Skip to main content

2020 | OriginalPaper | Buchkapitel

Natural Gas Power

verfasst von : Raub W. Smith, S. Can Gülen

Erschienen in: Fossil Energy

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Brayton cycle
The thermodynamic cycle describing the operation of a gas turbine. In a combined cycle, it is the topping cycle due to its relative position vis-à-vis Rankine cycle on a temperature-entropy surface.
Carnot cycle
Also known as the Carnot engine, it is the embodiment of the second law of thermodynamics in the form of a theoretical cycle comprising two isentropic and two isothermal processes. No heat engine operating in a thermodynamic cycle can be more efficient than the corresponding Carnot engine defined by the constant mean-effective heat addition and heat rejection temperatures.
Cogeneration
See Combined Heat and Power (CHP).
Combined cycle power plant
A fossil-fired power plant that combines two types of prime movers, usually one or more gas turbines and one or more steam turbines, whose operation is governed by their respective thermodynamic cycles, i.e., Brayton and Rankine.
Combined heat and power (CHP)
The term used for fossil-fired power plants, which, in addition to their primary product, electric power delivered to the grid, also supply a secondary product in terms of useful thermal energy.
Combustor
A mechanical device to facilitate controlled mixing and reaction of an oxidizer (in almost all cases, air) and a fuel (in almost all cases, a pure hydrocarbon or a mixture thereof in gaseous or liquid phase) to generate high-temperature gaseous product for expansion in a turbine and useful shaft work generation.
Compressor
A mechanical device that increases the pressure of a gas by reducing its volume. There are different types of compressors, e.g., axial, radial, and reciprocating, which are suitable to different types of operating regimes.
Efficiency
Unless specified otherwise, the thermal efficiency of a power generating system, which is the dimensionless ratio of generated kWh of electricity to the amount of energy required to generate it. It is the inverse of the heat rate with a suitable conversion factor.
Emissions
Gases and solid particles (usually undesirable) released into the air as byproducts of a combustion process (e.g., in the boiler of a fossil-fired power plant, gas turbine combustor, or other internal combustion engine) to create electric power or propel a vehicle).
Firing temperature
The temperature of the gas turbine combustor exhaust gas at the inlet to the first stage rotor, which is the starting point of useful shaft work generation.
Gas turbine
A prime mover or internal combustion engine comprising a compressor, combustor, and an expander connected via a common shaft, through which air is compressed, burned, and expanded to generate useful shaft work for electric generation (or thrust in an aircraft jet engine.)
Generator
A device that converts the mechanical shaft power generated by a prime mover into electrical power.
Global warming
The apparent increase in the average temperature of the earth’s near-surface air and oceans since the mid-twentieth century and its projected continuation (per Wikipedia).
Greenhouse effect
The containment of heat from solar radiation striking the earth’s surface due to the earth’s atmospheric “greenhouse” gases such as carbon dioxide and methane. These gases absorb and emit radiation within the thermal infrared range and are believed to be a primary cause of global warming.
Heat rate
Amount of energy required to generate 1 kWh of electricity. It is the inverse of the thermal efficiency with a suitable conversion factor.
Heat recovery steam generator (HRSG)
Also known as the heat recovery boiler (HRB), HRSG is a cross-flow tubular heat exchanger that recovers the exhaust heat from a prime mover (e.g., a gas turbine) and produces steam at high pressure and temperature that is used in a steam turbine for additional power generation. HRSG is the key equipment that “combines” gas and steam turbines in a combined cycle power plant.
Heating value
The thermal energy produced by completely burning a unit mass of fuel in a combustor to produce carbon dioxide and water. If the water is in a gaseous phase, the heating value is referred to as net or lower heating value (LHV). If the water is in a liquid phase, the heating value is referred to as gross or higher heating value (HHV).
Rankine cycle
The thermodynamic cycle describing the operation of a steam turbine. In a combined cycle, it is the bottoming cycle due to its relative position vis-à-vis Brayton cycle on a temperature-entropy surface.
Steam turbine
A prime mover or the power generating part of an external combustion engine comprising one or more sections connected via a common shaft, through which steam flows, expands, and discharges to a condenser to generate useful shaft work for electric generation or propulsion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Liss WH, Thrasher WR (1992) Gas Technology Institute, variability of natural gas composition in select major metropolitan areas of the United States. GRI-92/013 Liss WH, Thrasher WR (1992) Gas Technology Institute, variability of natural gas composition in select major metropolitan areas of the United States. GRI-92/013
6.
Zurück zum Zitat Turbomachinery International 49(6). 10/2008, Handbook 2009 Turbomachinery International 49(6). 10/2008, Handbook 2009
8.
Zurück zum Zitat Khan BH (2006) Non-conventional energy sources. Tata McGraw Hill Publishing Co. Ltd., New Delhi Khan BH (2006) Non-conventional energy sources. Tata McGraw Hill Publishing Co. Ltd., New Delhi
9.
Zurück zum Zitat McNeely M (2006) Power generation order survey. Diesel & Gas Turbine Worldwide, Article from Oct 2006 issue McNeely M (2006) Power generation order survey. Diesel & Gas Turbine Worldwide, Article from Oct 2006 issue
11.
Zurück zum Zitat Wilson DG, Korakianitis T (1998) The design of high efficiency turbomachinery and gas turbines, 2nd edn. Prentice-Hall, Uppersaddle River Wilson DG, Korakianitis T (1998) The design of high efficiency turbomachinery and gas turbines, 2nd edn. Prentice-Hall, Uppersaddle River
12.
Zurück zum Zitat Von Ohain H (1996) Foreword in elements of gas turbine propulsion. In: Mattingly JD (ed). Tata McGraw Hill Edition 2005 Von Ohain H (1996) Foreword in elements of gas turbine propulsion. In: Mattingly JD (ed). Tata McGraw Hill Edition 2005
13.
Zurück zum Zitat Meher-Homji CB (1997) The development of the Junkers Jumo 004B – the world’s first production turbojet. J Eng Gas Turbines Power 119:783CrossRef Meher-Homji CB (1997) The development of the Junkers Jumo 004B – the world’s first production turbojet. J Eng Gas Turbines Power 119:783CrossRef
14.
Zurück zum Zitat Meher-Homji CB (1998) The development of the whittle turbojet. J Eng Gas Turbines Power 120:249CrossRef Meher-Homji CB (1998) The development of the whittle turbojet. J Eng Gas Turbines Power 120:249CrossRef
15.
Zurück zum Zitat Meher-Homji CB (2000) Pioneering turbojet developments of Dr. Hans von Ohain – from the HeS 1 to the HES 011. J Eng Gas Turbines Power 122:191CrossRef Meher-Homji CB (2000) Pioneering turbojet developments of Dr. Hans von Ohain – from the HeS 1 to the HES 011. J Eng Gas Turbines Power 122:191CrossRef
16.
Zurück zum Zitat Soares C (2006) Gas turbines in simple cycle and combined cycle applications, Section 1.1 in the gas turbine handbook. US DOE, Office of Fossil Energy, NETL Soares C (2006) Gas turbines in simple cycle and combined cycle applications, Section 1.1 in the gas turbine handbook. US DOE, Office of Fossil Energy, NETL
17.
Zurück zum Zitat Volker L (1999) Development of the Siemens gas turbine and technology highlights. Siemens Power Generation, Erlangen Volker L (1999) Development of the Siemens gas turbine and technology highlights. Siemens Power Generation, Erlangen
18.
Zurück zum Zitat Miller H, Nemec T (2006) Gas turbines, Chapter 24. In: Kutz M (ed) Mechanical engineers’ handbook, Energy and Power, 3rd edn. Wiley, Hoboken Miller H, Nemec T (2006) Gas turbines, Chapter 24. In: Kutz M (ed) Mechanical engineers’ handbook, Energy and Power, 3rd edn. Wiley, Hoboken
19.
Zurück zum Zitat Brandt D (2007) A brief history of GE energy product lines. General Electric Company, Schenectady Brandt D (2007) A brief history of GE energy product lines. General Electric Company, Schenectady
20.
Zurück zum Zitat Brandt D (1988) The design and development of an advanced heavy-duty gas turbine. J Eng Gas Turbines Power 110:243–250CrossRef Brandt D (1988) The design and development of an advanced heavy-duty gas turbine. J Eng Gas Turbines Power 110:243–250CrossRef
21.
Zurück zum Zitat Eckardt D (2013) Gas turbine powerhouse. De Gruyter Oldenbourg Eckardt D (2013) Gas turbine powerhouse. De Gruyter Oldenbourg
22.
Zurück zum Zitat Stodola A (1927) Steam & gas turbines, authorized translation from the 6th German edition by L. C. Löwenstein. McGraw-Hill Book Company, New York Stodola A (1927) Steam & gas turbines, authorized translation from the 6th German edition by L. C. Löwenstein. McGraw-Hill Book Company, New York
23.
Zurück zum Zitat Langston LS (2010) World’s first gas turbine power plant. ASME Mech Eng 132(4):51CrossRef Langston LS (2010) World’s first gas turbine power plant. ASME Mech Eng 132(4):51CrossRef
24.
Zurück zum Zitat Tomlinson LO, Lee DT. Combined cycles, Chapter 7. In: Sawyer JW, PE, Japikse D (eds) Sawyer’s gas turbine engineering handbook Tomlinson LO, Lee DT. Combined cycles, Chapter 7. In: Sawyer JW, PE, Japikse D (eds) Sawyer’s gas turbine engineering handbook
25.
Zurück zum Zitat Horlock JH (1994) Combined cycle power plants – past, present, and future. J Eng Gas Turbines Power 117:608–616CrossRef Horlock JH (1994) Combined cycle power plants – past, present, and future. J Eng Gas Turbines Power 117:608–616CrossRef
27.
Zurück zum Zitat Elliott TC, Editors of POWER Magazine (eds) (1989) Standard handbook of power plant engineering, Chapter 2.4. In: Haselbacher H (ed) Gas turbine fundamentals. McGraw-Hill Elliott TC, Editors of POWER Magazine (eds) (1989) Standard handbook of power plant engineering, Chapter 2.4. In: Haselbacher H (ed) Gas turbine fundamentals. McGraw-Hill
28.
Zurück zum Zitat Horlock JH (1997) Aero-engine derivative gas turbines for power generation: Thermodynamic and economic perspectives. J Eng Gas Turbines Power 119:119–123CrossRef Horlock JH (1997) Aero-engine derivative gas turbines for power generation: Thermodynamic and economic perspectives. J Eng Gas Turbines Power 119:119–123CrossRef
29.
Zurück zum Zitat Cohen H, Rogers GFC, Saravanamuttoo HIH (1987) Gas turbine theory, 3rd edn. Longman Group UK Limited, Cambridge Cohen H, Rogers GFC, Saravanamuttoo HIH (1987) Gas turbine theory, 3rd edn. Longman Group UK Limited, Cambridge
30.
Zurück zum Zitat Cumpsty N (2003) Jet propulsion, 2nd edn. Cambridge University Press, Cambridge, UKCrossRef Cumpsty N (2003) Jet propulsion, 2nd edn. Cambridge University Press, Cambridge, UKCrossRef
32.
Zurück zum Zitat Pritchard JE (2003) H-System™ technology update, GT2003-38711, ASME turbo expo – power for land, sea & air, Atlanta, 16–19 June 2003 Pritchard JE (2003) H-System™ technology update, GT2003-38711, ASME turbo expo – power for land, sea & air, Atlanta, 16–19 June 2003
33.
Zurück zum Zitat Koeneke C (2006) Steam cooling of large frame gas turbines one decade in operation. VDI-Berichte 1965:33–42 Koeneke C (2006) Steam cooling of large frame gas turbines one decade in operation. VDI-Berichte 1965:33–42
34.
Zurück zum Zitat Imwinkelried B (1995) Advanced cycle system gas turbines GT24/GT26: the highly efficient gas turbines for power generation. In: Proceedings of the 21st international congress on combustion engines, CIMAC 1995, Interlaken Imwinkelried B (1995) Advanced cycle system gas turbines GT24/GT26: the highly efficient gas turbines for power generation. In: Proceedings of the 21st international congress on combustion engines, CIMAC 1995, Interlaken
35.
Zurück zum Zitat Chiesa P, Macchi E (2004) A thermodynamic analysis of different options to break 60% electric efficiency in CC power plants. J Eng Gas Turbines Power 126:770–785CrossRef Chiesa P, Macchi E (2004) A thermodynamic analysis of different options to break 60% electric efficiency in CC power plants. J Eng Gas Turbines Power 126:770–785CrossRef
36.
Zurück zum Zitat Holland MJ, Thake TF (1980) Rotor blade cooling in high pressure turbines. J Aircr 17:412–418CrossRef Holland MJ, Thake TF (1980) Rotor blade cooling in high pressure turbines. J Aircr 17:412–418CrossRef
37.
Zurück zum Zitat Elmasri MA, Pourkey F (1986) Prediction of cooling flow requirements for advanced utility gas turbines part 1: analysis and scaling of the effectiveness curve, 86-WA/HT-43, ASME winter annual meeting, Anaheim, 7–12 Dec 1986 Elmasri MA, Pourkey F (1986) Prediction of cooling flow requirements for advanced utility gas turbines part 1: analysis and scaling of the effectiveness curve, 86-WA/HT-43, ASME winter annual meeting, Anaheim, 7–12 Dec 1986
38.
Zurück zum Zitat Elmasri MA (1986) Prediction of cooling flow requirements for advanced utility gas turbines part 2: influence of ceramic thermal barrier coatings, ASME winter annual meeting, Anaheim, 7–12 Dec 1986 Elmasri MA (1986) Prediction of cooling flow requirements for advanced utility gas turbines part 2: influence of ceramic thermal barrier coatings, ASME winter annual meeting, Anaheim, 7–12 Dec 1986
39.
Zurück zum Zitat Elmasri MA (1985) On thermodynamics of gas turbine cycles part 1 – second law analysis of combined cycles. J Eng Gas Turbines Power 107:880–889CrossRef Elmasri MA (1985) On thermodynamics of gas turbine cycles part 1 – second law analysis of combined cycles. J Eng Gas Turbines Power 107:880–889CrossRef
40.
Zurück zum Zitat Elmasri MA (1986) On thermodynamics of gas turbine cycles: part 2 – a model for expansion in cooled turbines. J Eng Gas Turbines Power 108:151–159CrossRef Elmasri MA (1986) On thermodynamics of gas turbine cycles: part 2 – a model for expansion in cooled turbines. J Eng Gas Turbines Power 108:151–159CrossRef
41.
Zurück zum Zitat Elmasri MA (1986) On thermodynamics of gas turbine cycles: part 3 – thermodynamic potential and limitations of cooled reheat gas turbine combined cycles. J Eng Gas Turbines Power 108:160–170CrossRef Elmasri MA (1986) On thermodynamics of gas turbine cycles: part 3 – thermodynamic potential and limitations of cooled reheat gas turbine combined cycles. J Eng Gas Turbines Power 108:160–170CrossRef
42.
Zurück zum Zitat Horlock JH, Watson DT, Jones TV (2001) Limitations on gas turbine performance imposed by large turbine cooling flows. J Eng Gas Turbines Power 123:487–494CrossRef Horlock JH, Watson DT, Jones TV (2001) Limitations on gas turbine performance imposed by large turbine cooling flows. J Eng Gas Turbines Power 123:487–494CrossRef
43.
Zurück zum Zitat Horlock JH (2001) The basic thermodynamics of turbine cooling. J Eng Gas Turbines Power 123:583–591CrossRef Horlock JH (2001) The basic thermodynamics of turbine cooling. J Eng Gas Turbines Power 123:583–591CrossRef
44.
Zurück zum Zitat Wilcock RC, Young JB, Horlock JH (2005) The effect of turbine blade cooling on the cycle efficiency of gas turbine power cycles. J Eng Gas Turbines Power 127:109–120CrossRef Wilcock RC, Young JB, Horlock JH (2005) The effect of turbine blade cooling on the cycle efficiency of gas turbine power cycles. J Eng Gas Turbines Power 127:109–120CrossRef
45.
Zurück zum Zitat Young JB, Wilcock RC (2002) Modeling the air-cooled gas turbine: parts 1 and 2. J Turbomach 124:207–222CrossRef Young JB, Wilcock RC (2002) Modeling the air-cooled gas turbine: parts 1 and 2. J Turbomach 124:207–222CrossRef
46.
Zurück zum Zitat Gülen SC (2010) A simple mathematical model for cooled gas turbines, GT2010-22160, ASME turbo expo – power for land, sea & air, Glasgow, 14–18 June 2010 Gülen SC (2010) A simple mathematical model for cooled gas turbines, GT2010-22160, ASME turbo expo – power for land, sea & air, Glasgow, 14–18 June 2010
47.
Zurück zum Zitat Rice IG (1995) Steam-injected gas turbine analysis: steam rates. J Eng Gas Turbines Power 117:347–353CrossRef Rice IG (1995) Steam-injected gas turbine analysis: steam rates. J Eng Gas Turbines Power 117:347–353CrossRef
48.
Zurück zum Zitat Cheng DY, Nelson ALC (2002) The chronological development of the Cheng cycle steam injected gas turbine during the past 25 years. ASME international – IGTI turbo expo 2002, GT2002-30119 Cheng DY, Nelson ALC (2002) The chronological development of the Cheng cycle steam injected gas turbine during the past 25 years. ASME international – IGTI turbo expo 2002, GT2002-30119
49.
Zurück zum Zitat Rao A (1989) Process for producing power. US Patent 4,289,763 Rao A (1989) Process for producing power. US Patent 4,289,763
50.
Zurück zum Zitat Adelman ST, Hoffman MA, Baughn JW A methane-steam reformer for a basic chemically recuperated gas turbine. J Eng Gas Turbines Power 117:16–23CrossRef Adelman ST, Hoffman MA, Baughn JW A methane-steam reformer for a basic chemically recuperated gas turbine. J Eng Gas Turbines Power 117:16–23CrossRef
51.
Zurück zum Zitat McDonald CF, Boland CR (1981) The nuclear closed-cycle gas turbine (HTGR-GT) – dry cooled commercial power plant studies. J Eng Gas Turbines Power 103:89–100CrossRef McDonald CF, Boland CR (1981) The nuclear closed-cycle gas turbine (HTGR-GT) – dry cooled commercial power plant studies. J Eng Gas Turbines Power 103:89–100CrossRef
54.
Zurück zum Zitat Cox JC, Hutchinson D, Oswald JI (1995) The Westinghouse/Rolls Royce WR-21 gas turbine variable area power turbine design. ASME paper 95-GT-54, international gas turbine and aeroengine congress and exposition, Houston, 5–8 June 1995 Cox JC, Hutchinson D, Oswald JI (1995) The Westinghouse/Rolls Royce WR-21 gas turbine variable area power turbine design. ASME paper 95-GT-54, international gas turbine and aeroengine congress and exposition, Houston, 5–8 June 1995
55.
Zurück zum Zitat Hofer DC, Gülen SC (2006) Efficiency entitlement for bottoming cycles, GT2006-91213. ASME turbo expo – power for land, sea & air, Barcelona, 8–11 May 2006 Hofer DC, Gülen SC (2006) Efficiency entitlement for bottoming cycles, GT2006-91213. ASME turbo expo – power for land, sea & air, Barcelona, 8–11 May 2006
56.
Zurück zum Zitat Moran MJ, Shapiro HN (1988) Fundamentals of engineering thermodynamics. Wiley, New York Moran MJ, Shapiro HN (1988) Fundamentals of engineering thermodynamics. Wiley, New York
57.
Zurück zum Zitat Gülen SC, Smith RW (2008) Second law efficiency of the Rankine bottoming cycle of a combined cycle power plant. ASME Paper GT2008 -51381, ASME Turbo Expo 2008, Berlin, 9–13 June 2008 Gülen SC, Smith RW (2008) Second law efficiency of the Rankine bottoming cycle of a combined cycle power plant. ASME Paper GT2008 -51381, ASME Turbo Expo 2008, Berlin, 9–13 June 2008
58.
Zurück zum Zitat Bohn D (2006) SFB 561: aiming for 65% CC efficiency with an air-cooled GT. Modern power systems, pp 26–29 Bohn D (2006) SFB 561: aiming for 65% CC efficiency with an air-cooled GT. Modern power systems, pp 26–29
59.
Zurück zum Zitat Mutassim Z (2008) New gas turbine materials. Turbomachinery international, Sept/Oct 2008 issue, pp 38–42 Mutassim Z (2008) New gas turbine materials. Turbomachinery international, Sept/Oct 2008 issue, pp 38–42
60.
Zurück zum Zitat Bohn D, Dilthey U, Schubert F (2004) Innovative Technologien für ein GuD-Kraftwerk mit 65% Wirkungsgrad. VDI-Berichte 1857:13–25 Bohn D, Dilthey U, Schubert F (2004) Innovative Technologien für ein GuD-Kraftwerk mit 65% Wirkungsgrad. VDI-Berichte 1857:13–25
61.
Zurück zum Zitat Rao AD, Robson FL, Geisbrecht RA (2002) Power plant system configurations for the 21st century, ASME turbo expo 2002, Amsterdam, 3–7 June 2002 Rao AD, Robson FL, Geisbrecht RA (2002) Power plant system configurations for the 21st century, ASME turbo expo 2002, Amsterdam, 3–7 June 2002
62.
Zurück zum Zitat Lundberg WL, Veyo SE, Moeckel MD (2003) A high efficiency solid oxide fuel cell hybrid power system using the Mercury 50 advanced turbine system gas turbine. ASME J Eng Gas Turbines Power 125:51–58CrossRef Lundberg WL, Veyo SE, Moeckel MD (2003) A high efficiency solid oxide fuel cell hybrid power system using the Mercury 50 advanced turbine system gas turbine. ASME J Eng Gas Turbines Power 125:51–58CrossRef
63.
Zurück zum Zitat Massardo AF, Lubelli F (2000) Internal reforming solid oxide fuel cell – gas turbine combine cycles (IRSOFC-GT); part I: cell model and cycle thermodynamic analysis. ASME J Eng Gas Turbines Power 122:27–35CrossRef Massardo AF, Lubelli F (2000) Internal reforming solid oxide fuel cell – gas turbine combine cycles (IRSOFC-GT); part I: cell model and cycle thermodynamic analysis. ASME J Eng Gas Turbines Power 122:27–35CrossRef
64.
Zurück zum Zitat Massardo AF, Magistri L (2003) Internal reforming solid oxide fuel cell – gas turbine combine cycles (IRSOFC-GT); part II: exergy and thermoeconomic analyses. ASME J Eng Gas Turbines Power 125:67–74CrossRef Massardo AF, Magistri L (2003) Internal reforming solid oxide fuel cell – gas turbine combine cycles (IRSOFC-GT); part II: exergy and thermoeconomic analyses. ASME J Eng Gas Turbines Power 125:67–74CrossRef
65.
Zurück zum Zitat Gülen SC (2015) Étude on gas turbine combined cycle power plant – next 20 years. J Eng Gas Turbines Power 138:#051701 Gülen SC (2015) Étude on gas turbine combined cycle power plant – next 20 years. J Eng Gas Turbines Power 138:#051701
67.
Zurück zum Zitat Gülen SC (2013) Gas turbine combined cycle fast start: the physics behind the concept. Power Engineering, June 2013, pp 40–49. www.power-eng.com Gülen SC (2013) Gas turbine combined cycle fast start: the physics behind the concept. Power Engineering, June 2013, pp 40–49. www.​power-eng.​com
68.
Zurück zum Zitat Chase DL, Kehoe PT (2000) GE combined-cycle product line and performance. GER-3574g, GE Energy Chase DL, Kehoe PT (2000) GE combined-cycle product line and performance. GER-3574g, GE Energy
71.
Zurück zum Zitat Matta RK, Mercer GD, Tuthill RS (2000) Power systems for the 21st century – H GT combined-cycles. GER-3935B, GE Energy Matta RK, Mercer GD, Tuthill RS (2000) Power systems for the 21st century – H GT combined-cycles. GER-3935B, GE Energy
72.
Zurück zum Zitat Smith RW, Polukort P, Maslak CE, Jones CM, Gardiner BD (2001) Advanced technology combined cycles. GER-3936a, GE Power Systems Smith RW, Polukort P, Maslak CE, Jones CM, Gardiner BD (2001) Advanced technology combined cycles. GER-3936a, GE Power Systems
73.
Zurück zum Zitat Gülen SC (2013) Performance entitlement of supercritical steam bottoming cycle. J Eng Gas Turbines Power 135:#124501 Gülen SC (2013) Performance entitlement of supercritical steam bottoming cycle. J Eng Gas Turbines Power 135:#124501
74.
Zurück zum Zitat European Association for the Promotion of Cogeneration (2001) A guide to cogeneration European Association for the Promotion of Cogeneration (2001) A guide to cogeneration
75.
Zurück zum Zitat Phylipsen GJM, Blok K, Worrell E (1998) Handbook on international comparisons of energy efficiency in the manufacturing industry. Department of Science, Technology and Society, Utrecht University, The Netherlands Phylipsen GJM, Blok K, Worrell E (1998) Handbook on international comparisons of energy efficiency in the manufacturing industry. Department of Science, Technology and Society, Utrecht University, The Netherlands
79.
Zurück zum Zitat Lefebvre AH (1995) The role of fuel preparation in low-emission combustion. J Eng Gas Turbines Power 117:617CrossRef Lefebvre AH (1995) The role of fuel preparation in low-emission combustion. J Eng Gas Turbines Power 117:617CrossRef
81.
Zurück zum Zitat Hilt MB, Waslo J (1984) Evolution of NOx abatement techniques through combustor design for heavy-duty gas turbines. J Eng Gas Turbines Power 106:825CrossRef Hilt MB, Waslo J (1984) Evolution of NOx abatement techniques through combustor design for heavy-duty gas turbines. J Eng Gas Turbines Power 106:825CrossRef
82.
Zurück zum Zitat Touchton GL (1984) An experimentally verified NOx prediction algorithm incorporating the effects of steam injection. J Eng Gas Turbines Power 106:833CrossRef Touchton GL (1984) An experimentally verified NOx prediction algorithm incorporating the effects of steam injection. J Eng Gas Turbines Power 106:833CrossRef
83.
Zurück zum Zitat Davi MA (1994) GE gas turbine combustion flexibility. GER-3946, GE energy Davi MA (1994) GE gas turbine combustion flexibility. GER-3946, GE energy
85.
Zurück zum Zitat Kehlhofer R, Warner J, Nielsen H, Bachmann R (1999) Combined cycle gas & steam turbine power plants, 2nd edn. PennWell Corp., Tulsa Kehlhofer R, Warner J, Nielsen H, Bachmann R (1999) Combined cycle gas & steam turbine power plants, 2nd edn. PennWell Corp., Tulsa
86.
Zurück zum Zitat Peters MS, Timmerhaus KD, West RE (2004) Plant design and economics for chemical engineers, 5th edn. McGraw-Hill, Boston Peters MS, Timmerhaus KD, West RE (2004) Plant design and economics for chemical engineers, 5th edn. McGraw-Hill, Boston
87.
Zurück zum Zitat Bejan A, Tsatsaronis G, Moran M (1996) Thermal design & optimization. Wiley, New YorkMATH Bejan A, Tsatsaronis G, Moran M (1996) Thermal design & optimization. Wiley, New YorkMATH
88.
Zurück zum Zitat Energy and Environmental Economics (2014) Capital cost review of generation technologies. Energy and Environmental Economics, San Francisco. www.ethree.com Energy and Environmental Economics (2014) Capital cost review of generation technologies. Energy and Environmental Economics, San Francisco. www.​ethree.​com
89.
Zurück zum Zitat Gülen SC, Mazumder I (2013) An expanded cost of electricity model for highly flexible power plants. J Eng Gas Turbines Power 136:#011601 Gülen SC, Mazumder I (2013) An expanded cost of electricity model for highly flexible power plants. J Eng Gas Turbines Power 136:#011601
90.
Zurück zum Zitat Gülen SC (2011) A more accurate way to calculate the cost of electricity. Power, June 2011, pp 62–65 Gülen SC (2011) A more accurate way to calculate the cost of electricity. Power, June 2011, pp 62–65
91.
Zurück zum Zitat As reported in the press per Potential Gas Committee report, Potential supply of natural gas in the United States (31 Dec 2008), Potential Gas Agency, Colorado School of Mines, Golden 80401–81887 As reported in the press per Potential Gas Committee report, Potential supply of natural gas in the United States (31 Dec 2008), Potential Gas Agency, Colorado School of Mines, Golden 80401–81887
92.
Zurück zum Zitat Gambini M, Vellini M (2003) CO2 emission abatement from fossil fuel power plants by exhaust gas treatment. J Eng Gas Turbines Power 125:365–373CrossRef Gambini M, Vellini M (2003) CO2 emission abatement from fossil fuel power plants by exhaust gas treatment. J Eng Gas Turbines Power 125:365–373CrossRef
93.
Zurück zum Zitat Wagman D (2010) Can natural gas displace coal? Power Eng (issue):4 Wagman D (2010) Can natural gas displace coal? Power Eng (issue):4
94.
Zurück zum Zitat The future of natural gas – an interdisciplinary MIT study, Interim report by MIT energy initiative, ISBN (978-0-9828008-0-5), 2010, Massachusetts Institute of Technology, Boston The future of natural gas – an interdisciplinary MIT study, Interim report by MIT energy initiative, ISBN (978-0-9828008-0-5), 2010, Massachusetts Institute of Technology, Boston
96.
Zurück zum Zitat Review of status of advanced materials for power generation, technology status report, cleaner coal technology programme, Department of Trade and Industry, London Review of status of advanced materials for power generation, technology status report, cleaner coal technology programme, Department of Trade and Industry, London
97.
Zurück zum Zitat Tukagoshi K, Muyama A, Uchida S et al (2005) Latest technology for large capacity gas turbine. MHI Tech Rev 42(3):1–5 Tukagoshi K, Muyama A, Uchida S et al (2005) Latest technology for large capacity gas turbine. MHI Tech Rev 42(3):1–5
98.
Zurück zum Zitat ElKady AM, Evulet A, Brand A (2009) Application of exhaust gas recirculation in a DLN F-class combustion system for postcombustion carbon capture. J Eng GTs Power 131:#034505 ElKady AM, Evulet A, Brand A (2009) Application of exhaust gas recirculation in a DLN F-class combustion system for postcombustion carbon capture. J Eng GTs Power 131:#034505
99.
Zurück zum Zitat Kailasanath K (2000) Review of propulsion applications of detonation waves. AIAA J 38(9):1698–1708CrossRef Kailasanath K (2000) Review of propulsion applications of detonation waves. AIAA J 38(9):1698–1708CrossRef
100.
Zurück zum Zitat Goldmeer J, Tangirala V, Dean A (2008) System-level performance estimation of a pulse detonation based hybrid engine. J Eng Gas Turbines Power 130:#011201 Goldmeer J, Tangirala V, Dean A (2008) System-level performance estimation of a pulse detonation based hybrid engine. J Eng Gas Turbines Power 130:#011201
101.
Zurück zum Zitat Tangirala VE, Rasheed A, Dean AJ (2007) Performance of a pulse detonation combustor-based hybrid engine, GT2007-28056, ASME turbo expo – power for land, sea & air, Montreal, 14–18 June 2007 Tangirala VE, Rasheed A, Dean AJ (2007) Performance of a pulse detonation combustor-based hybrid engine, GT2007-28056, ASME turbo expo – power for land, sea & air, Montreal, 14–18 June 2007
102.
Zurück zum Zitat Gülen SC (2010) Gas turbine with constant volume heat addition, ESDA2010-24817, ASME 2010 10th Biennial conference on engineering systems design and analysis, Istanbul, 12–14 July 2010 Gülen SC (2010) Gas turbine with constant volume heat addition, ESDA2010-24817, ASME 2010 10th Biennial conference on engineering systems design and analysis, Istanbul, 12–14 July 2010
103.
Zurück zum Zitat Bhargava R, Bianchi M, Campanari S et al (2010) A parametric thermodynamic evaluation of high performance gas turbine based power cycles. J Eng Gas Turbines Power 132:#022001 Bhargava R, Bianchi M, Campanari S et al (2010) A parametric thermodynamic evaluation of high performance gas turbine based power cycles. J Eng Gas Turbines Power 132:#022001
104.
Zurück zum Zitat Lynch M (2016) The confusion about natural gas prices, Forbes Blog, 23 May 2016 Lynch M (2016) The confusion about natural gas prices, Forbes Blog, 23 May 2016
105.
Zurück zum Zitat Bejan A (2006) Advanced engineering thermodynamics, 3rd edn. Wiley, New Jersey Bejan A (2006) Advanced engineering thermodynamics, 3rd edn. Wiley, New Jersey
109.
Zurück zum Zitat Constant EW II (1980) The origins of the turbojet revolution. The Johns Hopkins University Press, Baltimore/London Constant EW II (1980) The origins of the turbojet revolution. The Johns Hopkins University Press, Baltimore/London
110.
Zurück zum Zitat Cotton KC (1998) Evaluating and improving steam turbine performance, 2nd edn. Cotton Fact, Rexford Cotton KC (1998) Evaluating and improving steam turbine performance, 2nd edn. Cotton Fact, Rexford
111.
Zurück zum Zitat Denton JD (1993) Loss mechanisms in turbomachines, the 1993 IGTI scholar lecture. J Turbomach 115:621–656CrossRef Denton JD (1993) Loss mechanisms in turbomachines, the 1993 IGTI scholar lecture. J Turbomach 115:621–656CrossRef
112.
Zurück zum Zitat Dunn MG (2001) Convective heat transfer and aerodynamics in axial flow turbines. J Eng Gas Turbines Power 123:637–686 Dunn MG (2001) Convective heat transfer and aerodynamics in axial flow turbines. J Eng Gas Turbines Power 123:637–686
113.
Zurück zum Zitat Elmasri MA (2007) Design of gas turbine combined cycle and cogeneration systems – theory, practice and optimization. Seminar Notes, Thermoflow, Sudbury. info@thermoflow.com Elmasri MA (2007) Design of gas turbine combined cycle and cogeneration systems – theory, practice and optimization. Seminar Notes, Thermoflow, Sudbury. info@thermoflow.​com
114.
Zurück zum Zitat Han JC, Dutta S, Ekkad SV (2000) Gas turbine heat transfer and cooling technology. Taylor & Francis, New York Han JC, Dutta S, Ekkad SV (2000) Gas turbine heat transfer and cooling technology. Taylor & Francis, New York
115.
Zurück zum Zitat Horlock JH (2001) Combined power plants: including combined cycle gas turbine (CCGT) plants. Krieger Publishing Company, Malabar Horlock JH (2001) Combined power plants: including combined cycle gas turbine (CCGT) plants. Krieger Publishing Company, Malabar
116.
Zurück zum Zitat Kehlhofer R, Hannemann F, Stirnimann F, Rukes B (2009) Combined cycle gas & steam turbine power plants, 3rd edn. PennWell Corp, Tulsa Kehlhofer R, Hannemann F, Stirnimann F, Rukes B (2009) Combined cycle gas & steam turbine power plants, 3rd edn. PennWell Corp, Tulsa
117.
Zurück zum Zitat Lakshminarayana B (1996) Fluid dynamics and heat transfer of turbomachinery. Wiley, New York Lakshminarayana B (1996) Fluid dynamics and heat transfer of turbomachinery. Wiley, New York
118.
Zurück zum Zitat Lefebvre AH, Ballal DR (2010) Gas turbine combustion: alternative fuels and emissions, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton Lefebvre AH, Ballal DR (2010) Gas turbine combustion: alternative fuels and emissions, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton
119.
Zurück zum Zitat Boyce MP (2006) Gas turbine engineering handbook, 3rd edn. Gulf Professional Publishing, Houston Boyce MP (2006) Gas turbine engineering handbook, 3rd edn. Gulf Professional Publishing, Houston
120.
Zurück zum Zitat Nag PK (2006) Power plant engineering, 2nd edn. Tata McGraw-Hill Publishing Co. Ltd., New Delhi Nag PK (2006) Power plant engineering, 2nd edn. Tata McGraw-Hill Publishing Co. Ltd., New Delhi
121.
Zurück zum Zitat Saravanamuttoo HIH, Rogers GFC, Cohen H, Straznicky PV (2009) Gas turbine theory, 6th edn. Pearson Prentice Hall Saravanamuttoo HIH, Rogers GFC, Cohen H, Straznicky PV (2009) Gas turbine theory, 6th edn. Pearson Prentice Hall
122.
Zurück zum Zitat Traupel W (1977) Thermische Turbomaschinen, Erster Band, Thermodynamisch-strömungstechnische Berechnung, 3rd edn, neuarbeitete und erweiterte Auflage. Springer, Berlin/Heidelberg/New York Traupel W (1977) Thermische Turbomaschinen, Erster Band, Thermodynamisch-strömungstechnische Berechnung, 3rd edn, neuarbeitete und erweiterte Auflage. Springer, Berlin/Heidelberg/New York
Metadaten
Titel
Natural Gas Power
verfasst von
Raub W. Smith
S. Can Gülen
Copyright-Jahr
2020
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-9763-3_100