Skip to main content

2018 | OriginalPaper | Buchkapitel

5. Nonlinearity Mitigation in Coherent Optical Communication Systems: All-Optical and Digital Signal Processing Approaches

verfasst von : A. Anchal, A. Jain, S. Ahmad, Pradeep Kumar Krishnamurthy

Erschienen in: Selected Topics in Photonics

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Information transmission through fiber-optic channel is subjected to several impairments such as chromatic and polarization mode dispersion, nonlinear phase noise due to interaction of amplifier noise with fiber Kerr nonlinearity, and nonlinear effects such as self- and cross-phase modulation. In addition, laser phase noise and frequency offset between signal and local oscillators also degrade the received signal quality. Unless these impairments are mitigated, the performance of high data rate optical communication systems is degraded. We describe two approaches to mitigate fiber impairments in high data rate coherent optical communication systems. In the first approach, nonlinearity and dispersion in either fibers or semiconductors is used to undo the effects of transmission fiber on the optical carrier. We propose the use of mid-span spectral inversion, realized using counter-propagating dual pumped four-wave mixing in fibers, to mitigate dispersion and nonlinearity in 40 Gbps QPSK systems. We describe our work on realizing optical phase conjugation in semiconductor optical amplifiers. In the second approach, the optical signal is sampled after coherent reception and processed using digital signal processing algorithms to mitigate dispersion and nonlinearity. We describe Kalman filters to estimate and track phase noise in 100 Gbps QPSK systems. We also describe radial basis function neural network equalizer to mitigate nonlinearity in 80 Gbps 16 QAM CO-OFDM systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat The Zettabyte Era–Trends and Analysis (2016) White paper by Cisco Networks, Document ID: 1465272001812119 The Zettabyte Era–Trends and Analysis (2016) White paper by Cisco Networks, Document ID: 1465272001812119
2.
Zurück zum Zitat Kaminow IP, Li T, Willner AE (eds) (2013) Optical fiber telecommunications, vol 6B. Academic Press Kaminow IP, Li T, Willner AE (eds) (2013) Optical fiber telecommunications, vol 6B. Academic Press
3.
Zurück zum Zitat Michael G (2009) Taylor: phase estimation methods for optical coherent detection using digital signal processing. J Lightwave Technol 27:901–914CrossRef Michael G (2009) Taylor: phase estimation methods for optical coherent detection using digital signal processing. J Lightwave Technol 27:901–914CrossRef
4.
Zurück zum Zitat Kumar S et al (2005) Effect of chromatic dispersion on nonlinear phase noise in optical transmission systems. Opt Lett 24:3278–3280CrossRef Kumar S et al (2005) Effect of chromatic dispersion on nonlinear phase noise in optical transmission systems. Opt Lett 24:3278–3280CrossRef
5.
Zurück zum Zitat Zhou X, Xie C (eds) (2016) Enabling technologies for high spectral-efficiency coherent optical communication networks. Wiley-IEEE Press Zhou X, Xie C (eds) (2016) Enabling technologies for high spectral-efficiency coherent optical communication networks. Wiley-IEEE Press
6.
Zurück zum Zitat Leven Andreas et al (2007) Frequency estimation in intradyne reception. IEEE Photonics Technol Lett 6:366–368CrossRef Leven Andreas et al (2007) Frequency estimation in intradyne reception. IEEE Photonics Technol Lett 6:366–368CrossRef
7.
Zurück zum Zitat Kuschnerov Maxim et al (2009) DSP for coherent single-carrier receivers. J Lightwave Technol 27:3614–3622CrossRef Kuschnerov Maxim et al (2009) DSP for coherent single-carrier receivers. J Lightwave Technol 27:3614–3622CrossRef
8.
Zurück zum Zitat Ho Keang-Po et al (2004) Electronic compensation technique to mitigate nonlinear phase noise. J Lightwave Technol 22:779–783CrossRef Ho Keang-Po et al (2004) Electronic compensation technique to mitigate nonlinear phase noise. J Lightwave Technol 22:779–783CrossRef
9.
Zurück zum Zitat Kaminow IP, Li T, Willner AE (eds) (2013) Optical fiber telecommunications, vol 6A. Academic Press Kaminow IP, Li T, Willner AE (eds) (2013) Optical fiber telecommunications, vol 6A. Academic Press
10.
Zurück zum Zitat Wabnitz S, Eggleton B (eds) (2015) All-Optical signal processing: data communications and storage applications. Springer Wabnitz S, Eggleton B (eds) (2015) All-Optical signal processing: data communications and storage applications. Springer
11.
Zurück zum Zitat Yariv A et al (1979) Compensation for channel dispersion by nonlinear optical phase conjugation. Opt Lett 4:52–54 Yariv A et al (1979) Compensation for channel dispersion by nonlinear optical phase conjugation. Opt Lett 4:52–54
12.
Zurück zum Zitat Jansen SL et al (2006) Long-haul DWDM transmission systems employing optical phase conjugation. J Lightwave Technol 12:505–520 Jansen SL et al (2006) Long-haul DWDM transmission systems employing optical phase conjugation. J Lightwave Technol 12:505–520
13.
Zurück zum Zitat Morshed MM et al (2013) Mid-span spectral inversion for coherent optical OFDM systems: fundamental limits to performance. J Lightwave Technol 31:58–66CrossRef Morshed MM et al (2013) Mid-span spectral inversion for coherent optical OFDM systems: fundamental limits to performance. J Lightwave Technol 31:58–66CrossRef
14.
Zurück zum Zitat Inoue K et al (1997) Spectral inversion with no wavelength shift based on four-wave mixing with orthogonal pump beams. Opt Lett 22:1772–1774 Inoue K et al (1997) Spectral inversion with no wavelength shift based on four-wave mixing with orthogonal pump beams. Opt Lett 22:1772–1774
15.
Zurück zum Zitat Corchia A et al (1999) Mid-span spectral inversion without frequency shift for fiber dispersion compensation: a system demonstration. IEEE Photonics Technol Lett 11:275–278 Corchia A et al (1999) Mid-span spectral inversion without frequency shift for fiber dispersion compensation: a system demonstration. IEEE Photonics Technol Lett 11:275–278
16.
Zurück zum Zitat Jain Ankita, Kumar Krishnamurthy Pradeep (2016) Phase noise tracking and compensation in coherent optical systems using Kalman filter. IEEE Commun Lett 20:1072–1075CrossRef Jain Ankita, Kumar Krishnamurthy Pradeep (2016) Phase noise tracking and compensation in coherent optical systems using Kalman filter. IEEE Commun Lett 20:1072–1075CrossRef
17.
Zurück zum Zitat Haykin SO et al (2009) Neural networks and learning machines.Pearson Edition Ltd, New York, USA Haykin SO et al (2009) Neural networks and learning machines.Pearson Edition Ltd, New York, USA
18.
Zurück zum Zitat Jarajreh MA et al (2015) Artificial neural network nonlinear equalizer for coherent optical OFDM. IEEE Photonics Technol Lett 27:387–390CrossRef Jarajreh MA et al (2015) Artificial neural network nonlinear equalizer for coherent optical OFDM. IEEE Photonics Technol Lett 27:387–390CrossRef
19.
Zurück zum Zitat Ahmad ST, Kumar KP (2016) Radial basis function neural network nonlinear equalizer for 16-QAM coherent optical OFDM. IEEE Photonics Technol Lett 28:2507–2510CrossRef Ahmad ST, Kumar KP (2016) Radial basis function neural network nonlinear equalizer for 16-QAM coherent optical OFDM. IEEE Photonics Technol Lett 28:2507–2510CrossRef
20.
Zurück zum Zitat Anchal A et al (2016) frequency-shift-free optical phase conjugation using counter-propagating dual pump four-wave mixing in fiber. J Opt 18:116–120 Anchal A et al (2016) frequency-shift-free optical phase conjugation using counter-propagating dual pump four-wave mixing in fiber. J Opt 18:116–120
21.
Zurück zum Zitat Anchal A et al (2016) Experimental demonstration of optical phase conjugation using counter-propagating dual pumped four-wave mixing in semiconductor optical amplifier. Opt Commun 369:106–110 Anchal A et al (2016) Experimental demonstration of optical phase conjugation using counter-propagating dual pumped four-wave mixing in semiconductor optical amplifier. Opt Commun 369:106–110
22.
Zurück zum Zitat Anchal A et al (2016) Mitigation of nonlinear effects through frequency shift free mid-span spectral inversion using counter-propagating dual pumped FWM in fiber. J Opt 18:105703 Anchal A et al (2016) Mitigation of nonlinear effects through frequency shift free mid-span spectral inversion using counter-propagating dual pumped FWM in fiber. J Opt 18:105703
23.
Zurück zum Zitat Janer CL, Connelly MJ et al (2011) Optical phase conjugation technique using four-wave mixing in semiconductor optical amplifier. Electron Lett 47 Janer CL, Connelly MJ et al (2011) Optical phase conjugation technique using four-wave mixing in semiconductor optical amplifier. Electron Lett 47
24.
Zurück zum Zitat Grewal MS, Andrews AP (2001) Kalman filtering: theory and practice using MATLAB, (2nd ed) Grewal MS, Andrews AP (2001) Kalman filtering: theory and practice using MATLAB, (2nd ed)
25.
Zurück zum Zitat Mecozzi A (2004) Probability density functions of the nonlinear phase noise. Opt Lett 29:673–675CrossRef Mecozzi A (2004) Probability density functions of the nonlinear phase noise. Opt Lett 29:673–675CrossRef
26.
Zurück zum Zitat Barletta Luca et al (2013) Bridging the gap between Kalman filter and Wiener filter in carrier phase tracking. IEEE Photonics Technol Lett 25:1035–1038CrossRef Barletta Luca et al (2013) Bridging the gap between Kalman filter and Wiener filter in carrier phase tracking. IEEE Photonics Technol Lett 25:1035–1038CrossRef
27.
Zurück zum Zitat Ezra LP, Kahn JM (2008) Compensation of dispersion and nonlinear impairments using digital backpropagation. IEEE J Lightwave Technol 26:3416–3425 Ezra LP, Kahn JM (2008) Compensation of dispersion and nonlinear impairments using digital backpropagation. IEEE J Lightwave Technol 26:3416–3425
28.
Zurück zum Zitat Ip Ezra, Kahn JM (2007) Digital equalization of chromatic dispersion and polarization mode dispersion. J Lightwave Technol 25:2033–2043CrossRef Ip Ezra, Kahn JM (2007) Digital equalization of chromatic dispersion and polarization mode dispersion. J Lightwave Technol 25:2033–2043CrossRef
29.
Zurück zum Zitat Giacoumidis E et al (2015) Fiber nonlinearity-induced penalty reduction in CO-OFDM by ANN-based nonlinear equalization. Opt Lett 40:5113–5116 Giacoumidis E et al (2015) Fiber nonlinearity-induced penalty reduction in CO-OFDM by ANN-based nonlinear equalization. Opt Lett 40:5113–5116
Metadaten
Titel
Nonlinearity Mitigation in Coherent Optical Communication Systems: All-Optical and Digital Signal Processing Approaches
verfasst von
A. Anchal
A. Jain
S. Ahmad
Pradeep Kumar Krishnamurthy
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5010-7_5

Neuer Inhalt