Skip to main content

2017 | OriginalPaper | Buchkapitel

5. Nonlinear Problems in Piezoelectric Harvesters Under Magnetic Field

verfasst von : Erol Kurt, Yunus Uzun

Erschienen in: Energy Harvesting and Energy Efficiency

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter focuses on the nonlinear problems in the piezoelectric harvester systems under the magnetic field. In this manner, the chapter initially mentions an introductory section on the studies of piezoelectric harvester dynamics. After the introductory section, the basic properties of the piezoelectric systems and their energy harvester applications will be presented. Since the harvesters have a complicated structure under the magnetic field, the electromagnetic design, modeling and algebraic studies of a novel harvester study will be pointed out. After the presentation of a theoretical outline on the harvester systems, the experimental setups will be explained in detail. Thus, a complete picture of the problem will be produced in order to sustain a comparable study on the theory and experiment. The main dynamic quantities such as displacement and velocity of the vibrating piezoelectric layer as function of the system parameters will be explored. According to results, the effect of periodic magnetic flux can give varieties of responses from regular dynamics to chaotic one. Phase space constructions, Poincare sections and FFTs are evaluated depending on the parameter sets including the excitation frequency f, amplitude Uc of electromagnet and the distance d. It is proven that the periodic magnetic flux can exert high frequency velocity fluctuations nearby the minimal and maximal values of the velocity, whereas the situation differs for the position. Therefore it will be pointed out that the magnetic field mostly governs the velocity by yielding complicated vibrations. According to the detailed analyses, the FFTs prove the high frequency responses in addition to the main frequency. When f differs from the natural frequency of the system f 0, the responses become chaotic. It is proven that lower and higher frequency fluctuations in displacement and velocity, which are different from f 0 decrease the electrical power harvested by the piezoelectric pendulum. Indeed, it is remarkable to get a relation between the rms values of displacement/velocity and the harvested power according to the measurements. Thus this relation can be used to estimate the power output in harvester systems. The piezoelectric harvester generates much energy when f is closed to f 0 and the distance to the magnetic device should be closer in order to decrease the nonlinearities in displacement and velocity. The pendulum-like harvesters as the most preferable ones can be applied to many devices or units as a power source. The maximal power for these magnetically-excited structures can be estimated by the system parameters. At the end of the chapter, the recent techniques of maximal power point tracking (MPPT) and proposed controller units are explained for the piezoelectric harvester systems in order to optimize the harvested power.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tufekcioglu E, Dogan A (2014) A flextensional piezo-composite structure for energy harvesting applications. Sens Actuators A Phys 216:355–363CrossRef Tufekcioglu E, Dogan A (2014) A flextensional piezo-composite structure for energy harvesting applications. Sens Actuators A Phys 216:355–363CrossRef
2.
Zurück zum Zitat Saha CR, O’Donnell T, Wang N, McCloskey P (2008) Electromagnetic generator for harvesting energy from human motion. Sens Actuators A Phys 147:248–253CrossRef Saha CR, O’Donnell T, Wang N, McCloskey P (2008) Electromagnetic generator for harvesting energy from human motion. Sens Actuators A Phys 147:248–253CrossRef
3.
Zurück zum Zitat Ferrari M, Ferrari V, Guizzetti M, Andò B, Baglio S, Trigona C (2010) Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens Actuators A Phys 162:425–431CrossRef Ferrari M, Ferrari V, Guizzetti M, Andò B, Baglio S, Trigona C (2010) Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens Actuators A Phys 162:425–431CrossRef
4.
Zurück zum Zitat Erturk A, Inman DJ (2008) Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater Struct 17:065016 (14 pp) Erturk A, Inman DJ (2008) Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater Struct 17:065016 (14 pp)
5.
Zurück zum Zitat Lin JH, Wu XM, Ren TL, Liu LT (2007) Modeling and simulation of piezoelectric MEMS energy harvesting device. Integr Ferroelectr 95:128–141CrossRef Lin JH, Wu XM, Ren TL, Liu LT (2007) Modeling and simulation of piezoelectric MEMS energy harvesting device. Integr Ferroelectr 95:128–141CrossRef
6.
Zurück zum Zitat Wang L, Yuan FG (2008) Vibration energy harvesting by magnetostrictive material. Smart Mater Struct 17:045009 (14 pp) Wang L, Yuan FG (2008) Vibration energy harvesting by magnetostrictive material. Smart Mater Struct 17:045009 (14 pp)
7.
Zurück zum Zitat Poulin G, Sarraute E, Costa F (2004) Generation of electrical energy for portable devices: comparative study of an electromagnetic and a piezoelectric system. Sens Actuators A Phys 116:461–471CrossRef Poulin G, Sarraute E, Costa F (2004) Generation of electrical energy for portable devices: comparative study of an electromagnetic and a piezoelectric system. Sens Actuators A Phys 116:461–471CrossRef
8.
Zurück zum Zitat Rocha JG, Gonçalves LM, Rocha PF, Silva MP, Lanceros-Méndez S (2010) Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Trans Ind Electron 57:813–819CrossRef Rocha JG, Gonçalves LM, Rocha PF, Silva MP, Lanceros-Méndez S (2010) Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Trans Ind Electron 57:813–819CrossRef
9.
Zurück zum Zitat Al-Ashtari W, Hunstig M, Hemsel T, Sextro W (2013) Enhanced energy harvesting using multiple piezoelectric elements: theory and experiments. Sens Actuators A Phys 200:138–146CrossRef Al-Ashtari W, Hunstig M, Hemsel T, Sextro W (2013) Enhanced energy harvesting using multiple piezoelectric elements: theory and experiments. Sens Actuators A Phys 200:138–146CrossRef
10.
Zurück zum Zitat Muralt P, Marzencki M, Belgacema B, Calamea F, Basrourb S (2009) Vibration energy harvesting with PZT micro device. In: Proceedings of the eurosensors XXIII conference, pp 1191–1194 Muralt P, Marzencki M, Belgacema B, Calamea F, Basrourb S (2009) Vibration energy harvesting with PZT micro device. In: Proceedings of the eurosensors XXIII conference, pp 1191–1194
11.
Zurück zum Zitat Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks. Springer, New York, pp 49–50 Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks. Springer, New York, pp 49–50
12.
Zurück zum Zitat Caliò R, Rongala UB, Camboni D, Milazzo M, Stefanini C, Petris G, Oddo CM (2014) Piezoelectric energy harvesting solutions. Sensors 14:4755–4790CrossRef Caliò R, Rongala UB, Camboni D, Milazzo M, Stefanini C, Petris G, Oddo CM (2014) Piezoelectric energy harvesting solutions. Sensors 14:4755–4790CrossRef
13.
Zurück zum Zitat Ward JK, Behrens S (2008) Adaptive learning algorithms for vibration energy harvesting. Smart Mater Struct 17:035025 (9 pp) Ward JK, Behrens S (2008) Adaptive learning algorithms for vibration energy harvesting. Smart Mater Struct 17:035025 (9 pp)
14.
Zurück zum Zitat Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19:165–182 Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19:165–182
15.
Zurück zum Zitat Cho JH, Richards RF, Bahr DF, Richards CD (2006) Efficiency of energy conversion by piezoelectrics. Appl Phys Lett 89:104107 (3 pp) Cho JH, Richards RF, Bahr DF, Richards CD (2006) Efficiency of energy conversion by piezoelectrics. Appl Phys Lett 89:104107 (3 pp)
16.
Zurück zum Zitat Cottone F, Vocca H, Gammaitoni L (2009) Nonlinear energy harvesting. Phys Rev Lett 102:080601 (4pp) Cottone F, Vocca H, Gammaitoni L (2009) Nonlinear energy harvesting. Phys Rev Lett 102:080601 (4pp)
17.
Zurück zum Zitat Uzun Y, Kurt E (2013) Power-vibration relation for a piezoelectric harvester under magnetic excitation. In: 13th international conference on electric power system, high voltages, electric mach, Chania, Crete Island, Greece, pp 59–64 Uzun Y, Kurt E (2013) Power-vibration relation for a piezoelectric harvester under magnetic excitation. In: 13th international conference on electric power system, high voltages, electric mach, Chania, Crete Island, Greece, pp 59–64
18.
Zurück zum Zitat Uzun Y, Kurt E, Kurt HH (2015) Explorations of displacement and velocity nonlinearities and their effects to power of a magnetically-excited piezoelectric pendulum. Sens Actuators A Phys 224:119–130CrossRef Uzun Y, Kurt E, Kurt HH (2015) Explorations of displacement and velocity nonlinearities and their effects to power of a magnetically-excited piezoelectric pendulum. Sens Actuators A Phys 224:119–130CrossRef
19.
20.
Zurück zum Zitat Tseng WY, Dugundji J (1970) Nonlinear vibrations of a beam under harmonic excitation. J Appl Mech 37:292–297CrossRefMATH Tseng WY, Dugundji J (1970) Nonlinear vibrations of a beam under harmonic excitation. J Appl Mech 37:292–297CrossRefMATH
21.
Zurück zum Zitat Tseng WY, Dugundji J (1971) Nonlinear vibrations of a buckled beam under harmonicexcitation. J Appl Mech 38:467–476CrossRefMATH Tseng WY, Dugundji J (1971) Nonlinear vibrations of a buckled beam under harmonicexcitation. J Appl Mech 38:467–476CrossRefMATH
22.
Zurück zum Zitat Poddar B, Moon FC, Mukherjee S (1988) Chaotic motion of an elastic–plastic beam. J Appl Mech 55:185–189CrossRef Poddar B, Moon FC, Mukherjee S (1988) Chaotic motion of an elastic–plastic beam. J Appl Mech 55:185–189CrossRef
23.
Zurück zum Zitat Emam SA, Nayfeh AH (2004) Nonlinear responses of buckled beams tosubharmonic-resonance excitations. Nonlinear Dyn 35:105–122CrossRefMATH Emam SA, Nayfeh AH (2004) Nonlinear responses of buckled beams tosubharmonic-resonance excitations. Nonlinear Dyn 35:105–122CrossRefMATH
24.
Zurück zum Zitat Saymonds PS, Yu TX (1985) Counterintuitive behavior in a problem of elastic–plasticbeam dynamics. J Appl Mech 52:517–522CrossRef Saymonds PS, Yu TX (1985) Counterintuitive behavior in a problem of elastic–plasticbeam dynamics. J Appl Mech 52:517–522CrossRef
25.
Zurück zum Zitat Uzun Y, Demirbas S, Kurt E (2014) Implementation of a new contactless piezoelectric wind energy harvester to a wireless weather station. Elektron Elektrotech 20:35–39 Uzun Y, Demirbas S, Kurt E (2014) Implementation of a new contactless piezoelectric wind energy harvester to a wireless weather station. Elektron Elektrotech 20:35–39
26.
Zurück zum Zitat Uzun Y, Kurt E (2012) Implementation and modeling of a piezoelastic pendulum under a harmonic magnetic excitation. In: 11th international conference on applications of electrical engineering, Athens, Greece, pp 1–6 Uzun Y, Kurt E (2012) Implementation and modeling of a piezoelastic pendulum under a harmonic magnetic excitation. In: 11th international conference on applications of electrical engineering, Athens, Greece, pp 1–6
27.
Zurück zum Zitat Uzun Y, Kurt E (2013) The effect of periodic magnetic force on a piezoelectric energy harvester. Sens Actuators A Phys 192:58–68CrossRef Uzun Y, Kurt E (2013) The effect of periodic magnetic force on a piezoelectric energy harvester. Sens Actuators A Phys 192:58–68CrossRef
28.
Zurück zum Zitat Bizon N, Oproescu M (2007) Power converters for energy generation systems (Convertoare de Putere utilizate in Sistemele de Generare a Energiei). Publishing House of the University of Piteşti, Piteşti Bizon N, Oproescu M (2007) Power converters for energy generation systems (Convertoare de Putere utilizate in Sistemele de Generare a Energiei). Publishing House of the University of Piteşti, Piteşti
29.
Zurück zum Zitat Bouzelata Y, Kurt E, Altın N, Chenni R (2015) Design and simulation of a solar supplied multifunctional active power filter and a comparative study on the current-detection algorithms. Renew Sust Energ Rev 43:1114–1126CrossRef Bouzelata Y, Kurt E, Altın N, Chenni R (2015) Design and simulation of a solar supplied multifunctional active power filter and a comparative study on the current-detection algorithms. Renew Sust Energ Rev 43:1114–1126CrossRef
30.
Zurück zum Zitat Kurt E, Ciylan B, Taskan OO, Kurt HH (2014) Bifurcation analysis of a resistor-double inductor and double diode circuit and a comparison with a resistor-inductor-diode circuit in phase space and parametrical responses. Sci Iran 21:935–944 Kurt E, Ciylan B, Taskan OO, Kurt HH (2014) Bifurcation analysis of a resistor-double inductor and double diode circuit and a comparison with a resistor-inductor-diode circuit in phase space and parametrical responses. Sci Iran 21:935–944
31.
Zurück zum Zitat Linsay PS (1981) Period doubling and chaotic behaviour in a driven anharmonic oscillator. Phys Rev Lett 47:1349–1352CrossRef Linsay PS (1981) Period doubling and chaotic behaviour in a driven anharmonic oscillator. Phys Rev Lett 47:1349–1352CrossRef
32.
Zurück zum Zitat Kurt E, Kasap R, Acar S (2003) Effects of periodic magnetic field to the dynamics of vibrating beam. J Math Comput Appl 9:275–284 Kurt E, Kasap R, Acar S (2003) Effects of periodic magnetic field to the dynamics of vibrating beam. J Math Comput Appl 9:275–284
33.
Zurück zum Zitat Kurt E, Böyükata M, Güvenç ZB (2006) Lyapunov exponent as an indicator of phase transition in melting Pd13 clusters. Phys Scripta 74:353–361CrossRef Kurt E, Böyükata M, Güvenç ZB (2006) Lyapunov exponent as an indicator of phase transition in melting Pd13 clusters. Phys Scripta 74:353–361CrossRef
34.
Zurück zum Zitat Kurt E, Uzun Y (2010) Design and bifurcation analysis of a piezoelectric energy harvester under a changeable magnetic field. In: 2nd international conference on nuclear and renewable energy resources, Ankara, Turkey, pp 877–884 Kurt E, Uzun Y (2010) Design and bifurcation analysis of a piezoelectric energy harvester under a changeable magnetic field. In: 2nd international conference on nuclear and renewable energy resources, Ankara, Turkey, pp 877–884
35.
Zurück zum Zitat Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulentchannel flow up to Re = 590. Phys Fluids 11:943–945CrossRefMATH Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulentchannel flow up to Re = 590. Phys Fluids 11:943–945CrossRefMATH
36.
Zurück zum Zitat Morris DJ, Youngsman JM, Anderson MJ, Bahr DF (2008) A resonant frequency tunable extensional mode piezoelectric vibration harvesting mechanism. Smart Mater Struct 17:065021 (9 pp) Morris DJ, Youngsman JM, Anderson MJ, Bahr DF (2008) A resonant frequency tunable extensional mode piezoelectric vibration harvesting mechanism. Smart Mater Struct 17:065021 (9 pp)
37.
Zurück zum Zitat Ramond A, Ardila Rodríguez GA, Durou H, Jammes B, Rossi CA (2009) SIDO buck converter with ultra low power MPPT scheme for optimized vibrational energy harvesting and management. In: PowerMEMS, Washington DC, USA, pp 415–418 Ramond A, Ardila Rodríguez GA, Durou H, Jammes B, Rossi CA (2009) SIDO buck converter with ultra low power MPPT scheme for optimized vibrational energy harvesting and management. In: PowerMEMS, Washington DC, USA, pp 415–418
38.
Zurück zum Zitat Kong N, Cochran T, Ha DS, Lin HC, Inman DJ (2010) A self-powered power management circuit for energy harvested by a piezoelectric cantilever. In: 25th applied power electronics conference and exposition (APEC), CA, USA, pp 2154–2160 Kong N, Cochran T, Ha DS, Lin HC, Inman DJ (2010) A self-powered power management circuit for energy harvested by a piezoelectric cantilever. In: 25th applied power electronics conference and exposition (APEC), CA, USA, pp 2154–2160
39.
Zurück zum Zitat Elliott ADT, Mitcheson PD (2014) Piezoelectric energy harvester interface with real-time MPPT. J Phys Conf Ser 557:012125(5 pp) Elliott ADT, Mitcheson PD (2014) Piezoelectric energy harvester interface with real-time MPPT. J Phys Conf Ser 557:012125(5 pp)
40.
Zurück zum Zitat Yi J, Su F, Lam YH, Ki WH, Tsui CY (2008) An energy-adaptive MPPT power management unit for micro-power vibration energy harvesting. In: IEEE international symposium on circuits and systems, Seattle, WA, USA, pp 2570–2573 Yi J, Su F, Lam YH, Ki WH, Tsui CY (2008) An energy-adaptive MPPT power management unit for micro-power vibration energy harvesting. In: IEEE international symposium on circuits and systems, Seattle, WA, USA, pp 2570–2573
41.
Zurück zum Zitat Simjee F, Chou PH (2006) Everlast: long-life, supercapacitor-operated wireless sensor node. In: Proceedings of the ISLPED, pp 197–202 Simjee F, Chou PH (2006) Everlast: long-life, supercapacitor-operated wireless sensor node. In: Proceedings of the ISLPED, pp 197–202
42.
Zurück zum Zitat Do XD, Han SK, Lee SG (2014) Optimization of piezoelectric energy harvesting systems by using a MPPT method. In: IEEE 5th international conference on communications and electronics, Danang, Vietnam, pp 309–312 Do XD, Han SK, Lee SG (2014) Optimization of piezoelectric energy harvesting systems by using a MPPT method. In: IEEE 5th international conference on communications and electronics, Danang, Vietnam, pp 309–312
43.
Zurück zum Zitat Miller LM, Mitcheson PD, Halvorsen E, Wright PK (2012) Coulomb-damped resonant generators using piezoelectric transduction. Appl Phys Lett 100:233901(4 pp) Miller LM, Mitcheson PD, Halvorsen E, Wright PK (2012) Coulomb-damped resonant generators using piezoelectric transduction. Appl Phys Lett 100:233901(4 pp)
Metadaten
Titel
Nonlinear Problems in Piezoelectric Harvesters Under Magnetic Field
verfasst von
Erol Kurt
Yunus Uzun
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-49875-1_5