Skip to main content

2011 | OriginalPaper | Buchkapitel

7. Nonlinear Tracking Controller Design for Unmanned Helicopters

verfasst von : Ioannis A. Raptis, Kimon P. Valavanis

Erschienen in: Linear and Nonlinear Control of Small-Scale Unmanned Helicopters

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The previous Chapter presented a tracking controller of the position and heading of a helicopter based on the linearized helicopter dynamics. The adopted parametric linear model, on which the flight controller is based on, represented the quasi steady state behavior of the helicopter dynamics at hover.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The override of the f B components in the \(\vec {i}_{{B}}\) and \(\vec{j}_{{B}}\) directions of the body-fixed frame achieves the decoupling of the helicopter external force and moment model. The work reported in [47] indicates that if the complete description of the force vector given in (7.8) is used, then the state space dynamics of the nonlinear helicopter model cannot be input–output linearizable and the zero-dynamics of the system will be unstable. If the system dynamics are not input–output linearizable most of the standard control methodologies will be inapplicable. If the proposed approximation takes place, the helicopter nonlinear model becomes full state linearizable by considering the position and the yaw as outputs. To the authors knowledge, there is not any controller design in the literature that is based on the exact model and in all case studies this approximation is performed. The use of the approximated model also took place in Chap. 6 indicating that for the helicopter control problem only practical stability can be achieved based on the approximated model.
 
2
The function f(t,s) is Lipschitz in s∈ℝ n if it is piecewise continuous in t and satisfies the Lipschitz condition:
$$\|f(t,s_{1})-f(t,s_{2})\|\leq{}^{f}L\|s_{1}-s_{2}\|$$
for every s 1,s 2∈ℝ n and a positive constant f L (called Lipschitz constant). If the function f(t,s) is Lipschitz in s, then the system \(\dot{s}=f(t,s)\) with s(t 0)=s o has a unique solution for every t [43].
 
3
Note that ρ 3,3=ρ 1,1 ρ 2,2ρ 1,2 ρ 2,1.
 
4
Based on [43] a continuous function \(\alpha_{\mathcal{K}}(s):[0\ \infty )\rightarrow[0\ \infty)\) belongs to the class \(\mathcal {K}\) if it is strictly increasing and \(\alpha_{\mathcal{K}}(0)=0\). A continuous function \(\beta_{\mathcal{KL}}(s_{1},s_{2}):[0\ \infty)\times [0\ \infty)\rightarrow[0\ \infty)\) belongs to the class \(\mathcal{KL}\) if, for each fixed s 2, the mapping \(\beta _{\mathcal{KL}}(s_{1},s_{2})\) belongs to the class \(\mathcal{K}\) with respect to s 1 and for each fixed s 1, the mapping \(\beta_{\mathcal{KL}}(s_{1},s_{2})\) is decreasing with respect to s 2 and \(\beta_{\mathcal{KL}}(s_{1},s_{2})\rightarrow0\) as s 2→∞.
 
Literatur
4.
Zurück zum Zitat M. Bejar, A. Isidori, L. Marconi, R. Naldi, Robust vertical/lateral/longitudinal control of a helicopter with constant yaw-attitude, in 44th IEEE Conference on Decision and Control, and 2005 European Control Conference, CDC-ECC, 2005 M. Bejar, A. Isidori, L. Marconi, R. Naldi, Robust vertical/lateral/longitudinal control of a helicopter with constant yaw-attitude, in 44th IEEE Conference on Decision and Control, and 2005 European Control Conference, CDC-ECC, 2005
7.
Zurück zum Zitat A.R.S. Bramwell, G. Done, D. Balmford, Bramwell’s Helicopter Dynamics (Butterworth Heinemann, Stoneham, 2001) A.R.S. Bramwell, G. Done, D. Balmford, Bramwell’s Helicopter Dynamics (Butterworth Heinemann, Stoneham, 2001)
24.
Zurück zum Zitat E. Frazzoli, M.A. Dahleh, E. Feron, Trajectory tracking control design for autonomous helicopters using a backstepping algorithm, in Proceedings of the American Control Conference, vol. 6, 2000, pp. 4102–4107 E. Frazzoli, M.A. Dahleh, E. Feron, Trajectory tracking control design for autonomous helicopters using a backstepping algorithm, in Proceedings of the American Control Conference, vol. 6, 2000, pp. 4102–4107
25.
Zurück zum Zitat D. Fujiwara, J. Shin, K. Hazawa, K. Nonami, \(\mathcal{H}_{\infty}\) hovering and guidance control for an autonomous small-scale unmanned helicopter, in International Conference on Intelligent Robots and Systems, 2004 D. Fujiwara, J. Shin, K. Hazawa, K. Nonami, \(\mathcal{H}_{\infty}\) hovering and guidance control for an autonomous small-scale unmanned helicopter, in International Conference on Intelligent Robots and Systems, 2004
28.
Zurück zum Zitat J. Gadewadikar, F.L. Lewis, K. Subbarao, K. Peng, B.M. Chen, \(\mathcal{H}_{\infty}\) static output-feedback control for rotorcraft, in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006 J. Gadewadikar, F.L. Lewis, K. Subbarao, K. Peng, B.M. Chen, \(\mathcal{H}_{\infty}\) static output-feedback control for rotorcraft, in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006
29.
Zurück zum Zitat V. Gavrilets, B. Mettler, E. Feron, Dynamical model for a miniature aerobatic helicopter, Technical report, Massachusetts Institute of Technology, 2001 V. Gavrilets, B. Mettler, E. Feron, Dynamical model for a miniature aerobatic helicopter, Technical report, Massachusetts Institute of Technology, 2001
30.
Zurück zum Zitat V. Gavrilets, B. Mettler, E. Feron, Nonlinear model for a small-size acrobatic helicopter, in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001 V. Gavrilets, B. Mettler, E. Feron, Nonlinear model for a small-size acrobatic helicopter, in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001
37.
Zurück zum Zitat A. Isidori, L. Marconi, A. Serrani, Robust nonlinear motion control of a helicopter. IEEE Transactions on Automatic Control 48, 413–426 (2003) MathSciNetCrossRef A. Isidori, L. Marconi, A. Serrani, Robust nonlinear motion control of a helicopter. IEEE Transactions on Automatic Control 48, 413–426 (2003) MathSciNetCrossRef
40.
Zurück zum Zitat W. Johnson, Helicopter Theory (Princeton University Press, Princeton, 1980) W. Johnson, Helicopter Theory (Princeton University Press, Princeton, 1980)
43.
Zurück zum Zitat H.K. Khalil, Nonlinear Systems (Prentice Hall, New York, 2002) MATH H.K. Khalil, Nonlinear Systems (Prentice Hall, New York, 2002) MATH
47.
Zurück zum Zitat T.J. Koo, S. Sastry, Output tracking control design of a helicopter model based on approximate linearization, in Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, 1998, pp. 3635–3640 T.J. Koo, S. Sastry, Output tracking control design of a helicopter model based on approximate linearization, in Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, 1998, pp. 3635–3640
54.
Zurück zum Zitat M. La Civita, G. Papageorgiou, W.C. Messner, T. Kanade, Integrated modeling and robust control for full-envelope flight of robotic helicopters, in Proceedings of IEEE International Conference on Robotics and Automation, 2003, pp. 552–557 M. La Civita, G. Papageorgiou, W.C. Messner, T. Kanade, Integrated modeling and robust control for full-envelope flight of robotic helicopters, in Proceedings of IEEE International Conference on Robotics and Automation, 2003, pp. 552–557
55.
Zurück zum Zitat M. La Civita, G. Papageorgiou, W.C. Messner, T. Kanade, Design and flight testing of an \(\mathcal{H}_{\infty}\) controller for a robotic helicopter. Journal of Guidance, Control, and Dynamics, 485–494 (2006) M. La Civita, G. Papageorgiou, W.C. Messner, T. Kanade, Design and flight testing of an \(\mathcal{H}_{\infty}\) controller for a robotic helicopter. Journal of Guidance, Control, and Dynamics, 485–494 (2006)
56.
Zurück zum Zitat E.H. Lee, H. Shim, L. Park, K. Lee, Design of hovering attitude controller for a model helicopter, in Proceedings of Society of Instrument and Control Engineers, 1993, pp. 1385–1390 E.H. Lee, H. Shim, L. Park, K. Lee, Design of hovering attitude controller for a model helicopter, in Proceedings of Society of Instrument and Control Engineers, 1993, pp. 1385–1390
63.
Zurück zum Zitat A. Loria, E. Panteley, Advanced Topics in Control Systems Theory: Lecture Notes from FAP 2004, chapter 2 (Springer, Berlin, 2005), pp. 23–64 A. Loria, E. Panteley, Advanced Topics in Control Systems Theory: Lecture Notes from FAP 2004, chapter 2 (Springer, Berlin, 2005), pp. 23–64
66.
70.
Zurück zum Zitat B. Mettler, Identification Modeling and Characteristics of Miniature Rotorcraft (Kluwer Academic Publishers, Norwell, 2003) CrossRef B. Mettler, Identification Modeling and Characteristics of Miniature Rotorcraft (Kluwer Academic Publishers, Norwell, 2003) CrossRef
72.
Zurück zum Zitat B. Mettler, M.B. Tischler, T. Kanade, System identification of small-size unmanned helicopter dynamics, in Presented at the American Helicopter Society 55th Forum, May 1999 B. Mettler, M.B. Tischler, T. Kanade, System identification of small-size unmanned helicopter dynamics, in Presented at the American Helicopter Society 55th Forum, May 1999
75.
Zurück zum Zitat R.M. Murray, L. Zexiang, S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, 1994) MATH R.M. Murray, L. Zexiang, S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, 1994) MATH
84.
Zurück zum Zitat R.W. Prouty, Helicopter Performance, Stability and Control (Krieger Publishing Company, Melbourne, 1995) R.W. Prouty, Helicopter Performance, Stability and Control (Krieger Publishing Company, Melbourne, 1995)
88.
Zurück zum Zitat H. Shim, T.J. Koo, F. Hoffmann, S. Sastry, A comprehensive study of control design for an autonomous helicopter, in Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, 1998, pp. 3653–3658 H. Shim, T.J. Koo, F. Hoffmann, S. Sastry, A comprehensive study of control design for an autonomous helicopter, in Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, 1998, pp. 3653–3658
89.
Zurück zum Zitat H.D. Shim, H.J. Kim, S. Sastry, Control system design for rotorcraft-based unmanned aerial vehicles using time-domain system identification, in Proceedings of the 2000 IEEE International Conference on Control Applications, 2000, pp. 808–813 H.D. Shim, H.J. Kim, S. Sastry, Control system design for rotorcraft-based unmanned aerial vehicles using time-domain system identification, in Proceedings of the 2000 IEEE International Conference on Control Applications, 2000, pp. 808–813
91.
Zurück zum Zitat H. Sira-Ramirez, M. Zribi, S. Ahmad, Dynamical sliding mode control approach for vertical flight regulation in helicopters, Control Theory and Applications 141, 19–24 (1994) MATHCrossRef H. Sira-Ramirez, M. Zribi, S. Ahmad, Dynamical sliding mode control approach for vertical flight regulation in helicopters, Control Theory and Applications 141, 19–24 (1994) MATHCrossRef
94.
Zurück zum Zitat E.D. Sontag, Remarks on stabilization and input-to-state stability, in Proceedings of the 28th IEEE Conference on Decision and Control, vol. 2, 1989, pp. 1376–1378 E.D. Sontag, Remarks on stabilization and input-to-state stability, in Proceedings of the 28th IEEE Conference on Decision and Control, vol. 2, 1989, pp. 1376–1378
102.
Zurück zum Zitat A.R. Teel, Global stabilization and restricted tracking for multiple integrators with bounded controls. Systems & Control Letters 18, 165–171 (1992) MathSciNetMATHCrossRef A.R. Teel, Global stabilization and restricted tracking for multiple integrators with bounded controls. Systems & Control Letters 18, 165–171 (1992) MathSciNetMATHCrossRef
103.
Zurück zum Zitat A.R. Teel, Using saturation to stabilize a class of single-input partially linear composite systems, in IFAC NOLCOS’92 Symposium, 1992, pp. 379–384 A.R. Teel, Using saturation to stabilize a class of single-input partially linear composite systems, in IFAC NOLCOS’92 Symposium, 1992, pp. 379–384
105.
Zurück zum Zitat M.B. Tischler, R.K. Remple, Aircraft and Rotorcraft System Identification, AIAA Education Series (AIAA, Washington, 2006) M.B. Tischler, R.K. Remple, Aircraft and Rotorcraft System Identification, AIAA Education Series (AIAA, Washington, 2006)
Metadaten
Titel
Nonlinear Tracking Controller Design for Unmanned Helicopters
verfasst von
Ioannis A. Raptis
Kimon P. Valavanis
Copyright-Jahr
2011
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0023-9_7

Neuer Inhalt