Skip to main content

2019 | OriginalPaper | Buchkapitel

Neural Networks in Hybrid Precoding for Millimeter Wave Massive MIMO Systems

verfasst von : Jing Yang, Kai Chen, Xiaohu Ge, Yonghui Li, Lin Tian

Erschienen in: Artificial Intelligence for Communications and Networks

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neural networks have been applied to the physical layer of wireless communication systems to solve complex problems. In millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, hybrid precoding has been considered as an energy-efficient technology to replace fully-digital precoding. The way of designing hybrid precoding in mmWave massive MIMO systems by multi-layer neural networks has not been investigated. Based on further decomposing the baseband precoding matrix, an idea is proposed in this paper to map hybrid precoding structure to a multi-layer neural network. Considering the deterioration in the throughput and energy efficiency of mmWave massive MIMO systems, the feasibility of the proposed idea is analyzed. Moreover, a singular value decomposition (SVD) based decomposing (SVDDE) algorithm is proposed to evaluate the feasibility of the proposed idea. Simulation results indicate that there is an optimal number of users which can minimize the performance deterioration. Moreover, the simulation results also show that slight deterioration in the throughput and energy efficiency of mmWave massive MIMO systems is caused by further decomposing the baseband precoding matrix. In other words, further decomposing the baseband precoding matrix is a feasible way to map the hybrid precoding structure to a multi-layer neural network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ge, X., Tu, S., Mao, G., Wang, C.X., Han, T.: 5G ultra-dense cellular networks. IEEE Wirel. Commun. 23, 72–79 (2016)CrossRef Ge, X., Tu, S., Mao, G., Wang, C.X., Han, T.: 5G ultra-dense cellular networks. IEEE Wirel. Commun. 23, 72–79 (2016)CrossRef
2.
Zurück zum Zitat Ge, X., Ye, J., Yang, Y., Li, Q.: User mobility evaluation for 5G small cell networks based on individual mobility model. IEEE J. Sel. Areas Commun. 34, 528–541 (2016)CrossRef Ge, X., Ye, J., Yang, Y., Li, Q.: User mobility evaluation for 5G small cell networks based on individual mobility model. IEEE J. Sel. Areas Commun. 34, 528–541 (2016)CrossRef
3.
Zurück zum Zitat Ge, X., Tu, S., Han, T., Li, Q., Mao, G.: Energy efficiency of small cell backhaul networks based on Gauss-Markov mobile models. IET Netw. 4, 158–167 (2015)CrossRef Ge, X., Tu, S., Han, T., Li, Q., Mao, G.: Energy efficiency of small cell backhaul networks based on Gauss-Markov mobile models. IET Netw. 4, 158–167 (2015)CrossRef
4.
Zurück zum Zitat Ge, X., Yang, J., Gharavi, H., Sun, Y.: Energy efficiency challenges of 5G small cell networks. IEEE Commun. Mag. 55, 184–191 (2017)CrossRef Ge, X., Yang, J., Gharavi, H., Sun, Y.: Energy efficiency challenges of 5G small cell networks. IEEE Commun. Mag. 55, 184–191 (2017)CrossRef
5.
Zurück zum Zitat Zi, R., et al.: Energy efficiency optimization of 5G radio frequency chain systems. IEEE J. Sel. Areas Commun. 34, 758–771 (2016)CrossRef Zi, R., et al.: Energy efficiency optimization of 5G radio frequency chain systems. IEEE J. Sel. Areas Commun. 34, 758–771 (2016)CrossRef
6.
Zurück zum Zitat Ge, X., Cheng, H., Guizani, M., Han, T.: 5G wireless backhaul networks: challenges and research advances. IEEE Netw. 28, 6–11 (2014)CrossRef Ge, X., Cheng, H., Guizani, M., Han, T.: 5G wireless backhaul networks: challenges and research advances. IEEE Netw. 28, 6–11 (2014)CrossRef
7.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
8.
Zurück zum Zitat Gao, H., He, W., Zhou, C., Sun, C.: Neural network control of a two-link flexible robotic manipulator using assumed mode method. IEEE Trans. Ind. Inform. 15, 755–765 (2018)CrossRef Gao, H., He, W., Zhou, C., Sun, C.: Neural network control of a two-link flexible robotic manipulator using assumed mode method. IEEE Trans. Ind. Inform. 15, 755–765 (2018)CrossRef
9.
Zurück zum Zitat Yu, K.-H., Beam, A.L., Kohane, I.S.: Artificial intelligence in healthcare. Nat. Biomed. Eng. 2, 719–731 (2018)CrossRef Yu, K.-H., Beam, A.L., Kohane, I.S.: Artificial intelligence in healthcare. Nat. Biomed. Eng. 2, 719–731 (2018)CrossRef
10.
Zurück zum Zitat Bai, L., et al.: Predicting wireless MmWave massive MIMO channel characteristics using machine learning algorithms. Wirel. Commun. Mob. Comput. (2018) Bai, L., et al.: Predicting wireless MmWave massive MIMO channel characteristics using machine learning algorithms. Wirel. Commun. Mob. Comput. (2018)
11.
Zurück zum Zitat He, H.T., Wen, C.K., Jin, S., Li, G.Y.: Deep learning-based channel estimation for beamspace mmwave massive MIMO systems. IEEE Wirel. Commun. Lett. 7, 852–855 (2018)CrossRef He, H.T., Wen, C.K., Jin, S., Li, G.Y.: Deep learning-based channel estimation for beamspace mmwave massive MIMO systems. IEEE Wirel. Commun. Lett. 7, 852–855 (2018)CrossRef
12.
Zurück zum Zitat O’Shea, T., Hoydis, J.: An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 3, 563–575 (2017)CrossRef O’Shea, T., Hoydis, J.: An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 3, 563–575 (2017)CrossRef
13.
Zurück zum Zitat Yang, Y., et al.: DECCO: deep-learning enabled coverage and capacity optimization for massive MIMO systems. IEEE Access 6, 23361–23371 (2018)CrossRef Yang, Y., et al.: DECCO: deep-learning enabled coverage and capacity optimization for massive MIMO systems. IEEE Access 6, 23361–23371 (2018)CrossRef
14.
Zurück zum Zitat Prasad, K., Hossain, E., Bhargava, V.K.: Machine learning methods for RSS-based user positioning in distributed massive MIMO. IEEE Trans. Wirel. Commun. 17, 8402–8417 (2018)CrossRef Prasad, K., Hossain, E., Bhargava, V.K.: Machine learning methods for RSS-based user positioning in distributed massive MIMO. IEEE Trans. Wirel. Commun. 17, 8402–8417 (2018)CrossRef
15.
Zurück zum Zitat Mao, Q., Hu, F., Hao, Q.: Deep learning for intelligent wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 20, 2595–2621 (2018)CrossRef Mao, Q., Hu, F., Hao, Q.: Deep learning for intelligent wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 20, 2595–2621 (2018)CrossRef
16.
Zurück zum Zitat Ayach, O.E., Rajagopal, S., Abu-Surra, S., Pi, Z., Heath, R.W.: Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 13, 1499–1513 (2014)CrossRef Ayach, O.E., Rajagopal, S., Abu-Surra, S., Pi, Z., Heath, R.W.: Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 13, 1499–1513 (2014)CrossRef
17.
Zurück zum Zitat Hao, X., Kukshya, V., Rappaport, T.S.: Spatial and temporal characteristics of 60-GHz indoor channels. IEEE J. Sel. Areas Commun. 20, 620–630 (2002)CrossRef Hao, X., Kukshya, V., Rappaport, T.S.: Spatial and temporal characteristics of 60-GHz indoor channels. IEEE J. Sel. Areas Commun. 20, 620–630 (2002)CrossRef
18.
Zurück zum Zitat Xiang, L., Ge, X., Wang, C.X., Li, F.Y., Reichert, F.: Energy efficiency evaluation of cellular networks based on spatial distributions of traffic load and power consumption. IEEE Trans. Wirel. Commun. 12, 961–973 (2013)CrossRef Xiang, L., Ge, X., Wang, C.X., Li, F.Y., Reichert, F.: Energy efficiency evaluation of cellular networks based on spatial distributions of traffic load and power consumption. IEEE Trans. Wirel. Commun. 12, 961–973 (2013)CrossRef
19.
Zurück zum Zitat Ge, X., Huang, K., Wang, C.X., Hong, X., Yang, X.: Capacity analysis of a multi-cell multi-antenna cooperative cellular network with co-channel interference. IEEE Trans. Wirel. Commun. 10, 3298–3309 (2011)CrossRef Ge, X., Huang, K., Wang, C.X., Hong, X., Yang, X.: Capacity analysis of a multi-cell multi-antenna cooperative cellular network with co-channel interference. IEEE Trans. Wirel. Commun. 10, 3298–3309 (2011)CrossRef
20.
Zurück zum Zitat Romera, M., et al.: Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018)CrossRef Romera, M., et al.: Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018)CrossRef
21.
Zurück zum Zitat Ge, X., et al.: Spatial spectrum and energy efficiency of random cellular networks. IEEE Trans. Commun. 63, 1019–1030 (2015)CrossRef Ge, X., et al.: Spatial spectrum and energy efficiency of random cellular networks. IEEE Trans. Commun. 63, 1019–1030 (2015)CrossRef
22.
Zurück zum Zitat Ge, X., et al.: Energy efficiency optimization for MIMO-OFDM mobile multimedia communication systems with QoS constraints. IEEE Trans. Veh. Technol. 63, 2127–2138 (2014)CrossRef Ge, X., et al.: Energy efficiency optimization for MIMO-OFDM mobile multimedia communication systems with QoS constraints. IEEE Trans. Veh. Technol. 63, 2127–2138 (2014)CrossRef
23.
Zurück zum Zitat Hur, S., et al.: Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans. Commun. 61, 4391–4403 (2013)CrossRef Hur, S., et al.: Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans. Commun. 61, 4391–4403 (2013)CrossRef
24.
Zurück zum Zitat Mumtaz, S., Rodriguez, J., Dai, L.: mmWave Massive MIMO: A Paradigm for 5G (2016) Mumtaz, S., Rodriguez, J., Dai, L.: mmWave Massive MIMO: A Paradigm for 5G (2016)
25.
Zurück zum Zitat Bjornson, E., Sanguinetti, L., Hoydis, J., Debbah, M.: Optimal design of energy-efficient multi-user MIMO systems: is massive MIMO the answer? IEEE Trans. Wirel. Commun. 14, 3059–3075 (2015)CrossRef Bjornson, E., Sanguinetti, L., Hoydis, J., Debbah, M.: Optimal design of energy-efficient multi-user MIMO systems: is massive MIMO the answer? IEEE Trans. Wirel. Commun. 14, 3059–3075 (2015)CrossRef
26.
Zurück zum Zitat Ribeiro, L.N., Schwarz, S., Rupp, M., de Almeida, A.L.F.: Energy efficiency of mmwave massive MIMO precoding with low-resolution DACs. IEEE J. Sel. Top. Signal Process. 12, 298–312 (2018)CrossRef Ribeiro, L.N., Schwarz, S., Rupp, M., de Almeida, A.L.F.: Energy efficiency of mmwave massive MIMO precoding with low-resolution DACs. IEEE J. Sel. Top. Signal Process. 12, 298–312 (2018)CrossRef
Metadaten
Titel
Neural Networks in Hybrid Precoding for Millimeter Wave Massive MIMO Systems
verfasst von
Jing Yang
Kai Chen
Xiaohu Ge
Yonghui Li
Lin Tian
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-22968-9_12