Skip to main content

2014 | OriginalPaper | Buchkapitel

Near Real Time Estimation of Integrated Water Vapour from GNSS Observations in Hungary

verfasst von : Sz. Rózsa, A. Kenyeres, T. Weidinger, A. Z. Gyöngyösi

Erschienen in: Earth on the Edge: Science for a Sustainable Planet

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Meteorological products derived from Global Navigation Satellite Systems (GNSS) observations have been routinely used for numerical weather prediction in several regions of the world. Hungary would like to join these activities exploiting meteorological usage of the dense GNSS CORS (Continuously Operating Reference Station) network operated by the Institute of Geodesy, Cartography and Remote Sensing for positioning applications.
This paper introduces the near real-time processing system of GNSS observations for meteorological purposes in Hungary. The hourly observations of 35 Hungarian permanent GNSS CORSs are processed. This network is extended beyond the country with about 50 stations covering Eastern and Central Europe. The data analysis is being done using the Bernese V5.0 GPS data processing software. The Hungarian CORS network has an average baseline length of 60 km, thus the precipitable water vapour (PW) can be estimated with a high spatial resolution.
The estimation of the PW from the zenith wet delay (ZWD) is carried out in near real-time. Firstly, the zenith hydrostatic delays (ZHD) are subtracted from the total delays. The wet delays are then scaled to precipitable water vapour values.
The GNSS derived PW values were validated using radiosonde observations over Central Europe using the observations of a 47-day-long period (April 14–May 31, 2011). The results showed that the estimated PW values agree with radiosonde observations at the level of ±1.5 mm in terms of standard deviation. In this comparison a bias of +1.0 mm was observed. Following the validation phase, our analysis will be connected to the continental E-GVAP project (GNSS Water Vapour Programme of the Network of European Meteorological Services, EUMETNET).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bevis M, Businger S, Herring TA, Rocken C, Anthes A, Ware R (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res 97:15 787–15 801CrossRef Bevis M, Businger S, Herring TA, Rocken C, Anthes A, Ware R (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res 97:15 787–15 801CrossRef
Zurück zum Zitat Bosy J, Rohm W, Sierny J (2010) The concept of near real time atmosphere model based on the GNSS and meteorological data from the ASG-EUPOS reference stations. Acta Geodyn Geomater 7:253–263 Bosy J, Rohm W, Sierny J (2010) The concept of near real time atmosphere model based on the GNSS and meteorological data from the ASG-EUPOS reference stations. Acta Geodyn Geomater 7:253–263
Zurück zum Zitat Dach R, Hugentobler U, Fridez, P, Meindl M (2007) Bernese GPS software, version 5.0. Astronomical Institute, University of Bern Dach R, Hugentobler U, Fridez, P, Meindl M (2007) Bernese GPS software, version 5.0. Astronomical Institute, University of Bern
Zurück zum Zitat Emardson TR, Derks HJP (2000) On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere. Meteorol Appl 7:61–68CrossRef Emardson TR, Derks HJP (2000) On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere. Meteorol Appl 7:61–68CrossRef
Zurück zum Zitat Essen L, Froome KD (1951) The refractive indices and dielectric constants of air and its principal constituents at 24 GHz. Proc Phys Soc (Lond) Sect B 64:862–875CrossRef Essen L, Froome KD (1951) The refractive indices and dielectric constants of air and its principal constituents at 24 GHz. Proc Phys Soc (Lond) Sect B 64:862–875CrossRef
Zurück zum Zitat Haase J, Maorong G, Vedel H, Calais E (2003) Accuracy and variability of GPS tropospheric delay measurements of water vapour in the western Mediterranean. J Appl Meteorol, Am Meteorol Soc 42:1547–1569CrossRef Haase J, Maorong G, Vedel H, Calais E (2003) Accuracy and variability of GPS tropospheric delay measurements of water vapour in the western Mediterranean. J Appl Meteorol, Am Meteorol Soc 42:1547–1569CrossRef
Zurück zum Zitat Igondova M, Cibulka D (2010) Precipitable water vapour and zenith total delay time series and models over Slovakia and vicinity. Contrib Geophys Geod 40:299–312 Igondova M, Cibulka D (2010) Precipitable water vapour and zenith total delay time series and models over Slovakia and vicinity. Contrib Geophys Geod 40:299–312
Zurück zum Zitat International Standard Organization (1975) Standard atmosphere. ISO 2533:1975 International Standard Organization (1975) Standard atmosphere. ISO 2533:1975
Zurück zum Zitat Karabatic A, Weber R, Haiden T (2011) Near real-time estimation of tropospheric water vapour content from ground based GNSS data and its potential contribution to weather now-casting in Austria. Adv Space Res 47:1691–1703CrossRef Karabatic A, Weber R, Haiden T (2011) Near real-time estimation of tropospheric water vapour content from ground based GNSS data and its potential contribution to weather now-casting in Austria. Adv Space Res 47:1691–1703CrossRef
Zurück zum Zitat Kursinski ER, Hajj GA (2001) A comparison of water vapor derived from GPS occultations and global weather analyses. J Geophys Res 106:1113–1138CrossRef Kursinski ER, Hajj GA (2001) A comparison of water vapor derived from GPS occultations and global weather analyses. J Geophys Res 106:1113–1138CrossRef
Zurück zum Zitat Nash J, Oakley T, Vömel H, Wei L (2011) WMO intercomparison of high quality radiosonde systems. WMO instruments and observing methods, report no. 107. p. 248 Nash J, Oakley T, Vömel H, Wei L (2011) WMO intercomparison of high quality radiosonde systems. WMO instruments and observing methods, report no. 107. p. 248
Zurück zum Zitat Rózsa S, Weidinger T, Gyöngyösi AZ, Kenyeres A (2012) The role of the GNSS infrastructure in the monitoring of atmospheric water vapor. Időjárás, Q J Hung Meteorol Serv 116(1):1–20 Rózsa S, Weidinger T, Gyöngyösi AZ, Kenyeres A (2012) The role of the GNSS infrastructure in the monitoring of atmospheric water vapor. Időjárás, Q J Hung Meteorol Serv 116(1):1–20
Zurück zum Zitat Saastamoinen J (1972) Contributions to the theory of atmospheric refraction. B Géodes 105(1):279–298CrossRef Saastamoinen J (1972) Contributions to the theory of atmospheric refraction. B Géodes 105(1):279–298CrossRef
Zurück zum Zitat Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Part II. Refraction correction on satellite geodesy. B Géodes 107(1):13–34CrossRef Saastamoinen J (1973) Contributions to the theory of atmospheric refraction. Part II. Refraction correction on satellite geodesy. B Géodes 107(1):13–34CrossRef
Zurück zum Zitat Smith EK, Weintraub S (1953) The constants in the equation for atmospheric refractive index at radio frequencies. Proc IRE 41:1035–1037CrossRef Smith EK, Weintraub S (1953) The constants in the equation for atmospheric refractive index at radio frequencies. Proc IRE 41:1035–1037CrossRef
Zurück zum Zitat Thayer GD (1974) An improved equation for the radio refractive index of air. Radio Sci 9:803–807CrossRef Thayer GD (1974) An improved equation for the radio refractive index of air. Radio Sci 9:803–807CrossRef
Zurück zum Zitat World Meteorological Organization (WMO) (2008) Guide to meteorological instrument and methods of observations. WMO-No. 8, p 681 World Meteorological Organization (WMO) (2008) Guide to meteorological instrument and methods of observations. WMO-No. 8, p 681
Metadaten
Titel
Near Real Time Estimation of Integrated Water Vapour from GNSS Observations in Hungary
verfasst von
Sz. Rózsa
A. Kenyeres
T. Weidinger
A. Z. Gyöngyösi
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37222-3_5