Skip to main content
Erschienen in: Neuroinformatics 3-4/2018

05.02.2018 | Original Article

Neuronal Activities in the Mouse Visual Cortex Predict Patterns of Sensory Stimuli

verfasst von: Lei Cai, Bian Wu, Shuiwang Ji

Erschienen in: Neuroinformatics | Ausgabe 3-4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Visual cortex forms the basis of visual processing and plays important roles in visual encoding. By using the recently published Allen Brain Observatory dataset consisting of large-scale calcium imaging of mouse V1 activities under visual stimuli, we were able to obtain high-quality data capturing simultaneous neuronal activities at multiple sub-areas and cortical depths of V1. Using prediction models, we analyzed the activity profiles related to static and drifting grating stimuli. We conducted a comprehensive survey of the coding ability of multiple cortical locations toward different stimulus attributes. Specifically, we focused on orientations and spatial frequencies (for static stimuli), as well as moving directions and speed (for drifting stimuli). By using results produced from a prediction model, we quantified the decoding performance profile at different sub-areas and layers of V1. In addition, we analyzed the interactions and interference between different stimulus attributes. The insights obtained from these discoveries would contribute to more precise and quantitative understanding of V1 coding mechanisms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Albright, T.D. (1984). Direction and orientation selectivity of neurons in visual area mt of the macaque. Journal of neurophysiology, 52(6), 1106–1130.CrossRefPubMed Albright, T.D. (1984). Direction and orientation selectivity of neurons in visual area mt of the macaque. Journal of neurophysiology, 52(6), 1106–1130.CrossRefPubMed
Zurück zum Zitat Allen Brain Observatory. (2016). Technical White Paper: Overview. Allen Brain Observatory. (2016). Technical White Paper: Overview.
Zurück zum Zitat Allen Brain Observatory. (2016). Technical Whitepaper: Stimulus Set And Response Analysis. Allen Brain Observatory. (2016). Technical Whitepaper: Stimulus Set And Response Analysis.
Zurück zum Zitat Andermann, M.L., Kerlin, A.M., Roumis, D.K., Glickfeld, L.L., Reid, R.C. (2011). Functional specialization of mouse higher visual cortical areas. Neuron, 72(6), 1025–1039.CrossRefPubMed Andermann, M.L., Kerlin, A.M., Roumis, D.K., Glickfeld, L.L., Reid, R.C. (2011). Functional specialization of mouse higher visual cortical areas. Neuron, 72(6), 1025–1039.CrossRefPubMed
Zurück zum Zitat Bethge, M., & Kayser, C. (2007). Do we know what the early visual system computes?. In 31st Göttingen Neurobiology Conference. Bethge, M., & Kayser, C. (2007). Do we know what the early visual system computes?. In 31st Göttingen Neurobiology Conference.
Zurück zum Zitat Cadieu, C.F., Hong, H., Yamins, D.L., Pinto, N., Ardila, D., Solomon, E.A., Majaj, N.J., DiCarlo, J.J. (2014). Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLOS Computational Biology, 10(12), e1003,963.CrossRef Cadieu, C.F., Hong, H., Yamins, D.L., Pinto, N., Ardila, D., Solomon, E.A., Majaj, N.J., DiCarlo, J.J. (2014). Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLOS Computational Biology, 10(12), e1003,963.CrossRef
Zurück zum Zitat Coogan, T.A., & Burkhalter, A. (1993). Hierarchical organization of areas in rat visual cortex. The Journal of neuroscience, 13(9), 3749–3772.CrossRefPubMed Coogan, T.A., & Burkhalter, A. (1993). Hierarchical organization of areas in rat visual cortex. The Journal of neuroscience, 13(9), 3749–3772.CrossRefPubMed
Zurück zum Zitat David, S.V., Vinje, W.E., Gallant, J.L. (2004). Natural stimulus statistics alter the receptive field structure of v1 neurons. The Journal of Neuroscience, 24(31), 6991–7006.CrossRefPubMed David, S.V., Vinje, W.E., Gallant, J.L. (2004). Natural stimulus statistics alter the receptive field structure of v1 neurons. The Journal of Neuroscience, 24(31), 6991–7006.CrossRefPubMed
Zurück zum Zitat Fakhry, A., & Ji, S. (2015). High-resolution prediction of mouse brain connectivity using gene expression patterns. Methods, 73, 71–78.CrossRefPubMed Fakhry, A., & Ji, S. (2015). High-resolution prediction of mouse brain connectivity using gene expression patterns. Methods, 73, 71–78.CrossRefPubMed
Zurück zum Zitat Fakhry, A., Zeng, T., Peng, H., Ji, S. (2015). Global analysis of gene expression and projection target correlations in the mouse brain. Brain Informatics, 2(2), 107–117.CrossRefPubMedPubMedCentral Fakhry, A., Zeng, T., Peng, H., Ji, S. (2015). Global analysis of gene expression and projection target correlations in the mouse brain. Brain Informatics, 2(2), 107–117.CrossRefPubMedPubMedCentral
Zurück zum Zitat French, L., & Pavlidis, P. (2011). Relationships between gene expression and brain wiring in the adult rodent brain. PLOS Computational Biology, 7(1), e1001,049.CrossRef French, L., & Pavlidis, P. (2011). Relationships between gene expression and brain wiring in the adult rodent brain. PLOS Computational Biology, 7(1), e1001,049.CrossRef
Zurück zum Zitat Garrett, M.E., Nauhaus, I., Marshel, J.H., Callaway, E.M. (2014). Topography and areal organization of mouse visual cortex. The Journal of Neuroscience, 34(37), 12,587–12,600.CrossRef Garrett, M.E., Nauhaus, I., Marshel, J.H., Callaway, E.M. (2014). Topography and areal organization of mouse visual cortex. The Journal of Neuroscience, 34(37), 12,587–12,600.CrossRef
Zurück zum Zitat Girman, S.V., Sauvé, Y., Lund, R.D. (1999). Receptive field properties of single neurons in rat primary visual cortex. Journal of neurophysiology, 82(1), 301–311.CrossRefPubMed Girman, S.V., Sauvé, Y., Lund, R.D. (1999). Receptive field properties of single neurons in rat primary visual cortex. Journal of neurophysiology, 82(1), 301–311.CrossRefPubMed
Zurück zum Zitat Gray, C.M., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences, 86(5), 1698–1702.CrossRef Gray, C.M., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences, 86(5), 1698–1702.CrossRef
Zurück zum Zitat Greenberg, D.S., Houweling, A.R., Kerr, J.N. (2008). Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nature neuroscience, 11(7), 749–751.CrossRefPubMed Greenberg, D.S., Houweling, A.R., Kerr, J.N. (2008). Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nature neuroscience, 11(7), 749–751.CrossRefPubMed
Zurück zum Zitat Haynes, J.D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature neuroscience, 8(5), 686–691.CrossRefPubMed Haynes, J.D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature neuroscience, 8(5), 686–691.CrossRefPubMed
Zurück zum Zitat Hinton, G.E., & Roweis, S.T. (2003). Stochastic neighbor embedding. In Advances in Neural Information Processing Systems 15 (pp. 857–864). Hinton, G.E., & Roweis, S.T. (2003). Stochastic neighbor embedding. In Advances in Neural Information Processing Systems 15 (pp. 857–864).
Zurück zum Zitat Hubel, D.H., & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 195(1), 215–243.CrossRefPubMedPubMedCentral Hubel, D.H., & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 195(1), 215–243.CrossRefPubMedPubMedCentral
Zurück zum Zitat Ji, S. (2011). Computational network analysis of the anatomical and genetic organizations in the mouse brain. Bioinformatics, 27(23), 3293–3299.CrossRefPubMed Ji, S. (2011). Computational network analysis of the anatomical and genetic organizations in the mouse brain. Bioinformatics, 27(23), 3293–3299.CrossRefPubMed
Zurück zum Zitat Ji, S. (2013). Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering. BMC Bioinformatics, 14, 222.CrossRefPubMedPubMedCentral Ji, S. (2013). Computational genetic neuroanatomy of the developing mouse brain: dimensionality reduction, visualization, and clustering. BMC Bioinformatics, 14, 222.CrossRefPubMedPubMedCentral
Zurück zum Zitat Ji, S., Fakhry, A., Deng, H. (2014). Integrative analysis of the connectivity and gene expression atlases in the mouse brain. NeuroImage, 84(1), 245–253.CrossRefPubMed Ji, S., Fakhry, A., Deng, H. (2014). Integrative analysis of the connectivity and gene expression atlases in the mouse brain. NeuroImage, 84(1), 245–253.CrossRefPubMed
Zurück zum Zitat Kirsch, L., & Chechik, G. (2016). On expression patterns and developmental origin of human brain regions. PLOS Computational Biology, 12(8), e1005,064.CrossRef Kirsch, L., & Chechik, G. (2016). On expression patterns and developmental origin of human brain regions. PLOS Computational Biology, 12(8), e1005,064.CrossRef
Zurück zum Zitat Kirsch, L., Liscovitch, N., Chechik, G. (2012). Localizing genes to cerebellar layers by classifying ish images. PLOS Computational Biology, 8(12), e1002,790.CrossRef Kirsch, L., Liscovitch, N., Chechik, G. (2012). Localizing genes to cerebellar layers by classifying ish images. PLOS Computational Biology, 8(12), e1002,790.CrossRef
Zurück zum Zitat Liscovitch, N., & Chechik, G. (2013). Specialization of gene expression during mouse brain development. PLOS Computational Biology, 9(9), e1003,185.CrossRef Liscovitch, N., & Chechik, G. (2013). Specialization of gene expression during mouse brain development. PLOS Computational Biology, 9(9), e1003,185.CrossRef
Zurück zum Zitat Logothetis, N.K., & Sheinberg, D.L. (1996). Visual object recognition. Annual review of neuroscience, 19(1), 577–621.CrossRefPubMed Logothetis, N.K., & Sheinberg, D.L. (1996). Visual object recognition. Annual review of neuroscience, 19(1), 577–621.CrossRefPubMed
Zurück zum Zitat Luck, S.J., Chelazzi, L., Hillyard, S.A., Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas v1, v2, and v4 of macaque visual cortex. Journal of neurophysiology, 77(1), 24– 42.CrossRefPubMed Luck, S.J., Chelazzi, L., Hillyard, S.A., Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas v1, v2, and v4 of macaque visual cortex. Journal of neurophysiology, 77(1), 24– 42.CrossRefPubMed
Zurück zum Zitat Maaten, L.V.D., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 9, 2579–2605. Maaten, L.V.D., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 9, 2579–2605.
Zurück zum Zitat Mangini, N.J., & Pearlman, A.L. (1980). Laminar distribution of receptive field properties in the primary visual cortex of the mouse. The Journal of comparative neurology, 193(1), 203–222.CrossRefPubMed Mangini, N.J., & Pearlman, A.L. (1980). Laminar distribution of receptive field properties in the primary visual cortex of the mouse. The Journal of comparative neurology, 193(1), 203–222.CrossRefPubMed
Zurück zum Zitat Marshel, J.H., Garrett, M.E., Nauhaus, I., Callaway, E.M. (2011). Functional specialization of seven mouse visual cortical areas. Neuron, 72(6), 1040–1054.CrossRefPubMedPubMedCentral Marshel, J.H., Garrett, M.E., Nauhaus, I., Callaway, E.M. (2011). Functional specialization of seven mouse visual cortical areas. Neuron, 72(6), 1040–1054.CrossRefPubMedPubMedCentral
Zurück zum Zitat Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A.M., et al. (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207–214.CrossRefPubMedPubMedCentral Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A.M., et al. (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207–214.CrossRefPubMedPubMedCentral
Zurück zum Zitat Pascual-Leone, A., & Walsh, V. (2001). Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science, 292(5516), 510–512.CrossRefPubMed Pascual-Leone, A., & Walsh, V. (2001). Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science, 292(5516), 510–512.CrossRefPubMed
Zurück zum Zitat Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal of machine learning research, 5, 101–141. Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal of machine learning research, 5, 101–141.
Zurück zum Zitat Rust, N.C., & DiCarlo, J.J. (2010). Selectivity and tolerance (invariance) both increase as visual information propagates from cortical area v4 to it. The Journal of Neuroscience, 30(39), 12,978–12,995.CrossRef Rust, N.C., & DiCarlo, J.J. (2010). Selectivity and tolerance (invariance) both increase as visual information propagates from cortical area v4 to it. The Journal of Neuroscience, 30(39), 12,978–12,995.CrossRef
Zurück zum Zitat Saleem, A.B., Ayaz, A., Jeffery, K.J., Harris, K.D., Carandini, M. (2013). Integration of visual motion and locomotion in mouse visual cortex. Nature Neuroscience, 16(12), 1864–1869.CrossRefPubMedPubMedCentral Saleem, A.B., Ayaz, A., Jeffery, K.J., Harris, K.D., Carandini, M. (2013). Integration of visual motion and locomotion in mouse visual cortex. Nature Neuroscience, 16(12), 1864–1869.CrossRefPubMedPubMedCentral
Zurück zum Zitat Saproo, S., & Serences, J.T. (2014). Attention improves transfer of motion information between v1 and mt. The Journal of Neuroscience, 34(10), 3586–3596.CrossRefPubMedPubMedCentral Saproo, S., & Serences, J.T. (2014). Attention improves transfer of motion information between v1 and mt. The Journal of Neuroscience, 34(10), 3586–3596.CrossRefPubMedPubMedCentral
Zurück zum Zitat Schiller, P.H., Finlay, B.L., Volman, S.F. (1976). Quantitative studies of single-cell properties in monkey striate cortex. ii. orientation specificity and ocular dominance. Journal of neurophysiology, 39(6), 1320–1333.CrossRefPubMed Schiller, P.H., Finlay, B.L., Volman, S.F. (1976). Quantitative studies of single-cell properties in monkey striate cortex. ii. orientation specificity and ocular dominance. Journal of neurophysiology, 39(6), 1320–1333.CrossRefPubMed
Zurück zum Zitat Serre, T., Wolf, L., Poggio, T. (2005). Object recognition with features inspired by visual cortex. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (Vol. 2, pp. 994–1000): IEEE. Serre, T., Wolf, L., Poggio, T. (2005). Object recognition with features inspired by visual cortex. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (Vol. 2, pp. 994–1000): IEEE.
Zurück zum Zitat Sheth, B.R., Sharma, J., Rao, S.C., Sur, M. (1996). Orientation maps of subjective contours in visual cortex. Science, 274(5295), 2110.CrossRefPubMed Sheth, B.R., Sharma, J., Rao, S.C., Sur, M. (1996). Orientation maps of subjective contours in visual cortex. Science, 274(5295), 2110.CrossRefPubMed
Zurück zum Zitat Stosiek, C., Garaschuk, O., Holthoff, K., Konnerth, A. (2003). In vivo two-photon calcium imaging of neuronal networks. Proceedings of the National Academy of Sciences, 100(12), 7319–7324.CrossRef Stosiek, C., Garaschuk, O., Holthoff, K., Konnerth, A. (2003). In vivo two-photon calcium imaging of neuronal networks. Proceedings of the National Academy of Sciences, 100(12), 7319–7324.CrossRef
Zurück zum Zitat Takemura, H., & Murakami, I. (2010). Visual motion detection sensitivity is enhanced by an orthogonal motion aftereffect. Journal of vision, 10(11), 7–7.CrossRefPubMed Takemura, H., & Murakami, I. (2010). Visual motion detection sensitivity is enhanced by an orthogonal motion aftereffect. Journal of vision, 10(11), 7–7.CrossRefPubMed
Zurück zum Zitat Teich, A.F., & Qian, N. (2006). Comparison among some models of orientation selectivity. Journal of neurophysiology, 96(1), 404–419.CrossRefPubMed Teich, A.F., & Qian, N. (2006). Comparison among some models of orientation selectivity. Journal of neurophysiology, 96(1), 404–419.CrossRefPubMed
Zurück zum Zitat Vogels, R., & Orban, G. (1994). Activity of inferior temporal neurons during orientation discrimination with successively presented gratings. Journal of Neurophysiology, 71(4), 1428–1451.CrossRefPubMed Vogels, R., & Orban, G. (1994). Activity of inferior temporal neurons during orientation discrimination with successively presented gratings. Journal of Neurophysiology, 71(4), 1428–1451.CrossRefPubMed
Zurück zum Zitat Wolf, L., Goldberg, C., Manor, N., Sharan, R., Ruppin, E. (2011). Gene expression in the rodent brain is associated with its regional connectivity. PLOS Computational Biology, 7(5), e1002,040.CrossRef Wolf, L., Goldberg, C., Manor, N., Sharan, R., Ruppin, E. (2011). Gene expression in the rodent brain is associated with its regional connectivity. PLOS Computational Biology, 7(5), e1002,040.CrossRef
Zurück zum Zitat Yamins, D.L., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., DiCarlo, J.J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23), 8619–8624.CrossRef Yamins, D.L., Hong, H., Cadieu, C.F., Solomon, E.A., Seibert, D., DiCarlo, J.J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23), 8619–8624.CrossRef
Zurück zum Zitat Yan, C., Zhang, Y., Xu, J., Dai, F., Li, L., Dai, Q., Wu, F. (2014). A highly parallel framework for hevc coding unit partitioning tree decision on many-core processors. IEEE Signal Processing Letters, 21(5), 573–576.CrossRef Yan, C., Zhang, Y., Xu, J., Dai, F., Li, L., Dai, Q., Wu, F. (2014). A highly parallel framework for hevc coding unit partitioning tree decision on many-core processors. IEEE Signal Processing Letters, 21(5), 573–576.CrossRef
Metadaten
Titel
Neuronal Activities in the Mouse Visual Cortex Predict Patterns of Sensory Stimuli
verfasst von
Lei Cai
Bian Wu
Shuiwang Ji
Publikationsdatum
05.02.2018
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 3-4/2018
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-018-9357-1

Weitere Artikel der Ausgabe 3-4/2018

Neuroinformatics 3-4/2018 Zur Ausgabe