Skip to main content

2018 | OriginalPaper | Buchkapitel

16. Next generation technologies

verfasst von : Prof. Juergen Janek, Prof. Philipp Adelhelm

Erschienen in: Lithium-Ion Batteries: Basics and Applications

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rechargeable lithium-ion batteries have been continually developed since their introduction by Sony in 1991. Energy density is one of the key parameters for lithium-ion batteries. It was steadily increased by optimizing battery components such as electrode materials or electrolyte as well as by improving the cell construction technologies. The cell level progress during recent years is shown in Fig. 16.1. Both gravimetric (specific) and volumetric energy density were more than doubled.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The theoretical (gravimetric) energy density is the stored chemical energy based on the pure electrode materials’ mass.
 
2
Initially, the terms “cell” and “battery” had strictly different definitions. An electrochemical cell is the smallest battery unit and consists of anode, cathode, electrolyte, separator, current collector, and housing. As opposed to that, a battery consists of at least two cells connected in series or in parallel. A 12-V lead battery for instance is made of six 2-V cells. Nowadays however, a cell is often called battery also. The electrochemical processes do not differ from cell to battery and this is why the present Chapter does not differentiate between those two terms. Specifying the practical energy densities however calls for a differentiation. All practical energy density values (with the exception of lead batteries) in this Chapter refer to cells.
 
3
The polysulfide species Sn 2– that form at the cathode during discharging dissolve in the electrolyte there. A concentration gradient versus the anode develops, which causes the polysulfides to diffuse toward the anode. Step by step, the polysulfides are distributed in the electrolyte.
 
Literatur
1.
Zurück zum Zitat Gesamt-Roadmap Energiespeicher für die Elektromobilität 2030, Fraunhofer-Institut für System und Innovationsforschung ISI, Karlsruhe, Dezember 2015 Gesamt-Roadmap Energiespeicher für die Elektromobilität 2030, Fraunhofer-Institut für System und Innovationsforschung ISI, Karlsruhe, Dezember 2015
2.
Zurück zum Zitat Herbert D, Ulam J (1962) Inventors; electric dry cells and storage batteries Herbert D, Ulam J (1962) Inventors; electric dry cells and storage batteries
3.
Zurück zum Zitat Nole DA, Moss V, Cordova R (1970) Inventors; battery employing lithium-sulphur electrodes with nonaqueous electrolyte Nole DA, Moss V, Cordova R (1970) Inventors; battery employing lithium-sulphur electrodes with nonaqueous electrolyte
4.
Zurück zum Zitat Abraham KM (1981) Status of rechargeable positive electrodes for ambient-temperature lithium batteries. J Power Sources 7(1):1 − 43MathSciNetCrossRef Abraham KM (1981) Status of rechargeable positive electrodes for ambient-temperature lithium batteries. J Power Sources 7(1):1 − 43MathSciNetCrossRef
5.
Zurück zum Zitat Yamin H, Penciner J, Gorenshtain A, Elam M, Peled E (1985) The electrochemical-behavior of polysulfides in tetrahydrofuran. J Power Sources 14(1−3):129 − 134CrossRef Yamin H, Penciner J, Gorenshtain A, Elam M, Peled E (1985) The electrochemical-behavior of polysulfides in tetrahydrofuran. J Power Sources 14(1−3):129 − 134CrossRef
6.
Zurück zum Zitat Akridge JR, Mikhaylik YV, White N (2004) Li/S fundamental chemistry and application to hig-performance rechargeable batteries. Solid State Ionics 175(1 – 4):243 – 245CrossRef Akridge JR, Mikhaylik YV, White N (2004) Li/S fundamental chemistry and application to hig-performance rechargeable batteries. Solid State Ionics 175(1 – 4):243 – 245CrossRef
7.
Zurück zum Zitat Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151(11):A76 − A1969CrossRef Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151(11):A76 − A1969CrossRef
8.
Zurück zum Zitat Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H et al (2012) In operando x-ray diffraction and transmission x-ray microscopy of lithium sulfur batteries. J Am Chem Soc 134(14):6337 – 6343CrossRef Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H et al (2012) In operando x-ray diffraction and transmission x-ray microscopy of lithium sulfur batteries. J Am Chem Soc 134(14):6337 – 6343CrossRef
9.
Zurück zum Zitat Dominko R, Demir-Cakan R, Morcrette M, Tarascon J-M (2011) Analytical detection of soluble polysulphides in a modified Swagelok cell. Electrochem Commun 13(2):117 – 120CrossRef Dominko R, Demir-Cakan R, Morcrette M, Tarascon J-M (2011) Analytical detection of soluble polysulphides in a modified Swagelok cell. Electrochem Commun 13(2):117 – 120CrossRef
10.
Zurück zum Zitat Kumaresan K, Mikhaylik Y, White RE (2008) A mathematical model for a lithium-sulfur cell. J Electrochem Soc 155(8):A576 − A582CrossRef Kumaresan K, Mikhaylik Y, White RE (2008) A mathematical model for a lithium-sulfur cell. J Electrochem Soc 155(8):A576 − A582CrossRef
11.
Zurück zum Zitat Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500 – 506CrossRef Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500 – 506CrossRef
12.
Zurück zum Zitat Schneider H, Garsuch A, Panchenko A, Gronwald O, Janssen N, Novak P (2012) Influence of different electrode compositions and binder materials on the performance of lithium-sulfur batteries. J Power Sources 205:420 – 425CrossRef Schneider H, Garsuch A, Panchenko A, Gronwald O, Janssen N, Novak P (2012) Influence of different electrode compositions and binder materials on the performance of lithium-sulfur batteries. J Power Sources 205:420 – 425CrossRef
13.
Zurück zum Zitat Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) Rechargeable lithium sulfur battery – II. Rate capability and cycle characteristics. J Electrochem Soc 150(6):A800 – A805CrossRef Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) Rechargeable lithium sulfur battery – II. Rate capability and cycle characteristics. J Electrochem Soc 150(6):A800 – A805CrossRef
14.
Zurück zum Zitat Kang SH, Zhao X, Manuel J, Ahn HJ, Kim KW, Cho KK, Ahn JH (2014) Effect of sulfur loading on energy density of lithium sulfur batteries. PSSA 211(8):1895–1899 Kang SH, Zhao X, Manuel J, Ahn HJ, Kim KW, Cho KK, Ahn JH (2014) Effect of sulfur loading on energy density of lithium sulfur batteries. PSSA 211(8):1895–1899
15.
Zurück zum Zitat Hagen M, Fanz P, Tübke J (2014) Cell energy density and electrolyte/sulfur ratio in Li-S cells. J Power Sources 264:30–34CrossRef Hagen M, Fanz P, Tübke J (2014) Cell energy density and electrolyte/sulfur ratio in Li-S cells. J Power Sources 264:30–34CrossRef
16.
Zurück zum Zitat Brückner J, Thieme S, Grossmann HT, Dörfler S, Althues H, Kaskel S (2014) Lithium-sulfur batteries: influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. J Power Sources 268:82–87CrossRef Brückner J, Thieme S, Grossmann HT, Dörfler S, Althues H, Kaskel S (2014) Lithium-sulfur batteries: influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. J Power Sources 268:82–87CrossRef
17.
Zurück zum Zitat Cleaver T, Kovacik P, Marinescu M, Zhang T, Offer G (2018) Perspective—commercializing lithium sulfur batteries: are we doing the right research? J Electrochem Soc 165(1):A6029–A6033CrossRef Cleaver T, Kovacik P, Marinescu M, Zhang T, Offer G (2018) Perspective—commercializing lithium sulfur batteries: are we doing the right research? J Electrochem Soc 165(1):A6029–A6033CrossRef
18.
Zurück zum Zitat Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J, Beilstein J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. J Nanotechnol 6:1016–1055 Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J, Beilstein J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. J Nanotechnol 6:1016–1055
19.
Zurück zum Zitat Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angewandte Chemie Int Edition 49(13):2371 – 2374CrossRef Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angewandte Chemie Int Edition 49(13):2371 – 2374CrossRef
20.
Zurück zum Zitat Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable li–sulfur batteries. J Electrochem Soc 156(8):A694 – A702CrossRef Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable li–sulfur batteries. J Electrochem Soc 156(8):A694 – A702CrossRef
21.
Zurück zum Zitat Jozwiuk A, Sommer H, Janek J, Brezesinski T (2015) Fair performance comparison of different carbon blacks in lithium-sulfur batteries with practical mass loadings – simple design competes with complex cathode architecture. J Power Sources 296:454–461CrossRef Jozwiuk A, Sommer H, Janek J, Brezesinski T (2015) Fair performance comparison of different carbon blacks in lithium-sulfur batteries with practical mass loadings – simple design competes with complex cathode architecture. J Power Sources 296:454–461CrossRef
22.
Zurück zum Zitat Medenbach L, Adelhelm P (2017) Cell concepts of metal-sulfur batteries (Metal = Li, Na, K, Mg): strategies for using sulfur in energy storage applications. Top Curr Chem 375(5):81CrossRef Medenbach L, Adelhelm P (2017) Cell concepts of metal-sulfur batteries (Metal = Li, Na, K, Mg): strategies for using sulfur in energy storage applications. Top Curr Chem 375(5):81CrossRef
23.
Zurück zum Zitat Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013) Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries. Angewandte Chemie. 125(29):7608 – 11CrossRef Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013) Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries. Angewandte Chemie. 125(29):7608 – 11CrossRef
24.
Zurück zum Zitat Yang Y, Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy & Environmental Science 6(5):1552 – 8CrossRef Yang Y, Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy & Environmental Science 6(5):1552 – 8CrossRef
25.
Zurück zum Zitat Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523–527CrossRef Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523–527CrossRef
26.
Zurück zum Zitat Zhang SS, Read JA (2012) A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J Power Sources 200:77–82CrossRef Zhang SS, Read JA (2012) A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J Power Sources 200:77–82CrossRef
27.
Zurück zum Zitat Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6:1552–1558CrossRef Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6:1552–1558CrossRef
28.
Zurück zum Zitat Fu Y, Su YS, Manthiram A (2013) Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew Chem Int Edit 52(27):6930–6935CrossRef Fu Y, Su YS, Manthiram A (2013) Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew Chem Int Edit 52(27):6930–6935CrossRef
29.
Zurück zum Zitat Hassoun J, Scrosati B (2010) Moving to a solid‐state configuration: a valid approach to making lithium‐sulfur batteries viable for practical applications. Adv Mater 22(45):5198–5201CrossRef Hassoun J, Scrosati B (2010) Moving to a solid‐state configuration: a valid approach to making lithium‐sulfur batteries viable for practical applications. Adv Mater 22(45):5198–5201CrossRef
30.
Zurück zum Zitat Nagata H, Chikusa Y (2014) A lithium sulfur battery with high power density. J Power Sources 264:206–210CrossRef Nagata H, Chikusa Y (2014) A lithium sulfur battery with high power density. J Power Sources 264:206–210CrossRef
31.
Zurück zum Zitat Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 6:1016–1055CrossRef Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 6:1016–1055CrossRef
32.
Zurück zum Zitat Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1 – 5CrossRef Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1 – 5CrossRef
33.
Zurück zum Zitat Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149(9):A1190 – A1195CrossRef Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149(9):A1190 – A1195CrossRef
34.
Zurück zum Zitat Sawyer DT, Valentine JS (1981) How super is superoxide. Acc Chem Res 14(12):393 − 400CrossRef Sawyer DT, Valentine JS (1981) How super is superoxide. Acc Chem Res 14(12):393 − 400CrossRef
35.
Zurück zum Zitat Aurbach D, Daroux M, Faguy P, Yeager E (1991) The electrochemistry of noble-metal electrodes in aprotic organic-solvents containing lithium-salts. J Electroanal Chem 297(1):225 – 244CrossRef Aurbach D, Daroux M, Faguy P, Yeager E (1991) The electrochemistry of noble-metal electrodes in aprotic organic-solvents containing lithium-salts. J Electroanal Chem 297(1):225 – 244CrossRef
36.
Zurück zum Zitat Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H (2010) Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochem 78(5):403 – 405CrossRef Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H (2010) Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochem 78(5):403 – 405CrossRef
37.
Zurück zum Zitat Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Barde F et al (2011) Reactions in the rechargeable Li-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133(20):8040 – 8047CrossRef Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Barde F et al (2011) Reactions in the rechargeable Li-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133(20):8040 – 8047CrossRef
38.
Zurück zum Zitat McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J Am Chem Soc 133(45):18038 – 18041CrossRef McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J Am Chem Soc 133(45):18038 – 18041CrossRef
39.
Zurück zum Zitat Peng ZQ, Freunberger SA, Chen YH, Bruce PG (2012) A Reversible and Higher-Rate Li-O2 Battery. Science. 337(6094):563 – 6.CrossRef Peng ZQ, Freunberger SA, Chen YH, Bruce PG (2012) A Reversible and Higher-Rate Li-O2 Battery. Science. 337(6094):563 – 6.CrossRef
40.
Zurück zum Zitat Chase GV, Zecevic S, Walker W, Uddin J, Sasaki KA, Giordani V, Bryantsev V, Blanco M, Addison D (2011) US Patent Application No 20120028137 A1 2011 Chase GV, Zecevic S, Walker W, Uddin J, Sasaki KA, Giordani V, Bryantsev V, Blanco M, Addison D (2011) US Patent Application No 20120028137 A1 2011
41.
Zurück zum Zitat Hase Y, Shiga T, Nakano M, Takechi K, Setoyama N (2009) US Patent Application No US 2009/0239113 A1 2009 Hase Y, Shiga T, Nakano M, Takechi K, Setoyama N (2009) US Patent Application No US 2009/0239113 A1 2009
42.
Zurück zum Zitat Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5:489–494CrossRef Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5:489–494CrossRef
43.
Zurück zum Zitat Lim HD, Song H, Kim J, Gwon H, Bae Y, Park KY, Hong J, Kim H, Kim T, Kim YH, Lepró X, Ovalle-Robles R, Baughman R, Kang K (2014) Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew Chem Int Ed Engl 53(15):3926–3931CrossRef Lim HD, Song H, Kim J, Gwon H, Bae Y, Park KY, Hong J, Kim H, Kim T, Kim YH, Lepró X, Ovalle-Robles R, Baughman R, Kang K (2014) Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew Chem Int Ed Engl 53(15):3926–3931CrossRef
44.
Zurück zum Zitat Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek J (2014) TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J Am Chem Soc 136(42):15054–15064CrossRef Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek J (2014) TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J Am Chem Soc 136(42):15054–15064CrossRef
45.
Zurück zum Zitat Feng N, Mu X, Zhang X, He P, Zhou H (2017) Intensive study on the catalytical behavior of N-methylphenothiazine as a coluble mediator to oxidize the Li2O2 cathode of the Li–O2 battery. ACS Appl Mater Interfaces 9(4):3733–3739CrossRef Feng N, Mu X, Zhang X, He P, Zhou H (2017) Intensive study on the catalytical behavior of N-methylphenothiazine as a coluble mediator to oxidize the Li2O2 cathode of the Li–O2 battery. ACS Appl Mater Interfaces 9(4):3733–3739CrossRef
46.
Zurück zum Zitat Liang Z, Lu YC (2016) Critical role of redox mediator in suppressing charging instabilities of lithium–oxygen batteries. J Am Chem Soc 138(24):7574–7583CrossRef Liang Z, Lu YC (2016) Critical role of redox mediator in suppressing charging instabilities of lithium–oxygen batteries. J Am Chem Soc 138(24):7574–7583CrossRef
47.
Zurück zum Zitat Aetukuri NB, McCloskey BD, Garcia JM, Krupp LE, Viswanathan V, Luntz AC (2015) Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat Chem 7:50–56CrossRef Aetukuri NB, McCloskey BD, Garcia JM, Krupp LE, Viswanathan V, Luntz AC (2015) Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat Chem 7:50–56CrossRef
48.
Zurück zum Zitat Meini S, Piana M, Tsiouvaras N, Garsuch A, Gasteiger HA (2012) The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li-O2 batteries. Electrochem Solid-State Lett 15(4):A45–A48CrossRef Meini S, Piana M, Tsiouvaras N, Garsuch A, Gasteiger HA (2012) The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li-O2 batteries. Electrochem Solid-State Lett 15(4):A45–A48CrossRef
49.
Zurück zum Zitat Schwenke KU, Metzger M, Restle T, Piana M, Gasteiger HA (2015) The influence of water and protons on Li2O2 crystal growth in aprotic Li-O2 cells. J Electrochem Soc 162(4):A573–A584CrossRef Schwenke KU, Metzger M, Restle T, Piana M, Gasteiger HA (2015) The influence of water and protons on Li2O2 crystal growth in aprotic Li-O2 cells. J Electrochem Soc 162(4):A573–A584CrossRef
50.
Zurück zum Zitat Li F, Wu S, Li D, Zhang T, He P, Yamada A, Zhou H (2015) The water catalysis at oxygen cathodes of lithium–oxygen cells. Nat Commun 6:7843CrossRef Li F, Wu S, Li D, Zhang T, He P, Yamada A, Zhou H (2015) The water catalysis at oxygen cathodes of lithium–oxygen cells. Nat Commun 6:7843CrossRef
51.
Zurück zum Zitat Xia C, Black R, Fernandes R, Adams B, Nazar LF (2015) The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem 7:496–501CrossRef Xia C, Black R, Fernandes R, Adams B, Nazar LF (2015) The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem 7:496–501CrossRef
52.
Zurück zum Zitat Hartmann P, Bender CL, Vracar M, Dürr AK, Garsuch A, Janek J, Adelhelm P (2013) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12:228 – 232CrossRef Hartmann P, Bender CL, Vracar M, Dürr AK, Garsuch A, Janek J, Adelhelm P (2013) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12:228 – 232CrossRef
54.
Zurück zum Zitat de Jonghe LC et al (2007) inventors; protected active metal electrode and battery cell structures with non-aqueous interlayer architecture de Jonghe LC et al (2007) inventors; protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
55.
Zurück zum Zitat Peled E, Menkin S (2017) Review—SEI: past, present and future. J Electrochem Soc 164(7):A1703–A1719CrossRef Peled E, Menkin S (2017) Review—SEI: past, present and future. J Electrochem Soc 164(7):A1703–A1719CrossRef
56.
Zurück zum Zitat Aurbach D et al (2009) On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J Electrochem Soc 156(8):A694 − A702CrossRef Aurbach D et al (2009) On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J Electrochem Soc 156(8):A694 − A702CrossRef
57.
Zurück zum Zitat Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ionics.69(3 – 4):173 – 183CrossRef Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ionics.69(3 – 4):173 – 183CrossRef
58.
Zurück zum Zitat Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396 – A404CrossRef Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396 – A404CrossRef
59.
Zurück zum Zitat Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang Y-M, Cui Y (2015) The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 6:7436.CrossRef Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang Y-M, Cui Y (2015) The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 6:7436.CrossRef
60.
Zurück zum Zitat Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J-G (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135(11):4450–4456.CrossRef Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J-G (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135(11):4450–4456.CrossRef
61.
Zurück zum Zitat Suo L, Hu Y-S, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4. Suo L, Hu Y-S, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4.
62.
Zurück zum Zitat Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J-G (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6. Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J-G (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6.
63.
Zurück zum Zitat Khurana R, Schaefer JL, Archer LA, Coates GW (2014) Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc 136(20):7395–7402.CrossRef Khurana R, Schaefer JL, Archer LA, Coates GW (2014) Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc 136(20):7395–7402.CrossRef
64.
Zurück zum Zitat Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y (2010) New nanostructured Li2S/Silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486 – 1491CrossRef Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y (2010) New nanostructured Li2S/Silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486 – 1491CrossRef
65.
Zurück zum Zitat Elazari R, Salitra G, Gershinsky G, Garsuch A, Panchenko A, Aurbach D (2012) Rechargeable lithiated silicon–sulfur (SLS) battery prototypes. Electrochem Commun 14(1):21 – 24CrossRef Elazari R, Salitra G, Gershinsky G, Garsuch A, Panchenko A, Aurbach D (2012) Rechargeable lithiated silicon–sulfur (SLS) battery prototypes. Electrochem Commun 14(1):21 – 24CrossRef
66.
Zurück zum Zitat Handbook of Solid State Batteries, 2nd ed., Dudney N J, West W C, Nanda J (Eds.), World Scientific 2015 Handbook of Solid State Batteries, 2nd ed., Dudney N J, West W C, Nanda J (Eds.), World Scientific 2015
67.
Zurück zum Zitat Janek J, Zeier W (2016) A solid future for battery development. Nat Energy 1(9):16141 Janek J, Zeier W (2016) A solid future for battery development. Nat Energy 1(9):16141
68.
Zurück zum Zitat Luntz A C, Voss J, Reuter K (2015) Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett 6:4599–4604CrossRef Luntz A C, Voss J, Reuter K (2015) Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett 6:4599–4604CrossRef
69.
Zurück zum Zitat Robinson A L, Janek J (2014) Solid-state batteries enter EV fray. MRS Bulletin 39:1046CrossRef Robinson A L, Janek J (2014) Solid-state batteries enter EV fray. MRS Bulletin 39:1046CrossRef
70.
Zurück zum Zitat Kato, Y. et al. (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030 Kato, Y. et al. (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030
71.
Zurück zum Zitat Oh G, Hirayama M, Kwon O, Suzuki K, Kanno R (2016) Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem Mater 28:2634–2640 Oh G, Hirayama M, Kwon O, Suzuki K, Kanno R (2016) Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem Mater 28:2634–2640
72.
Zurück zum Zitat Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162 Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162
73.
Zurück zum Zitat Minami T, Hayashi A, Tatsumisago M (2006) Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ionics 177:2715–2720CrossRef Minami T, Hayashi A, Tatsumisago M (2006) Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ionics 177:2715–2720CrossRef
74.
Zurück zum Zitat Wenzel S, Weber D, Leichtweiss T, Sann J, Janek J (2016) Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 286:24–33CrossRef Wenzel S, Weber D, Leichtweiss T, Sann J, Janek J (2016) Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 286:24–33CrossRef
75.
Zurück zum Zitat Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interface 7:23685–23693CrossRef Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interface 7:23685–23693CrossRef
Metadaten
Titel
Next generation technologies
verfasst von
Prof. Juergen Janek
Prof. Philipp Adelhelm
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53071-9_16