39(11), 4234–4243 (2010)CrossRef Song, S.P., Yu, Q., He, Y., Huang, Q., Fan, C.H., Chen, H.Y.: Functional nanoprobes for ultrasensitive detection of biomolecules. Chem. Soc. Rev. 39(11), 4234–4243 (2010)CrossRef
200.
Zurück zum Zitat Yang, J., Liu, H.: Metal-Based Composite Nanomaterials, vol. 4, pp. 93–114. Springer, Cham (2015) Yang, J., Liu, H.: Metal-Based Composite Nanomaterials, vol. 4, pp. 93–114. Springer, Cham (2015)
Metadaten
Titel
Nanostructured Silver Sulfide Ag2S
verfasst von
Stanislav I. Sadovnikov
Andrey A. Rempel
Aleksandr I. Gusev
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-56387-9_4

Neuer Inhalt