Skip to main content

2022 | OriginalPaper | Buchkapitel

2. New Oxide-Ion Conductors of Dion–Jacobson-Type Layered Perovskites CsBi2Ti2NbO10-δ

verfasst von : Dr. Wenrui Zhang

Erschienen in: Oxide-Ion Conduction in the Dion–Jacobson-Type Layered Perovskites

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Oxide-ion conductors exhibit many important applications in many electrochemical devices, for example, solid-oxide fuel cells (SOFCs), solid-oxide electrolysis cell (SOECs), oxygen gas sensors, and oxygen separation membranes. Dion–Jacobson phases have attracted attention because of their wide chemical and physical performances, however, up to now, there are no reports of oxide-ion conductors with the Dion–Jacobson structure. Here, we have reported the new oxide-ion conductors of Dion–Jacobson-type layered perovskites for the first time. The oxide-ion migration energy barriers, Eb, of 69 Dion–Jacobson phases were calculated using 83 Dion–Jacobson-type crystal data, in order to find new oxide-ion conductors in the Dion–Jacobson phases. CsBi2Ti2NbO10−δ was chosen because of its relatively low Eb. The bulk conductivity of CsBi2Ti2NbO10−δ (δ is the oxygen vacancy content) was 8.9 × 10−2 S cm−1 at 1073 K, which was higher than that of the conventional yttria-stabilized zirconia (YSZ). There is a jump in conductivity between 823 and 873 K, which may can be attributed to the high level of oxygen vacancy concentration and the orthorhombic-to-tetragonal phase transition. In order to improve its conductivity, doping elements in the A (Bi site) and B sites (Ti/Nb site) were investigated. The CsBi2−xMxTi2+yNb1–yO10−x/2–y/2-δ (M = alkaline earth metal; x = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6; y = 0.2, 0.1, −0.1, and −0.2) compounds were synthesized and the electrical properties were investigated. The high conductivity of Dion–Jacobson-type layered perovskites CsBi2Ti2NbO10-δ can be attributable to the large anisotropic thermal motions of oxygen atoms (especially O1 and O2), the existence of carrier (oxygen vacancy in high-temperature ranges) and the formation of an oxide-ion conducing layer with large bottleneck sizes (inner perovskite layers). The present finding of high oxide-ion conductivities in the Dion–Jacobson-type layered perovskites CsBi2Ti2NbO10−δ would open new avenues in the design and discovery of other novel oxide-ion conductors. Parts of this paper have been published in the following journal articles. Zhang, W., Fujii, K., Niwa, E., Hagihala, M., Kamiyama, T., & Yashima, M. (2020). Oxide-ion conduction in the Dion–Jacobson phase CsBi2Ti2NbO10−δ.Nature communications, 11(1), 1–8.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Malavasi L, Fisher CAJ, Islam MS (2010) Oxide-ion and proton conducting electrolyte materials for clean energy applications: Structural and mechanistic features. Chem Soc Rev 39(11):4370–4387CrossRef Malavasi L, Fisher CAJ, Islam MS (2010) Oxide-ion and proton conducting electrolyte materials for clean energy applications: Structural and mechanistic features. Chem Soc Rev 39(11):4370–4387CrossRef
2.
Zurück zum Zitat Boivin JC, Mairesse G (1998) Recent material developments in fast oxide-ion conductors. Chem Mater 10(10):2870–2888CrossRef Boivin JC, Mairesse G (1998) Recent material developments in fast oxide-ion conductors. Chem Mater 10(10):2870–2888CrossRef
3.
Zurück zum Zitat Goodenough JB (2000) Oxide-ion conductors by design. Nature 404(6780):821–823CrossRef Goodenough JB (2000) Oxide-ion conductors by design. Nature 404(6780):821–823CrossRef
4.
Zurück zum Zitat Kharton VV, Yaremchenko AA, Naumovich EN, Marques FMB (1999) Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. J Solid State Electrochem 3:303–326CrossRef Kharton VV, Yaremchenko AA, Naumovich EN, Marques FMB (1999) Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. J Solid State Electrochem 3:303–326CrossRef
5.
Zurück zum Zitat Skinner SJ, Kilner JA (2003) Ion conductors. Rev Lit Arts Am 6(3):30–37 Skinner SJ, Kilner JA (2003) Ion conductors. Rev Lit Arts Am 6(3):30–37
6.
Zurück zum Zitat Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 116(9):3801–3803CrossRef Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 116(9):3801–3803CrossRef
7.
Zurück zum Zitat Ishihara T, Kilner JA, Honda M, Takita Y (1997) Oxygen surface exchange and diffusion in the new perovskite oxide-ion conductor LaGaO3. J Am Chem Soc 119(11):2747–2748CrossRef Ishihara T, Kilner JA, Honda M, Takita Y (1997) Oxygen surface exchange and diffusion in the new perovskite oxide-ion conductor LaGaO3. J Am Chem Soc 119(11):2747–2748CrossRef
8.
Zurück zum Zitat Malavasi L, Kim HJ, Billinge SJL, Proffen T, Tealdi C, Flor G (2007) Nature of the monoclinic to cubic phase transition in the fast oxygen ion conductor La2Mo2O9 (LAMOX). J Am Chem Soc 129(21):6903–6907CrossRef Malavasi L, Kim HJ, Billinge SJL, Proffen T, Tealdi C, Flor G (2007) Nature of the monoclinic to cubic phase transition in the fast oxygen ion conductor La2Mo2O9 (LAMOX). J Am Chem Soc 129(21):6903–6907CrossRef
9.
Zurück zum Zitat Manthiram A, Kim JH, Kim YN, Lee KT (2011) Crystal chemistry and properties of mixed ionic-electronic conductors. J Electroceram 27(2):93–107CrossRef Manthiram A, Kim JH, Kim YN, Lee KT (2011) Crystal chemistry and properties of mixed ionic-electronic conductors. J Electroceram 27(2):93–107CrossRef
10.
Zurück zum Zitat Lacorre P, Goutenoire Ë, Bohnke O, Retoux R, Laligant Y (2000) Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404:856 Lacorre P, Goutenoire Ë, Bohnke O, Retoux R, Laligant Y (2000) Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404:856
11.
Zurück zum Zitat Yashima M (2009) Diffusion pathway of mobile ions and crystal structure of ionic and mixed conductors–a brief review. J Ceram Soc Japan 117(1370):1055–1059CrossRef Yashima M (2009) Diffusion pathway of mobile ions and crystal structure of ionic and mixed conductors–a brief review. J Ceram Soc Japan 117(1370):1055–1059CrossRef
12.
Zurück zum Zitat Yashima M (2015) Invited review: some recent developments in the atomic-scale characterization of structural and transport properties of ceria-based catalysts and ionic conductors. Catal Today 253:3–19CrossRef Yashima M (2015) Invited review: some recent developments in the atomic-scale characterization of structural and transport properties of ceria-based catalysts and ionic conductors. Catal Today 253:3–19CrossRef
13.
Zurück zum Zitat FujiiI K, Yashima M (2018) Discovery and development of BaNdInO4—a brief review. J Ceram Soc Japan 126(10):852–859CrossRef FujiiI K, Yashima M (2018) Discovery and development of BaNdInO4—a brief review. J Ceram Soc Japan 126(10):852–859CrossRef
14.
Zurück zum Zitat Yashima M, Sirikanda N, Ishihara T (2010) Crystal structure, diffusion path, and oxygen permeability of a Pr 2NiO4-based mixed conductor (Pr0.9la 0.1)2(Ni0.74Cu0.21Ga 0.05)O4+δ. J Am Chem Soc 132(7):2385–2392CrossRef Yashima M, Sirikanda N, Ishihara T (2010) Crystal structure, diffusion path, and oxygen permeability of a Pr 2NiO4-based mixed conductor (Pr0.9la 0.1)2(Ni0.74Cu0.21Ga 0.05)O4+δ. J Am Chem Soc 132(7):2385–2392CrossRef
15.
Zurück zum Zitat Yashima M et al (2008) Structural disorder and diffusional pathway of oxide ions in a doped Pr2NiO4-based mixed conductor. J Am Chem Soc 130(9):2762–2763CrossRef Yashima M et al (2008) Structural disorder and diffusional pathway of oxide ions in a doped Pr2NiO4-based mixed conductor. J Am Chem Soc 130(9):2762–2763CrossRef
16.
Zurück zum Zitat Fujii K et al (2014) New perovskite-related structure family of oxide-ion conducting materials NdBaInO4. Chem Mater 26(8):2488–2491CrossRef Fujii K et al (2014) New perovskite-related structure family of oxide-ion conducting materials NdBaInO4. Chem Mater 26(8):2488–2491CrossRef
17.
Zurück zum Zitat Fujimoto A, Yashima M, Fujii K, Hester JR (2017) New oxide-ion conductor SrYbInO4 with partially cation-disordered CaFe2O4-type structure. J Phys Chem C 121(39):21272–21280CrossRef Fujimoto A, Yashima M, Fujii K, Hester JR (2017) New oxide-ion conductor SrYbInO4 with partially cation-disordered CaFe2O4-type structure. J Phys Chem C 121(39):21272–21280CrossRef
18.
Zurück zum Zitat Abraham F, Boivin JC, Mairesse G, Nowogrocki G (1990) The bimevox series: a new family of high performances oxide-ion conductors. Solid State Ionics 40–41(2):934–937 Abraham F, Boivin JC, Mairesse G, Nowogrocki G (1990) The bimevox series: a new family of high performances oxide-ion conductors. Solid State Ionics 40–41(2):934–937
19.
Zurück zum Zitat Iharada T, Hammouche A, Fouletier J, Kleitz M, Boivin JC, Mairesse G (1991) Electrochemical characterization of BIMEVOX oxide-ion conductors. Solid State Ionics 48(3–4):257–265CrossRef Iharada T, Hammouche A, Fouletier J, Kleitz M, Boivin JC, Mairesse G (1991) Electrochemical characterization of BIMEVOX oxide-ion conductors. Solid State Ionics 48(3–4):257–265CrossRef
20.
Zurück zum Zitat Pirovano C, Steil MC, Capoen E, Nowogrocki G, Vannier RN (2005) Impedance study of the microstructure dependence of the electrical properties of BIMEVOXes. Solid State Ionics 176(25–28):2079–2083CrossRef Pirovano C, Steil MC, Capoen E, Nowogrocki G, Vannier RN (2005) Impedance study of the microstructure dependence of the electrical properties of BIMEVOXes. Solid State Ionics 176(25–28):2079–2083CrossRef
21.
Zurück zum Zitat Lee CK, Westb AR (1996) Thermal behaviour and polymorphism conductors including the new materials: Mg, B IONICS of BIMEVOX oxide ion Bi,V,O, 1 : M; M = La, Y. Solid State Ionics 2738(96) Lee CK, Westb AR (1996) Thermal behaviour and polymorphism conductors including the new materials: Mg, B IONICS of BIMEVOX oxide ion Bi,V,O, 1 : M; M = La, Y. Solid State Ionics 2738(96)
22.
Zurück zum Zitat Kendall KR, Navas C, Thomas JK, Zur Loye HC (1996) Recent developments in oxide-ion conductors: aurivillius phases. Chem Mater 8(3):642–649 Kendall KR, Navas C, Thomas JK, Zur Loye HC (1996) Recent developments in oxide-ion conductors: aurivillius phases. Chem Mater 8(3):642–649
23.
Zurück zum Zitat Thomas JK, Anderson ME, Krause WE, Zur Loye H (1993) Oxygen ion conductivity in a new class of layered bismuth oxide compounds. MRS Online Proc Libr Arch 293:295–300 Thomas JK, Anderson ME, Krause WE, Zur Loye H (1993) Oxygen ion conductivity in a new class of layered bismuth oxide compounds. MRS Online Proc Libr Arch 293:295–300
24.
Zurück zum Zitat Porob DG, Guru Row TN (2000) A novel oxide-ion conductor in a doped Bi2O3-V2O5 system: Ab initio structure of a new polymorph of NaBi3V2O10 via powder X-ray diffraction. Chem Mater 12(12):3658–3661 Porob DG, Guru Row TN (2000) A novel oxide-ion conductor in a doped Bi2O3-V2O5 system: Ab initio structure of a new polymorph of NaBi3V2O10 via powder X-ray diffraction. Chem Mater 12(12):3658–3661
25.
Zurück zum Zitat Amow G, Skinner SJ (2006) Recent developments in Ruddlesden-Popper nickelate systems for solid oxide fuel cell cathodes. J Solid State Electrochem 10(8):538–546CrossRef Amow G, Skinner SJ (2006) Recent developments in Ruddlesden-Popper nickelate systems for solid oxide fuel cell cathodes. J Solid State Electrochem 10(8):538–546CrossRef
26.
Zurück zum Zitat Patrakeev MV, Leonidov IA, Kozhevnikov VL, Kharton VV (2004) Ion-electron transport in strontium ferrites: relationships with structural features and stability. Solid State Sci 6(9):907–913CrossRef Patrakeev MV, Leonidov IA, Kozhevnikov VL, Kharton VV (2004) Ion-electron transport in strontium ferrites: relationships with structural features and stability. Solid State Sci 6(9):907–913CrossRef
27.
Zurück zum Zitat Yamada A et al (2008) Ruddlesden-popper-type epitaxial film as oxygen electrode for solid-oxide fuel cells. Adv Mater 20(21):4124–4128CrossRef Yamada A et al (2008) Ruddlesden-popper-type epitaxial film as oxygen electrode for solid-oxide fuel cells. Adv Mater 20(21):4124–4128CrossRef
28.
Zurück zum Zitat Yang G, Su C, Ran R, Tade MO, Shao Z (2014) Advanced symmetric solid oxide fuel cell with an infiltrated K 2NiF4-Type La2NiO4 electrode. Energy Fuels 28(1):356–362CrossRef Yang G, Su C, Ran R, Tade MO, Shao Z (2014) Advanced symmetric solid oxide fuel cell with an infiltrated K 2NiF4-Type La2NiO4 electrode. Energy Fuels 28(1):356–362CrossRef
29.
Zurück zum Zitat Ishihara T, Nakashima K, Okada S, Enoki M, Matsumoto H (2008) Defect chemistry and oxygen permeation property of Pr2Ni0.75Cu0.25O4 oxide doped with Ga. Solid State Ionics 179(27–32):1367–1371CrossRef Ishihara T, Nakashima K, Okada S, Enoki M, Matsumoto H (2008) Defect chemistry and oxygen permeation property of Pr2Ni0.75Cu0.25O4 oxide doped with Ga. Solid State Ionics 179(27–32):1367–1371CrossRef
30.
Zurück zum Zitat Sengodan S et al (2015) Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat Mater 14(2):205–209CrossRef Sengodan S et al (2015) Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat Mater 14(2):205–209CrossRef
31.
Zurück zum Zitat Ali R, Yashima M, Izumi F (2007) Diffusion path of oxide ions in an oxide-ion conductor la 0.64(Ti0.92Nb0.08)O2.99 with a double perovskite-type structure. Chem Mater 19(13):3260–3264CrossRef Ali R, Yashima M, Izumi F (2007) Diffusion path of oxide ions in an oxide-ion conductor la 0.64(Ti0.92Nb0.08)O2.99 with a double perovskite-type structure. Chem Mater 19(13):3260–3264CrossRef
32.
Zurück zum Zitat Burriel M et al (2012) Anisotropic oxygen ion diffusion in layered PrBaCo 2 O 5+δ. Chem Mater 24(3):613–621CrossRef Burriel M et al (2012) Anisotropic oxygen ion diffusion in layered PrBaCo 2 O 5+δ. Chem Mater 24(3):613–621CrossRef
33.
Zurück zum Zitat Goodenough JB, Ruiz-Diaz JE, Zhen YS (1990) Oxide-ion conduction in Ba2In2O5 and Ba3In2MO8 (M=Ce, Hf, or Zr). Solid State Ionics 44(1–2):21–31CrossRef Goodenough JB, Ruiz-Diaz JE, Zhen YS (1990) Oxide-ion conduction in Ba2In2O5 and Ba3In2MO8 (M=Ce, Hf, or Zr). Solid State Ionics 44(1–2):21–31CrossRef
34.
Zurück zum Zitat Auckett JE et al (2013) Combined experimental and computational study of oxide ion conduction dynamics in Sr2Fe2O5 brownmillerite. Chem Mater 25(15):3080–3087CrossRef Auckett JE et al (2013) Combined experimental and computational study of oxide ion conduction dynamics in Sr2Fe2O5 brownmillerite. Chem Mater 25(15):3080–3087CrossRef
35.
Zurück zum Zitat Fop S, McCombie KS, Wildman EJ, Skakle JMS, Mclaughlin AC (2019) Hexagonal perovskite derivatives: a new direction in the design of oxide ion conducting materials. Chem Commun 55(15):2127–2137CrossRef Fop S, McCombie KS, Wildman EJ, Skakle JMS, Mclaughlin AC (2019) Hexagonal perovskite derivatives: a new direction in the design of oxide ion conducting materials. Chem Commun 55(15):2127–2137CrossRef
36.
Zurück zum Zitat Fop S et al (2016) Oxide ion conductivity in the hexagonal perovskite derivative Ba3MoNbO8.5. J Am Chem Soc 138(51):16764–16769CrossRef Fop S et al (2016) Oxide ion conductivity in the hexagonal perovskite derivative Ba3MoNbO8.5. J Am Chem Soc 138(51):16764–16769CrossRef
37.
Zurück zum Zitat Yashima M, et al (2019) Direct evidence for two-dimensional oxide-ion diffusion in the hexagonal perovskite-related oxide Ba3MoNbO8.5-δ. J. Mater Chem A Yashima M, et al (2019) Direct evidence for two-dimensional oxide-ion diffusion in the hexagonal perovskite-related oxide Ba3MoNbO8.5-δ. J. Mater Chem A
38.
Zurück zum Zitat Fujii K, Shiraiwa M, Esaki Y, Yashima M, Kim SJ, Lee S (2015) Improved oxide-ion conductivity of NdBaInO4 by Sr doping. J Mater Chem A 3(22):11985–11990CrossRef Fujii K, Shiraiwa M, Esaki Y, Yashima M, Kim SJ, Lee S (2015) Improved oxide-ion conductivity of NdBaInO4 by Sr doping. J Mater Chem A 3(22):11985–11990CrossRef
39.
Zurück zum Zitat Yang X, Liu S, Lu F, Xu J, Kuang X (2016) Acceptor doping and oxygen vacancy migration in layered perovskite NdBaInO4-based mixed conductors. J Phys Chem C 120(12):6416–6426CrossRef Yang X, Liu S, Lu F, Xu J, Kuang X (2016) Acceptor doping and oxygen vacancy migration in layered perovskite NdBaInO4-based mixed conductors. J Phys Chem C 120(12):6416–6426CrossRef
40.
Zurück zum Zitat Shiraiwa M, Fujii K, Esaki Y, Kim SJ, Lee S, Yashima M (2017) Crystal structure and oxide-ion conductivity of Ba 1+ x Nd 1–x InO 4–x /2. J Electrochem Soc 164(13):F1392–F1399CrossRef Shiraiwa M, Fujii K, Esaki Y, Kim SJ, Lee S, Yashima M (2017) Crystal structure and oxide-ion conductivity of Ba 1+ x Nd 1–x InO 4–x /2. J Electrochem Soc 164(13):F1392–F1399CrossRef
41.
Zurück zum Zitat Dion M, Ganne M, Tournoux M (1981) Nouvelles familles de phases MIMII2Nb3O10 a feuillets ‘perovskites.’ Mater Res Bull 16(11):1429–1435CrossRef Dion M, Ganne M, Tournoux M (1981) Nouvelles familles de phases MIMII2Nb3O10 a feuillets ‘perovskites.’ Mater Res Bull 16(11):1429–1435CrossRef
42.
Zurück zum Zitat Jacobson AJ, Johnson JW, Lewandowski JT (1985) Interlayer chemistry between thick transition-metal oxide layers: synthesis and intercalation reactions of K[Ca2Nan-3NbnO3+1] (3 ≤ n ≤ 7). Inorg Chem 24(23):3727–3729CrossRef Jacobson AJ, Johnson JW, Lewandowski JT (1985) Interlayer chemistry between thick transition-metal oxide layers: synthesis and intercalation reactions of K[Ca2Nan-3NbnO3+1] (3 ≤ n ≤ 7). Inorg Chem 24(23):3727–3729CrossRef
43.
Zurück zum Zitat Mccabe EE et al (2015) Proper ferroelectricity in the dion-jacobson material CsBi2Ti2NbO10: experiment and theory. Chem Mater 27(24):8298–8309CrossRef Mccabe EE et al (2015) Proper ferroelectricity in the dion-jacobson material CsBi2Ti2NbO10: experiment and theory. Chem Mater 27(24):8298–8309CrossRef
44.
Zurück zum Zitat Goff RJ, Keeble D, Thomas PA, Ritter C, Morrison FD, Lightfoot P (2009) Leakage and proton conductivity in the predicted ferroelectric CsBiNb 2O7. Chem Mater 21(7):1296–1302CrossRef Goff RJ, Keeble D, Thomas PA, Ritter C, Morrison FD, Lightfoot P (2009) Leakage and proton conductivity in the predicted ferroelectric CsBiNb 2O7. Chem Mater 21(7):1296–1302CrossRef
45.
Zurück zum Zitat Draskovic TI, Wang T, Henderson CN, Mallouk TE (2014) Protonic and electronic conductivity of the layered perovskite oxides HCa2Nb3O10 and Ca4Nb 6O19. Int J Hydrogen Energy 39(9):4576–4580CrossRef Draskovic TI, Wang T, Henderson CN, Mallouk TE (2014) Protonic and electronic conductivity of the layered perovskite oxides HCa2Nb3O10 and Ca4Nb 6O19. Int J Hydrogen Energy 39(9):4576–4580CrossRef
46.
Zurück zum Zitat Kim Y, Kim SJ (2015) Ionic conductivity of Dion–Jacobson type oxide LiLaTa2O7and oxynitride LiLaTa2O6.15N0.57measured by impedance spectroscopy. Ceram Int 41(2):3318–3323 Kim Y, Kim SJ (2015) Ionic conductivity of Dion–Jacobson type oxide LiLaTa2O7and oxynitride LiLaTa2O6.15N0.57measured by impedance spectroscopy. Ceram Int 41(2):3318–3323
47.
Zurück zum Zitat Choy JH, Kim JY, Kim SJ, Sohn JS, Hee Han OC (2001) New Dion-Jacobsen-type layered perovskite oxyfluorides, ASrNb2O6F (A = Li, Na, and Rb). Chem Mater 13(3):906–912 Choy JH, Kim JY, Kim SJ, Sohn JS, Hee Han OC (2001) New Dion-Jacobsen-type layered perovskite oxyfluorides, ASrNb2O6F (A = Li, Na, and Rb). Chem Mater 13(3):906–912
48.
Zurück zum Zitat Thangadurai V, Weppner W (2010) ChemInform abstract: determination of the sodium ion transference number of the dion–jacobson-type layered perovskite NaCa2Nb3O10 using ac impedance and dc methods. ChemInform 33(24) Thangadurai V, Weppner W (2010) ChemInform abstract: determination of the sodium ion transference number of the dion–jacobson-type layered perovskite NaCa2Nb3O10 using ac impedance and dc methods. ChemInform 33(24)
49.
Zurück zum Zitat Thangadurai V, Weppner W (2004) Mixed potential protonic-electronic conductivity in the Dion–Jacobson-type layered perovskites in hydrogen-containing atmosphere and their application in ammonia sensors. Solid State Ionics 174(1–4):175–183CrossRef Thangadurai V, Weppner W (2004) Mixed potential protonic-electronic conductivity in the Dion–Jacobson-type layered perovskites in hydrogen-containing atmosphere and their application in ammonia sensors. Solid State Ionics 174(1–4):175–183CrossRef
50.
Zurück zum Zitat Inoue R, Fujii K, Shiraiwa M, Niwa E, Yashima M (2018) A new structure family of oxide-ion conductors Ca0.8Y2.4Sn0.8O6 discovered by a combined technique of the bond-valence method and experiments. Dalt Trans 47(22):7515–7521CrossRef Inoue R, Fujii K, Shiraiwa M, Niwa E, Yashima M (2018) A new structure family of oxide-ion conductors Ca0.8Y2.4Sn0.8O6 discovered by a combined technique of the bond-valence method and experiments. Dalt Trans 47(22):7515–7521CrossRef
51.
Zurück zum Zitat Niwa E, Yashima M (2018) Discovery of oxide-ion conductors with a new crystal structure, BaSc 2–x A x Si 3 O 10–x/2 (A = Mg, Ca) by screening Sc-containing oxides through the bond-valence method and experiments. ACS Appl Energy Mater 1(8):4009–4015CrossRef Niwa E, Yashima M (2018) Discovery of oxide-ion conductors with a new crystal structure, BaSc 2–x A x Si 3 O 10–x/2 (A = Mg, Ca) by screening Sc-containing oxides through the bond-valence method and experiments. ACS Appl Energy Mater 1(8):4009–4015CrossRef
52.
Zurück zum Zitat Yasui Y, Niwa E, Matsui M, Fujii K, Yashima M (2019) Discovery of a rare-earth-free oxide-ion conductor Ca3Ga4O9 by screening through bond valence-based energy calculations, synthesis, and characterization of structural and transport properties. Inorg Chem 58(14):9460–9468CrossRef Yasui Y, Niwa E, Matsui M, Fujii K, Yashima M (2019) Discovery of a rare-earth-free oxide-ion conductor Ca3Ga4O9 by screening through bond valence-based energy calculations, synthesis, and characterization of structural and transport properties. Inorg Chem 58(14):9460–9468CrossRef
53.
Zurück zum Zitat Adams S (2001) Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Crystallogr Sect B Struct Sci 57(3):278–287CrossRef Adams S (2001) Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Crystallogr Sect B Struct Sci 57(3):278–287CrossRef
54.
Zurück zum Zitat Nakamura K, Fujii K, Niwa E, Yashima M (2018) Crystal structure and electrical conductivity of BaR2ZnO5 (R = Sm, Gd, Dy, Ho, and Er)—a new structure family of oxide-ion conductors. J Ceram Soc Japan Nakamura K, Fujii K, Niwa E, Yashima M (2018) Crystal structure and electrical conductivity of BaR2ZnO5 (R = Sm, Gd, Dy, Ho, and Er)—a new structure family of oxide-ion conductors. J Ceram Soc Japan
55.
Zurück zum Zitat Avdeev M, Sale M, Adams S, Rao RP (2012) Screening of the alkali-metal ion containing materials from the inorganic crystal structure database (ICSD) for high ionic conductivity pathways using the bond valence method. Solid State Ionics 225:43–46CrossRef Avdeev M, Sale M, Adams S, Rao RP (2012) Screening of the alkali-metal ion containing materials from the inorganic crystal structure database (ICSD) for high ionic conductivity pathways using the bond valence method. Solid State Ionics 225:43–46CrossRef
56.
Zurück zum Zitat Nishibori E et al (2001) The large Debye-Scherrer camera installed at SPring-8 BL02B2 for charge density studies. J Phys Chem Solids 62(12):2095–2098CrossRef Nishibori E et al (2001) The large Debye-Scherrer camera installed at SPring-8 BL02B2 for charge density studies. J Phys Chem Solids 62(12):2095–2098CrossRef
57.
Zurück zum Zitat Kawaguchi S, et al (2017) High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev Sci Instrum 88(8) Kawaguchi S, et al (2017) High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev Sci Instrum 88(8)
58.
Zurück zum Zitat Rouse KD, Cooper MJ, York EJ, Chakera A (1970) Absorption corrections for neutron diffraction. Acta Crystallogr Sect A 26(6):682–691CrossRef Rouse KD, Cooper MJ, York EJ, Chakera A (1970) Absorption corrections for neutron diffraction. Acta Crystallogr Sect A 26(6):682–691CrossRef
59.
Zurück zum Zitat Torii S, et al (2011) Super high resolution powder diffractometer at J-PARC. J. Phys. Soc. Japan 80(Suppl. B):3–6 Torii S, et al (2011) Super high resolution powder diffractometer at J-PARC. J. Phys. Soc. Japan 80(Suppl. B):3–6
60.
Zurück zum Zitat Yashima M, Ali R (2009) Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3. Solid State Ionics 180(2–3):120–126CrossRef Yashima M, Ali R (2009) Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3. Solid State Ionics 180(2–3):120–126CrossRef
61.
Zurück zum Zitat Adams S (2006) From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid State Ionics 177(19–25 SPEC. ISS): 1625–1630 Adams S (2006) From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid State Ionics 177(19–25 SPEC. ISS): 1625–1630
62.
Zurück zum Zitat Oishi R, et al (2009) Rietveld analysis software for J-PARC. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 600(1):94–96 Oishi R, et al (2009) Rietveld analysis software for J-PARC. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 600(1):94–96
63.
Zurück zum Zitat Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276CrossRef Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276CrossRef
64.
Zurück zum Zitat Momma K, Ikeda T, Belik AA, Izumi F (2013) Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting. Powder Diffr 28(3):184–193CrossRef Momma K, Ikeda T, Belik AA, Izumi F (2013) Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting. Powder Diffr 28(3):184–193CrossRef
65.
Zurück zum Zitat Belkly A, Helderman M, Karen VL, Ulkch P (2002) New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design. Acta Crystallogr Sect B Struct Sci 58(3 PART 1): 364–369 Belkly A, Helderman M, Karen VL, Ulkch P (2002) New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design. Acta Crystallogr Sect B Struct Sci 58(3 PART 1): 364–369
66.
Zurück zum Zitat Chen H, Wong LL, Adams S (2019) SoftBV—a software tool for screening the materials genome of inorganic fast ion conductors. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 75(1):18–33 Chen H, Wong LL, Adams S (2019) SoftBV—a software tool for screening the materials genome of inorganic fast ion conductors. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 75(1):18–33
67.
Zurück zum Zitat Adams S (2000) Modelling ion conduction pathways by bond valence pseudopotential maps. Solid State Ionics 136–137:1351–1361CrossRef Adams S (2000) Modelling ion conduction pathways by bond valence pseudopotential maps. Solid State Ionics 136–137:1351–1361CrossRef
68.
Zurück zum Zitat West A, Irvine J, Sinclair D (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138CrossRef West A, Irvine J, Sinclair D (1990) Electroceramics: characterization by impedance spectroscopy. Adv Mater 2(3):132–138CrossRef
69.
Zurück zum Zitat Kwon OH, Choi GM (2006) Electrical conductivity of thick film YSZ. Solid State Ionics 177(35–36):3057–3062CrossRef Kwon OH, Choi GM (2006) Electrical conductivity of thick film YSZ. Solid State Ionics 177(35–36):3057–3062CrossRef
70.
Zurück zum Zitat Li M et al (2014) A family of oxide-ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater 13(1):31–35CrossRef Li M et al (2014) A family of oxide-ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater 13(1):31–35CrossRef
71.
Zurück zum Zitat Huang K, Feng M, Goodenough JB (1998) Synthesis and electrical properties of dense Ce0.9Gd0.1O1.95 ceramics. J Am Chem Soc 81(2):357–362 Huang K, Feng M, Goodenough JB (1998) Synthesis and electrical properties of dense Ce0.9Gd0.1O1.95 ceramics. J Am Chem Soc 81(2):357–362
72.
Zurück zum Zitat Kuang X et al (2008) Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure. Nat Mater 7(6):498–504CrossRef Kuang X et al (2008) Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure. Nat Mater 7(6):498–504CrossRef
73.
Zurück zum Zitat Yashima M, Itoh M, Inaguma Y, Morii Y (2005) Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3. J Am Chem Soc 127(10):3491–3495CrossRef Yashima M, Itoh M, Inaguma Y, Morii Y (2005) Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3. J Am Chem Soc 127(10):3491–3495CrossRef
74.
Zurück zum Zitat Chen YC, Yashima M, Peña-Martínez J, Kilner JA (2013) Experimental visualization of the diffusional pathway of oxide ions in a layered perovskite-type cobaltite PrBaCo2O5+δ. Chem Mater 25(13):2638–2641CrossRef Chen YC, Yashima M, Peña-Martínez J, Kilner JA (2013) Experimental visualization of the diffusional pathway of oxide ions in a layered perovskite-type cobaltite PrBaCo2O5+δ. Chem Mater 25(13):2638–2641CrossRef
75.
Zurück zum Zitat Yashima M, Ishimura D (2003) Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3. Chem Phys Lett 378(3–4):395–399CrossRef Yashima M, Ishimura D (2003) Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3. Chem Phys Lett 378(3–4):395–399CrossRef
76.
Zurück zum Zitat Yashima M, Kamioka T (2008) Neutron diffraction study of the perovskite-type lanthanum cobaltite. Solid State Ionics 178:1939–1943CrossRef Yashima M, Kamioka T (2008) Neutron diffraction study of the perovskite-type lanthanum cobaltite. Solid State Ionics 178:1939–1943CrossRef
77.
Zurück zum Zitat Bhosale DR, Yusuf SM, Kumar A, Mukadam MD, Patil SI (2017) High oxide ion conductivity below 500 C in the garnets L ax Y3–x F e5 O12+δ. Phys Rev Mater 1(1):2–6 Bhosale DR, Yusuf SM, Kumar A, Mukadam MD, Patil SI (2017) High oxide ion conductivity below 500 C in the garnets L ax Y3–x F e5 O12+δ. Phys Rev Mater 1(1):2–6
78.
Zurück zum Zitat Slater PR, Irvine JTS, Ishihara T, Takita Y (1998) High-temperature powder neutron diffraction study of the oxide-ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85. J Solid State Chem 143(139):135–143CrossRef Slater PR, Irvine JTS, Ishihara T, Takita Y (1998) High-temperature powder neutron diffraction study of the oxide-ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85. J Solid State Chem 143(139):135–143CrossRef
79.
Zurück zum Zitat Yashima M, Nomura K, Kageyama H, Miyazaki Y, Chitose N, Adachi K (2003) Conduction path and disorder in the fast oxide-ion conductor (La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)O2.8. Chem Phys Lett 380(3–4):391–396CrossRef Yashima M, Nomura K, Kageyama H, Miyazaki Y, Chitose N, Adachi K (2003) Conduction path and disorder in the fast oxide-ion conductor (La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)O2.8. Chem Phys Lett 380(3–4):391–396CrossRef
80.
Zurück zum Zitat Long C, Fan H, Ren W, Zhao J (2019) Double polarization hysteresis and dramatic influence of small compositional variations on the electrical properties in Bi4Ti3O12 ceramics. J Eur Ceram Soc 39(14):4103–4112CrossRef Long C, Fan H, Ren W, Zhao J (2019) Double polarization hysteresis and dramatic influence of small compositional variations on the electrical properties in Bi4Ti3O12 ceramics. J Eur Ceram Soc 39(14):4103–4112CrossRef
81.
Zurück zum Zitat Shi J (2015) Crystal structure studies, electrical and magnetic properties of 2, 3, 4, 5-layer aurivillius oxides Shi J (2015) Crystal structure studies, electrical and magnetic properties of 2, 3, 4, 5-layer aurivillius oxides
Metadaten
Titel
New Oxide-Ion Conductors of Dion–Jacobson-Type Layered Perovskites CsBi2Ti2NbO10-δ
verfasst von
Dr. Wenrui Zhang
Copyright-Jahr
2022
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2247-3_2