Skip to main content

2015 | OriginalPaper | Buchkapitel

Non-linear Stability Analysis of a Modified Gas Foil Bearing Structure

verfasst von : Robert Hoffmann, Tomasz Pronobis, Robert Liebich

Erschienen in: Proceedings of the 9th IFToMM International Conference on Rotor Dynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gas foil bearings (GFBs) have been successfully introduced in the field of high speed turbo machineries. A combination of low power loss, high speed operation and the omission of an oil system heighten the importance for small and medium sized turbo machineries, e.g. turbochargers or range extenders. However, experimental and numerical investigations have shown subsynchronous vibrations, which affect the rotor dynamic behaviour. Structural damping generated by friction contacts inside the compliant structure may reduce vibrations up to a certain level. In addition, several proved methods and devices, e.g. side feed pressurerisation, pre-loading due to shims and viscoelastic foil bearings are common techniques to decrease non synchronous vibrations. However, far too little attention has been paid to the causes of these non-linear effects. Understanding the causes may results in a higher knowledge of the overall GFB dynamic behaviour. Thus, the aim of this paper is to analyse the causes of these non-linear vibrations. A hypothesis is stated, that the non-linear vibrations are influenced by a self excitation and a forced non-linearity. The non-linear compressible transient Reynolds equation is discretised by a hybrid finite difference scheme with an implicit time discretisation while the pressure field is coupled with a 2D plate model. This plate model is linked to a spring-damper configuration. The time domain analysis shows, that the subsynchronous frequencies may excite the system eigenfrequency. In addition, good correlations between the onset speed of sub synchronous vibrations of the time domain simulations and the linearised frequency domain analysis are shown. In the second part of this paper, the effects of different bump foil configurations (bump-type GFB, shimmed GFB and a lobed GFB) on the dynamic performance are considered. It is shown, that an effective reduction of sub synchronous vibrations due to a non-uniform circumferential stiffness distribution and the use of shims is possible. Especially, the low loaded case (5 N) has an increase of onset speed of subsynchronous vibration of ≈173 %, compared to the same bearing setup without shims.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The circumferential stiffness distribution of case 1 shows only the bump stiffness for the “free-free” condition. The stiffening due to the fixed end was observed in the simulation, but is not shown in Fig. 3a for a better illustration.
 
2
Negative film thickness’s has been calculated and finally no pressure field convergence was possible.
 
Literatur
1.
Zurück zum Zitat DellaCorte C, Valco M (2000) Load capacity estimation of foil air journal bearings for oil-free turbomachinery applications. STLE Tribol Trans 43:795–801CrossRef DellaCorte C, Valco M (2000) Load capacity estimation of foil air journal bearings for oil-free turbomachinery applications. STLE Tribol Trans 43:795–801CrossRef
2.
Zurück zum Zitat Heshmat H (1994) Advancements in the performance of aerodynamic foil journal bearings: high speed and load capability. ASME J Tribol 116(2):287–294CrossRef Heshmat H (1994) Advancements in the performance of aerodynamic foil journal bearings: high speed and load capability. ASME J Tribol 116(2):287–294CrossRef
3.
Zurück zum Zitat Ku C-P, Heshmat H (1994) Structural stiffness and coulomb damping in compliant foil journal bearings: parametric studies. STLE Tribol Trans 37(3):455–462CrossRef Ku C-P, Heshmat H (1994) Structural stiffness and coulomb damping in compliant foil journal bearings: parametric studies. STLE Tribol Trans 37(3):455–462CrossRef
4.
Zurück zum Zitat Rubio D, San Andrés L (2006) Bump-type foil bearing structural stiffness: experiments and predictions. ASME J Eng Gas Turbines Power 128(3):653–660CrossRef Rubio D, San Andrés L (2006) Bump-type foil bearing structural stiffness: experiments and predictions. ASME J Eng Gas Turbines Power 128(3):653–660CrossRef
5.
Zurück zum Zitat Rubio D, San Andrés L (2007) Structural stiffness, dry friction coefficient, and equivalent viscous damping in a bump-type foil gas bearing. ASME J Eng Gas Turbines Power 129(2):494–502CrossRef Rubio D, San Andrés L (2007) Structural stiffness, dry friction coefficient, and equivalent viscous damping in a bump-type foil gas bearing. ASME J Eng Gas Turbines Power 129(2):494–502CrossRef
6.
Zurück zum Zitat Larsen SJ, Varela AC, Santos IF (2014) Numerical and experimental investigation of bump foil mechanical behaviour. Tribol Int 74:46–56CrossRef Larsen SJ, Varela AC, Santos IF (2014) Numerical and experimental investigation of bump foil mechanical behaviour. Tribol Int 74:46–56CrossRef
7.
Zurück zum Zitat Iordanoff I, Bou Said B, Mezianne A, Berthier Y (2008) Effect of internal friction in the dynamic behavior of aerodynamic foil bearings. Tribol Int 41(5):387–395CrossRef Iordanoff I, Bou Said B, Mezianne A, Berthier Y (2008) Effect of internal friction in the dynamic behavior of aerodynamic foil bearings. Tribol Int 41(5):387–395CrossRef
8.
Zurück zum Zitat Le Lez S, Arghir M, Frêne J (2009) Nonlinear numerical prediction of gas foil bearing stability and unbalanced response. ASME J Eng Gas Turbines Power 131(1):012503CrossRef Le Lez S, Arghir M, Frêne J (2009) Nonlinear numerical prediction of gas foil bearing stability and unbalanced response. ASME J Eng Gas Turbines Power 131(1):012503CrossRef
9.
Zurück zum Zitat Lee D-H, Kim Y-C, Kim K-W (2010) Stability analysis of foil journal bearings considering coulomb friction. In: Proceedings IFToMM 2010—8th international conference on rotor dynamics, Seoul, Korea Lee D-H, Kim Y-C, Kim K-W (2010) Stability analysis of foil journal bearings considering coulomb friction. In: Proceedings IFToMM 2010—8th international conference on rotor dynamics, Seoul, Korea
10.
Zurück zum Zitat Heshmat H (2000) Operation of foil bearings beyond the bending critical mode. ASME J Tribol 122(2):478–479CrossRef Heshmat H (2000) Operation of foil bearings beyond the bending critical mode. ASME J Tribol 122(2):478–479CrossRef
11.
Zurück zum Zitat Kim K-S, Cho B-C, Kim M-H (2010) Rotordynamic characteristics of 65 kw micro turbine with compliant air foil bearings. In: Proceedings: IFToMM 2010—8th international conference on rotor dynamics, Seoul, Korea Kim K-S, Cho B-C, Kim M-H (2010) Rotordynamic characteristics of 65 kw micro turbine with compliant air foil bearings. In: Proceedings: IFToMM 2010—8th international conference on rotor dynamics, Seoul, Korea
12.
Zurück zum Zitat Kim TH (2007) Analysis of side end pressurized bump type gas foil bearings: a model anchored to test data. Dissertation, Texas A&M University, College Station Kim TH (2007) Analysis of side end pressurized bump type gas foil bearings: a model anchored to test data. Dissertation, Texas A&M University, College Station
13.
Zurück zum Zitat Sim K, Lee Y-B, Kim TH, Lee J (2012) Rotordynamic performance of shimmed gas foil bearings for oil-free turbochargers. ASME J Tribol 134(3):031102-1–031102-11 Sim K, Lee Y-B, Kim TH, Lee J (2012) Rotordynamic performance of shimmed gas foil bearings for oil-free turbochargers. ASME J Tribol 134(3):031102-1–031102-11
14.
Zurück zum Zitat San Andrés L, Rubio D, Kim TH (2007) Rotordynamic performance of a rotor supported on bump type foil gas bearings: experiments and predictions. ASME J Eng Gas Turbines Power 129(3):850–857CrossRef San Andrés L, Rubio D, Kim TH (2007) Rotordynamic performance of a rotor supported on bump type foil gas bearings: experiments and predictions. ASME J Eng Gas Turbines Power 129(3):850–857CrossRef
15.
Zurück zum Zitat Heshmat H, Chen HM, Walton II JF (2000) On the performance of hybrid foil-magnetic bearings. J Eng Gas Turbines Power 122:73–81 Heshmat H, Chen HM, Walton II JF (2000) On the performance of hybrid foil-magnetic bearings. J Eng Gas Turbines Power 122:73–81
16.
Zurück zum Zitat Lee Y-B, Cho S-B, Kim T-Y, Kim CH, Kim TH (2010) Rotordynamic performance measurement of an oil-free turbocompressor supported on gas foil bearings. In: Proceedings IFToMM 2010—8th international conference on rotor dynamics, Seoul, Korea Lee Y-B, Cho S-B, Kim T-Y, Kim CH, Kim TH (2010) Rotordynamic performance measurement of an oil-free turbocompressor supported on gas foil bearings. In: Proceedings IFToMM 2010—8th international conference on rotor dynamics, Seoul, Korea
17.
Zurück zum Zitat Heshmat H, Shapiro W, Gray S (1982) Development of foil journal bearings for high load capacity and high speed whirl stability. ASME J Lubr Technol 104(2):149–156CrossRef Heshmat H, Shapiro W, Gray S (1982) Development of foil journal bearings for high load capacity and high speed whirl stability. ASME J Lubr Technol 104(2):149–156CrossRef
18.
Zurück zum Zitat Radil K, Howard S, Dykas B (2002) The role of radial clearance on the performance of foil air bearings. STLE Tribol Trans 45(4):485–490CrossRef Radil K, Howard S, Dykas B (2002) The role of radial clearance on the performance of foil air bearings. STLE Tribol Trans 45(4):485–490CrossRef
19.
Zurück zum Zitat Ku C-PR (1994) Dynamic structural properties of compliant foil thrust bearings-comparison between experimental and theoretical results. ASME J Tribol 116(1):70–75CrossRef Ku C-PR (1994) Dynamic structural properties of compliant foil thrust bearings-comparison between experimental and theoretical results. ASME J Tribol 116(1):70–75CrossRef
20.
Zurück zum Zitat Lee YB, Kim TH, Kim CH, Lee NS, Choi DH (2004) Dynamic characteristics of a flexible rotor system supported by a viscoelastic foil bearing (VEFB). Tribol Int 37:679–687CrossRef Lee YB, Kim TH, Kim CH, Lee NS, Choi DH (2004) Dynamic characteristics of a flexible rotor system supported by a viscoelastic foil bearing (VEFB). Tribol Int 37:679–687CrossRef
21.
Zurück zum Zitat Heshmat H (1991) Analysis of compliant foil bearings with spatially variable stiffness. In: AIAA, SAE, ASME, and ASEE, 27 th joint propulsion conference, Sacramento, CA Heshmat H (1991) Analysis of compliant foil bearings with spatially variable stiffness. In: AIAA, SAE, ASME, and ASEE, 27 th joint propulsion conference, Sacramento, CA
22.
Zurück zum Zitat Hoffmann R, Pronobis T, Liebich R (2014) The impact of modified corrugated bump structures on the rotor dynamic performance of gas foil bearings. ASME GT2014-25636, Düsseldorf Hoffmann R, Pronobis T, Liebich R (2014) The impact of modified corrugated bump structures on the rotor dynamic performance of gas foil bearings. ASME GT2014-25636, Düsseldorf
23.
Zurück zum Zitat Sim K, Lee Y, Kim T (2013) Effects of mechanical preload and bearing clearance on rotordynamic performance of lobed gas foil bearings for oil-free turbochargers. STLE Tribol Trans 56(2):224–235CrossRef Sim K, Lee Y, Kim T (2013) Effects of mechanical preload and bearing clearance on rotordynamic performance of lobed gas foil bearings for oil-free turbochargers. STLE Tribol Trans 56(2):224–235CrossRef
24.
Zurück zum Zitat Kim TH, San Andrés L (2009) Effect of side feed pressurization on the dynamic performance of gas foil bearings: a model anchored to test data. ASME J Eng Gas Turbines Power 131(1):012501CrossRef Kim TH, San Andrés L (2009) Effect of side feed pressurization on the dynamic performance of gas foil bearings: a model anchored to test data. ASME J Eng Gas Turbines Power 131(1):012501CrossRef
25.
Zurück zum Zitat Hoffmann R, Pronobis T, Liebich R (2014) Stability analysis of a pressurized gas foil bearings for high speed applications. In: Proceedings of 11th international conference of turbocharging, London Hoffmann R, Pronobis T, Liebich R (2014) Stability analysis of a pressurized gas foil bearings for high speed applications. In: Proceedings of 11th international conference of turbocharging, London
26.
Zurück zum Zitat Kim D, Varrey MK (2012) Imbalance response and stability characteristics of a rotor supported by hybrid air foil bearings. STLE Tribol Trans 55(4):529–538CrossRef Kim D, Varrey MK (2012) Imbalance response and stability characteristics of a rotor supported by hybrid air foil bearings. STLE Tribol Trans 55(4):529–538CrossRef
27.
Zurück zum Zitat Kim D, Lee D (2010) Design of three-pad hybrid air foil bearing and experimental investigation on static performance at zero running speed. ASME J Eng Gas Turbines Power 132(12):122504-1–122504-10 Kim D, Lee D (2010) Design of three-pad hybrid air foil bearing and experimental investigation on static performance at zero running speed. ASME J Eng Gas Turbines Power 132(12):122504-1–122504-10
28.
Zurück zum Zitat San Andrés L, Kim T (2008) Forced nonlinear response of gas foil bearing supported rotors. Tribol Int 41(8):704–715CrossRef San Andrés L, Kim T (2008) Forced nonlinear response of gas foil bearing supported rotors. Tribol Int 41(8):704–715CrossRef
29.
Zurück zum Zitat Muszynska A (1978) Partial lateral rotor to stator rubs. In: IMechE, 3rd international conference on vibrations in rotating machinery Muszynska A (1978) Partial lateral rotor to stator rubs. In: IMechE, 3rd international conference on vibrations in rotating machinery
30.
Zurück zum Zitat Liebich R (1998) Der Rotor-Stator-Kontakt unter Berücksichtigung von thermischen Effekten. Fortschritt-Berichte VDI, Reihe 1, Nr. 296. VDI Verlag GmbH Liebich R (1998) Der Rotor-Stator-Kontakt unter Berücksichtigung von thermischen Effekten. Fortschritt-Berichte VDI, Reihe 1, Nr. 296. VDI Verlag GmbH
31.
Zurück zum Zitat Rudloff L, Arghir M, Bonneau O, Matta P (2011) Experimental analyses of a first generation foil bearing: Startup torque and dynamic coefficients. ASME J Eng Gas Turbines Power 133(9):092501-1–092501-9 Rudloff L, Arghir M, Bonneau O, Matta P (2011) Experimental analyses of a first generation foil bearing: Startup torque and dynamic coefficients. ASME J Eng Gas Turbines Power 133(9):092501-1–092501-9
32.
Zurück zum Zitat Iordanoff I (1999) Analysis of an aerodynamic compliant foil thrust bearing: method for a rapid design. ASME J Tribol 121:816–822CrossRef Iordanoff I (1999) Analysis of an aerodynamic compliant foil thrust bearing: method for a rapid design. ASME J Tribol 121:816–822CrossRef
33.
Zurück zum Zitat Schiffmann J, Spakovszky ZS (2013) Foil bearing design guidelines for improved stability. ASME J Tribol 135:011103-1–011103-11 Schiffmann J, Spakovszky ZS (2013) Foil bearing design guidelines for improved stability. ASME J Tribol 135:011103-1–011103-11
34.
Zurück zum Zitat Lund JW (1968) Calculation of stiffness and damping properties of gas bearings. ASME J Lubr Technol 90(4):793–803CrossRef Lund JW (1968) Calculation of stiffness and damping properties of gas bearings. ASME J Lubr Technol 90(4):793–803CrossRef
35.
Zurück zum Zitat Pan CH, Kim D (2007) Stability characteristics of a rigid rotor supported by a gas-lubricated spiral-groove conical bearing. ASME J Tribol 129(2):375–383CrossRef Pan CH, Kim D (2007) Stability characteristics of a rigid rotor supported by a gas-lubricated spiral-groove conical bearing. ASME J Tribol 129(2):375–383CrossRef
36.
Zurück zum Zitat Pan C (1965) Spectral analysis of gas bearing systems for stability studies. In: Huang TC, Johnson MW Jr (eds) Developments in mechanics, Proceedings of the ninth midwestern mechanics conference. University of Wisconsin, Madison, Wiley, New York, vol 3, Part 2, pp 431–448 Pan C (1965) Spectral analysis of gas bearing systems for stability studies. In: Huang TC, Johnson MW Jr (eds) Developments in mechanics, Proceedings of the ninth midwestern mechanics conference. University of Wisconsin, Madison, Wiley, New York, vol 3, Part 2, pp 431–448
37.
Zurück zum Zitat Kim D (2007) Parametric studies on static and dynamic performance of air foil bearings with different top foil geometries and bump stiffness distributions. ASME J Tribol 129(2):354–364CrossRef Kim D (2007) Parametric studies on static and dynamic performance of air foil bearings with different top foil geometries and bump stiffness distributions. ASME J Tribol 129(2):354–364CrossRef
Metadaten
Titel
Non-linear Stability Analysis of a Modified Gas Foil Bearing Structure
verfasst von
Robert Hoffmann
Tomasz Pronobis
Robert Liebich
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-06590-8_103

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.