Skip to main content

2021 | OriginalPaper | Buchkapitel

Nonlinear Dynamics of Resonant Microelectromechanical System (MEMS): A Review

verfasst von : G. Chakraborty, Nikul Jani

Erschienen in: Mechanical Sciences

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nonlinearity plays an important role in the dynamics of microelectromechanical resonator. On the one hand, presence of nonlinearity may lead to poor performance of the device. On the other hand, the same nonlinear terms can improve other characteristics of the system. Nonlinearity is, thus, sometimes unwanted while at the other occasions is welcome. Whatever be the reason is, nonlinear dynamics of MEMS device, especially resonator, needs further understanding. In this review work, different aspects of nonlinear dynamics of a single-degree-of-freedom MEMS resonators are discussed. Not only deterministic response under various kinds of excitation, but also noise characteristics of the nonlinear system have been scrutinized. Different methods, which are mostly of recent origin, of tailoring nonlinearity in MEMS resonators have been reviewed. Care has been taken to present a complete picture of the nonlinear dynamics of the simplest type of resonator, namely, the one which can be modelled as a single-degree-of-freedom oscillator.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lavrik, N.V., Sepaniak, M.J., Datskos, P.G.: Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75(7), 2229–2253 (2004)CrossRef Lavrik, N.V., Sepaniak, M.J., Datskos, P.G.: Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75(7), 2229–2253 (2004)CrossRef
2.
Zurück zum Zitat Zhao, L., Hu, Y., Wang, T., Ding, J., Liu, X., Zhao, Y., Jiang, Z.: A mems resonant sensor to measure fluid density and viscosity under flexural and torsional vibrating modes. Sensors 16(6), 830 (2016)CrossRef Zhao, L., Hu, Y., Wang, T., Ding, J., Liu, X., Zhao, Y., Jiang, Z.: A mems resonant sensor to measure fluid density and viscosity under flexural and torsional vibrating modes. Sensors 16(6), 830 (2016)CrossRef
3.
Zurück zum Zitat Todaro, M.T., Guido, F., Mastronardi, V., Desmaele, D., Epifani, G., Algieri, L., De Vittorio, M.: Piezoelectric mems vibrational energy harvesters: advances and outlook. Microelectron. Eng. 183, 23–36 (2017)CrossRef Todaro, M.T., Guido, F., Mastronardi, V., Desmaele, D., Epifani, G., Algieri, L., De Vittorio, M.: Piezoelectric mems vibrational energy harvesters: advances and outlook. Microelectron. Eng. 183, 23–36 (2017)CrossRef
4.
Zurück zum Zitat Hasan, M.H., Alsaleem, F.M., Ouakad, H.M.: Novel threshold pressure sensors based on nonlinear dynamics of MEMS resonators. J. Micromech. Microeng. 28(6), 065007 (2018)CrossRef Hasan, M.H., Alsaleem, F.M., Ouakad, H.M.: Novel threshold pressure sensors based on nonlinear dynamics of MEMS resonators. J. Micromech. Microeng. 28(6), 065007 (2018)CrossRef
5.
Zurück zum Zitat Brand, O., Dufour, I., Heinrich, S., Heinrich, S.M., Josse, F., Fedder, G.K., Korvink, J.G., Hierold, C., Tabata, O.: Resonant MEMS: Fundamentals, Implementation, and Application. Wiley (2015) Brand, O., Dufour, I., Heinrich, S., Heinrich, S.M., Josse, F., Fedder, G.K., Korvink, J.G., Hierold, C., Tabata, O.: Resonant MEMS: Fundamentals, Implementation, and Application. Wiley (2015)
6.
Zurück zum Zitat Zhang, W.-M., Yan, H., Peng, Z.-K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A: Phys. 214, 187–218 (2014)CrossRef Zhang, W.-M., Yan, H., Peng, Z.-K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A: Phys. 214, 187–218 (2014)CrossRef
7.
Zurück zum Zitat Lifshitz, R., Cross, M.: Nonlinear dynamics of nanomechanical and micromechanical resonators. Rev. Nonlinear Dyn. Complex. 1, 1–52 (2008)MATH Lifshitz, R., Cross, M.: Nonlinear dynamics of nanomechanical and micromechanical resonators. Rev. Nonlinear Dyn. Complex. 1, 1–52 (2008)MATH
8.
Zurück zum Zitat Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and nanoresonators. In: ASME 2008 Dynamic Systems and Control Conference, pp. 1509–1538. American Society of Mechanical Engineers Digital Collection (2009) Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and nanoresonators. In: ASME 2008 Dynamic Systems and Control Conference, pp. 1509–1538. American Society of Mechanical Engineers Digital Collection (2009)
9.
Zurück zum Zitat Tiwari, S., Candler, R.N.: Using flexural mems to study and exploit nonlinearities: a review. J. Micromech. Microeng. 29(8), 083002 (2019)CrossRef Tiwari, S., Candler, R.N.: Using flexural mems to study and exploit nonlinearities: a review. J. Micromech. Microeng. 29(8), 083002 (2019)CrossRef
10.
Zurück zum Zitat Kumar, V., Yang, Y., Boley, J.W., Chiu, G.T.-C., Rhoads, J.F.: Modeling, analysis, and experimental validation of a bifurcation-based microsensor. J. Microelectromech. Syst. 21(3), 549–558 (2012)CrossRef Kumar, V., Yang, Y., Boley, J.W., Chiu, G.T.-C., Rhoads, J.F.: Modeling, analysis, and experimental validation of a bifurcation-based microsensor. J. Microelectromech. Syst. 21(3), 549–558 (2012)CrossRef
11.
Zurück zum Zitat Mahboob, I., Yamaguchi, H.: Piezoelectrically pumped parametric amplification and Q enhancement in an electromechanical oscillator. Appl. Phys. Lett. 92(17), 173109 (2008)CrossRef Mahboob, I., Yamaguchi, H.: Piezoelectrically pumped parametric amplification and Q enhancement in an electromechanical oscillator. Appl. Phys. Lett. 92(17), 173109 (2008)CrossRef
12.
Zurück zum Zitat Rhoads, J.F., Shaw, S.W.: The impact of nonlinearity on degenerate parametric amplifiers. Appl. Phys. Lett. 96(23), 234101 (2010)CrossRef Rhoads, J.F., Shaw, S.W.: The impact of nonlinearity on degenerate parametric amplifiers. Appl. Phys. Lett. 96(23), 234101 (2010)CrossRef
13.
Zurück zum Zitat Yabuno, H.: Self-excited oscillation for high-viscosity sensing and self-excited coupled oscillation for ultra-senseitive mass sensing. Procedia IUTAM 22, 216–220 (2017)CrossRef Yabuno, H.: Self-excited oscillation for high-viscosity sensing and self-excited coupled oscillation for ultra-senseitive mass sensing. Procedia IUTAM 22, 216–220 (2017)CrossRef
14.
Zurück zum Zitat Ramos, D., Mertens, J., Calleja, M., Tamayo, J.: Phototermal self-excitation of nanomechanical resonators in liquids. Appl. Phys. Lett. 92(17), 173108 (2008)CrossRef Ramos, D., Mertens, J., Calleja, M., Tamayo, J.: Phototermal self-excitation of nanomechanical resonators in liquids. Appl. Phys. Lett. 92(17), 173108 (2008)CrossRef
15.
Zurück zum Zitat Prakash, G., Raman, A., Rhoads, J., Reifenberger, R.G.: Parametric noise squeezing and parametric resonance of microcantilevers in air and liquid environments. Rev. Sci. Instrum. 83(6), 065109 (2012)CrossRef Prakash, G., Raman, A., Rhoads, J., Reifenberger, R.G.: Parametric noise squeezing and parametric resonance of microcantilevers in air and liquid environments. Rev. Sci. Instrum. 83(6), 065109 (2012)CrossRef
16.
Zurück zum Zitat Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer Science & Business Media (2011) Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer Science & Business Media (2011)
17.
Zurück zum Zitat Zhang, W., Zhang, W., Turner, K.L.: Nonlinear dynamics of micro impact oscillators in high frequency mems switch application. In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS’05, vol. 1, pp. 768–771. IEEE (2005) Zhang, W., Zhang, W., Turner, K.L.: Nonlinear dynamics of micro impact oscillators in high frequency mems switch application. In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS’05, vol. 1, pp. 768–771. IEEE (2005)
18.
Zurück zum Zitat Delnavaz, A., Mahmoodi, S.N., Jalili, N., Mahdi Ahadian, M., Zohoor, H.: Nonlinear vibrations of microcantilevers subjected to tip-sample interactions: theory and experiment. J. Appl. Phys. 106(11), 113510 (2009) Delnavaz, A., Mahmoodi, S.N., Jalili, N., Mahdi Ahadian, M., Zohoor, H.: Nonlinear vibrations of microcantilevers subjected to tip-sample interactions: theory and experiment. J. Appl. Phys. 106(11), 113510 (2009)
19.
Zurück zum Zitat Park, Y.-H., Park, K.: High-fidelity modeling of mems resonators. Part I. Anchor loss mechanisms through substrate. J. Microelectromech. Syst. 13(2), 238–247 (2004)CrossRef Park, Y.-H., Park, K.: High-fidelity modeling of mems resonators. Part I. Anchor loss mechanisms through substrate. J. Microelectromech. Syst. 13(2), 238–247 (2004)CrossRef
20.
Zurück zum Zitat Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 61(8), 5600 (2000)CrossRef Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 61(8), 5600 (2000)CrossRef
21.
Zurück zum Zitat Sader, J.E.: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84(1), 64–76 (1998)CrossRef Sader, J.E.: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84(1), 64–76 (1998)CrossRef
22.
Zurück zum Zitat Younis, M.I., Alsaleem, F.M., Miles, R., Su, Q.: Characterization of the performance of capacitive switches activated by mechanical shock. J. Micromech. Microeng. 17(7), 1360 (2007)CrossRef Younis, M.I., Alsaleem, F.M., Miles, R., Su, Q.: Characterization of the performance of capacitive switches activated by mechanical shock. J. Micromech. Microeng. 17(7), 1360 (2007)CrossRef
23.
Zurück zum Zitat Hu, S., Raman, A.: Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy. Appl. Phys. Lett. 91(12), 123106 (2007)CrossRef Hu, S., Raman, A.: Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy. Appl. Phys. Lett. 91(12), 123106 (2007)CrossRef
24.
Zurück zum Zitat Rhoads, J.F., Shaw, S.W., Turner, K.L.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16(5), 890 (2006)CrossRef Rhoads, J.F., Shaw, S.W., Turner, K.L.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16(5), 890 (2006)CrossRef
25.
Zurück zum Zitat Sobreviela, G., Vidal-Álvarez, G., Riverola, M., Uranga, A., Torres, F., Barniol, N.: Suppression of the af-mediated noise at the top bifurcation point in a mems resonator with both hardening and softening hysteretic cycles. Sens. Actuators A: Phys. 256, 59–65 (2017)CrossRef Sobreviela, G., Vidal-Álvarez, G., Riverola, M., Uranga, A., Torres, F., Barniol, N.: Suppression of the af-mediated noise at the top bifurcation point in a mems resonator with both hardening and softening hysteretic cycles. Sens. Actuators A: Phys. 256, 59–65 (2017)CrossRef
26.
Zurück zum Zitat Trusov, A.A., Shkel, A.M.: Capacitive detection in resonant mems with arbitrary amplitude of motion. J. Micromech. Microeng. 17(8), 1583 (2007)CrossRef Trusov, A.A., Shkel, A.M.: Capacitive detection in resonant mems with arbitrary amplitude of motion. J. Micromech. Microeng. 17(8), 1583 (2007)CrossRef
27.
Zurück zum Zitat Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012)CrossRef Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012)CrossRef
28.
Zurück zum Zitat Kaajakari, V., Mattila, T., Oja, A., Seppa, H.: Nonlinear limits for single-crystal silicon microresonators. J. Microelectromech. Syst. 13(5), 715–724 (2004)CrossRef Kaajakari, V., Mattila, T., Oja, A., Seppa, H.: Nonlinear limits for single-crystal silicon microresonators. J. Microelectromech. Syst. 13(5), 715–724 (2004)CrossRef
29.
Zurück zum Zitat Lee, S., Nguyen, C.T.-C.: Phase noise amplitude dependence in self limiting wine-glass disk oscillators. In: Solid State Sensor, Actuator, and Microsystems Workshop (2004) Lee, S., Nguyen, C.T.-C.: Phase noise amplitude dependence in self limiting wine-glass disk oscillators. In: Solid State Sensor, Actuator, and Microsystems Workshop (2004)
30.
Zurück zum Zitat Yie, Z., Miller, N.J., Shaw, S.W., Turner, K.L.: Parametric amplification in a resonant sensing array. J. Micromech. Microeng. 22(3), 035004 (2012)CrossRef Yie, Z., Miller, N.J., Shaw, S.W., Turner, K.L.: Parametric amplification in a resonant sensing array. J. Micromech. Microeng. 22(3), 035004 (2012)CrossRef
31.
Zurück zum Zitat Thormann, E., Pettersson, T., Claesson, P.M.: How to measure forces with atomic force microscopy without significant influence from nonlinear optical lever sensitivity. Rev. Sci. Instrum. 80(9), 093701 (2009)CrossRef Thormann, E., Pettersson, T., Claesson, P.M.: How to measure forces with atomic force microscopy without significant influence from nonlinear optical lever sensitivity. Rev. Sci. Instrum. 80(9), 093701 (2009)CrossRef
32.
Zurück zum Zitat Hu, S., Raman, A.: Chaos in atomic force microscopy. Phys. Rev. Lett. 96(3), 036107 (2006)CrossRef Hu, S., Raman, A.: Chaos in atomic force microscopy. Phys. Rev. Lett. 96(3), 036107 (2006)CrossRef
33.
Zurück zum Zitat Sobreviela, G., Zhao, C., Pandit, M., Do, C., Du, S., Zou, X., Seshia, A.: Parametric noise reduction in a high-order nonlinear mems resonator utilizing its bifurcation points. J. Microelectromech. Syst. 26(6), 1189–1195 (2017)CrossRef Sobreviela, G., Zhao, C., Pandit, M., Do, C., Du, S., Zou, X., Seshia, A.: Parametric noise reduction in a high-order nonlinear mems resonator utilizing its bifurcation points. J. Microelectromech. Syst. 26(6), 1189–1195 (2017)CrossRef
34.
Zurück zum Zitat Zhao, C., Sobreviela, G., Pandit, M., Du, S., Zou, X., Seshia, A.: Experimental observation of noise reduction in weakly coupled nonlinear MEMS resonators. J. Microelectromech. Syst. 26(6), 1196–1203 (2017)CrossRef Zhao, C., Sobreviela, G., Pandit, M., Du, S., Zou, X., Seshia, A.: Experimental observation of noise reduction in weakly coupled nonlinear MEMS resonators. J. Microelectromech. Syst. 26(6), 1196–1203 (2017)CrossRef
35.
Zurück zum Zitat Defoort, M., Taheri-Tehrani, P., Horsley, D.: Exploiting nonlinear amplitude-frequency dependence for temperature compensation in silicon micromechanical resonators. Appl. Phys. Lett. 109(15), 153502 (2016)CrossRef Defoort, M., Taheri-Tehrani, P., Horsley, D.: Exploiting nonlinear amplitude-frequency dependence for temperature compensation in silicon micromechanical resonators. Appl. Phys. Lett. 109(15), 153502 (2016)CrossRef
36.
Zurück zum Zitat Chen, D., Wang, Y., Chen, X., Yang, L., Xie, J.: Temperature-frequency drift suppression via electrostatic stiffness softening in mems resonator with weakened duffing nonlinearity. Appl. Phys. Lett. 114(2), 023502 (2019)CrossRef Chen, D., Wang, Y., Chen, X., Yang, L., Xie, J.: Temperature-frequency drift suppression via electrostatic stiffness softening in mems resonator with weakened duffing nonlinearity. Appl. Phys. Lett. 114(2), 023502 (2019)CrossRef
37.
Zurück zum Zitat Turner, K.L., Burgner, C.B., Yie, Z., Holtoff, E.: Using nonlinearity to enhance micro/nanosensor performance. In: 2012 IEEE Sensors, pp. 1–4. IEEE (2012) Turner, K.L., Burgner, C.B., Yie, Z., Holtoff, E.: Using nonlinearity to enhance micro/nanosensor performance. In: 2012 IEEE Sensors, pp. 1–4. IEEE (2012)
38.
Zurück zum Zitat Burgner, C., Miller, N., Shaw, S., Turner, K.: Parameter sweep strategies for sensing using bifurcations in MEMS. In: Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton Head Workshop (2010) Burgner, C., Miller, N., Shaw, S., Turner, K.: Parameter sweep strategies for sensing using bifurcations in MEMS. In: Solid-State Sensor, Actuator, and Microsystems Workshop, Hilton Head Workshop (2010)
39.
Zurück zum Zitat Li, L.L., Holthoff, E.L., Shaw, L.A., Burgner, C.B., Turner, K.L.: Noise squeezing controlled parametric bifurcation tracking of mip-coated microbeam mems sensor for tnt explosive gas sensing. J. Microelectromech. Syst. 23(5), 1228–1236 (2014)CrossRef Li, L.L., Holthoff, E.L., Shaw, L.A., Burgner, C.B., Turner, K.L.: Noise squeezing controlled parametric bifurcation tracking of mip-coated microbeam mems sensor for tnt explosive gas sensing. J. Microelectromech. Syst. 23(5), 1228–1236 (2014)CrossRef
40.
Zurück zum Zitat Oropeza-Ramos, L.A., Burgner, C.B., Turner, K.L.: Robust micro-rate sensor actuated by parametric resonance. Sens. Actuators A: Phys. 152(1), 80–87 (2009)CrossRef Oropeza-Ramos, L.A., Burgner, C.B., Turner, K.L.: Robust micro-rate sensor actuated by parametric resonance. Sens. Actuators A: Phys. 152(1), 80–87 (2009)CrossRef
41.
Zurück zum Zitat Nitzan, S.H., Zega, V., Li, M., Ahn, C.H., Corigliano, A., Kenny, T.W., Horsley, D.A.: Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope. Sci. Rep. 5, 9036 (2015)CrossRef Nitzan, S.H., Zega, V., Li, M., Ahn, C.H., Corigliano, A., Kenny, T.W., Horsley, D.A.: Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope. Sci. Rep. 5, 9036 (2015)CrossRef
42.
Zurück zum Zitat Endo, D., Yabuno, H., Yamamoto, Y., Matsumoto, S.: Mass sensing in a liquid environment using nonlinear self-excited coupled-microcantilevers. J. Microelectromech. Syst. 27(5), 774–779 (2018)CrossRef Endo, D., Yabuno, H., Yamamoto, Y., Matsumoto, S.: Mass sensing in a liquid environment using nonlinear self-excited coupled-microcantilevers. J. Microelectromech. Syst. 27(5), 774–779 (2018)CrossRef
43.
Zurück zum Zitat Yabuno, H.: Review of applications of self-excited oscillations to highly sensitive vibrational sensors. ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. und Mech. e201900009 (2019) Yabuno, H.: Review of applications of self-excited oscillations to highly sensitive vibrational sensors. ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. und Mech. e201900009 (2019)
44.
Zurück zum Zitat Hafiz, M., Kosuru, L., Ramini, A., Chappanda, K., Younis, M.: In-plane mems shallow arch beam for mechanical memory. Micromachines 7(10), 191 (2016)CrossRef Hafiz, M., Kosuru, L., Ramini, A., Chappanda, K., Younis, M.: In-plane mems shallow arch beam for mechanical memory. Micromachines 7(10), 191 (2016)CrossRef
45.
Zurück zum Zitat Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of mems arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19(3), 647–656 (2010)CrossRef Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of mems arches under harmonic electrostatic actuation. J. Microelectromech. Syst. 19(3), 647–656 (2010)CrossRef
46.
Zurück zum Zitat Bajaj, N., Sabater, A.B., Hickey, J.N., Chiu, G.T.-C., Rhoads, J.F.J.: Design and implementation of a tunable, duffing-like electronic resonator via nonlinear feedback. J. Microelectromech. Syst. 25(1), 2–10 (2015)CrossRef Bajaj, N., Sabater, A.B., Hickey, J.N., Chiu, G.T.-C., Rhoads, J.F.J.: Design and implementation of a tunable, duffing-like electronic resonator via nonlinear feedback. J. Microelectromech. Syst. 25(1), 2–10 (2015)CrossRef
47.
Zurück zum Zitat Li, L.L., Polunin, P.M., Dou, S., Shoshani, O., Scott Strachan, B., Jensen, J.S., Shaw, S.W., Turner, K.L.: Tailoring the nonlinear response of mems resonators using shape optimization. Appl. Phys. Lett. 110(8), 081902 (2017) Li, L.L., Polunin, P.M., Dou, S., Shoshani, O., Scott Strachan, B., Jensen, J.S., Shaw, S.W., Turner, K.L.: Tailoring the nonlinear response of mems resonators using shape optimization. Appl. Phys. Lett. 110(8), 081902 (2017)
48.
Zurück zum Zitat Jensen, B.D., Mutlu, S., Miller, S., Kurabayashi, K., Allen, J.J.: Shaped comb fingers for tailored electromechanical restoring force. J. Microelectromech. Syst. 12(3), 373–383 (2003)CrossRef Jensen, B.D., Mutlu, S., Miller, S., Kurabayashi, K., Allen, J.J.: Shaped comb fingers for tailored electromechanical restoring force. J. Microelectromech. Syst. 12(3), 373–383 (2003)CrossRef
49.
Zurück zum Zitat Asadi, K., Li, J., Peshin, S., Yeom, J., Cho, H.: Mechanism of geometric nonlinearity in a nonprismatic and heterogeneous microbeam resonator. Phys. Rev. B 96(11), 115306 (2017)CrossRef Asadi, K., Li, J., Peshin, S., Yeom, J., Cho, H.: Mechanism of geometric nonlinearity in a nonprismatic and heterogeneous microbeam resonator. Phys. Rev. B 96(11), 115306 (2017)CrossRef
50.
Zurück zum Zitat Chen, D., Wang, Y., Guan, Y., Chen, X., Liu, X., Xie, J.: Methods for nonlinearities reduction in micromechanical beams resonators. J. Microelectromech. Syst. 27(5), 764–773 (2018)CrossRef Chen, D., Wang, Y., Guan, Y., Chen, X., Liu, X., Xie, J.: Methods for nonlinearities reduction in micromechanical beams resonators. J. Microelectromech. Syst. 27(5), 764–773 (2018)CrossRef
51.
Zurück zum Zitat Agarwal, M., Chandorkar, S.A., Candler, R.N., Kim, B., Hopcroft, M.A., Melamud, R., Jha, C.M., Kenny, T.W., Murmann, B.: Optimal drive condition for nonlinearity reduction in electrostatic microresonators. Appl. Phys. Lett. 89(21), 214105 (2006)CrossRef Agarwal, M., Chandorkar, S.A., Candler, R.N., Kim, B., Hopcroft, M.A., Melamud, R., Jha, C.M., Kenny, T.W., Murmann, B.: Optimal drive condition for nonlinearity reduction in electrostatic microresonators. Appl. Phys. Lett. 89(21), 214105 (2006)CrossRef
Metadaten
Titel
Nonlinear Dynamics of Resonant Microelectromechanical System (MEMS): A Review
verfasst von
G. Chakraborty
Nikul Jani
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5712-5_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.