Skip to main content
Erschienen in: Journal of Materials Science 34/2020

08.09.2020 | Chemical routes to materials

Novel lithium selective composite membranes: synthesis, characterization and validation tests in dialysis

Erschienen in: Journal of Materials Science | Ausgabe 34/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the general growing demand for Lithium compounds, notably for use in Lithium ion batteries, the selective extraction of this metal from various different sources is generating a lot of attention. A number of different methods have been used to recover and/or separate this element, often involving membranes technologies. In an attempt to overcome issues raised by the high rigidity of ceramic membranes and the poor selectivity performance of polymer membranes, we have tried to combine the Li selectivity of Lithium Ion Conducting Glass Ceramic (LICGC) and the flexibility of polymers. We are therefore proposing new malleable composite membranes made using a blending technique where the LICGC powder is incorporated into a flexible copolymerized anion-exchange membrane. We have attempted to demonstrate the homogeneity of the inorganic particle dispersion in the six prepared Lithium Composite Membranes (LCMs) as well as their thermal stability and mechanical properties. We have also investigated the effects of membrane composition on the physicochemical characteristics (water sorption, contact angle and conductivity) of the membranes. The selectivity of these LCMs for Li+ was tested under dialysis conditions using Na+ and K+ as the competitive cations, and the results were compared to those obtained with control membranes containing no LICGC particles. For the best membrane LCM5, the Li+/Na+ selectivity coefficient reaches 376 when using only Na+ as competitive ion. Whilst, when using both Na+ and K+, this selectivity (Li+/Na+) decrease to 278 and the Li+/K+ selectivity coefficient is found to be 364.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Choubey PK, Kim MS, Srivastava RR, Lee JC, Lee JY (2016) Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: from mineral and brine resources. Miner Eng 89:119–137 Choubey PK, Kim MS, Srivastava RR, Lee JC, Lee JY (2016) Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: from mineral and brine resources. Miner Eng 89:119–137
2.
Zurück zum Zitat Meshram P, Pandey BD, Mankhand TR (2014) Extraction of lithium from primary and secondary sources by pretreatment, leaching and separation: a comprehensive review. Hydrometallurgy 150:192–208 Meshram P, Pandey BD, Mankhand TR (2014) Extraction of lithium from primary and secondary sources by pretreatment, leaching and separation: a comprehensive review. Hydrometallurgy 150:192–208
3.
Zurück zum Zitat Geological Survey US (2019) Mineral commodity summaries 2019. U.S. Geological Survey, Reston, p 200 Geological Survey US (2019) Mineral commodity summaries 2019. U.S. Geological Survey, Reston, p 200
4.
Zurück zum Zitat Swain B (2017) Recovery and recycling of lithium: a review. Sep Purif Technol 172:388–403 Swain B (2017) Recovery and recycling of lithium: a review. Sep Purif Technol 172:388–403
5.
Zurück zum Zitat Grosjean C, Miranda PH, Perrin M, Poggi P (2012) Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew Sustain Energy Rev 16:1735–1744 Grosjean C, Miranda PH, Perrin M, Poggi P (2012) Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew Sustain Energy Rev 16:1735–1744
6.
Zurück zum Zitat Wietelmann U, Bauer RJ (2000) Lithium and lithium compounds. Ullmann's Encycl Ind Chem 21:339–366 Wietelmann U, Bauer RJ (2000) Lithium and lithium compounds. Ullmann's Encycl Ind Chem 21:339–366
7.
Zurück zum Zitat Shahmansouri A, Min J, Jin L, Bellona C (2015) Feasibility of extracting valuable minerals from desalination concentrate: a comprehensive literature review. J Clean Prod 100:4–16 Shahmansouri A, Min J, Jin L, Bellona C (2015) Feasibility of extracting valuable minerals from desalination concentrate: a comprehensive literature review. J Clean Prod 100:4–16
8.
Zurück zum Zitat Lv W, Wang Z, Cao H, Sun Y, Zhang Y, Sun Z (2018) A critical review and analysis on the recycling of spent Lithium-ion batteries. ACS Sustain Chem Eng 6:1504–1521 Lv W, Wang Z, Cao H, Sun Y, Zhang Y, Sun Z (2018) A critical review and analysis on the recycling of spent Lithium-ion batteries. ACS Sustain Chem Eng 6:1504–1521
10.
Zurück zum Zitat Xu X, Chen Y, Wan P, Gasem K, Wang K, He T, Adidharma H, Fan M (2016) Extraction of lithium with functionalized lithium ion-sieves. Prog Mater Sci 84:276–313 Xu X, Chen Y, Wan P, Gasem K, Wang K, He T, Adidharma H, Fan M (2016) Extraction of lithium with functionalized lithium ion-sieves. Prog Mater Sci 84:276–313
11.
Zurück zum Zitat Zhu G, Wang P, Qi P, Gao C (2014) Adsorption and desorption properties of Li+ on PVC-H1.6Mn1.6 O4 lithium ion-sieve membrane. Chem Eng J 235:340–348 Zhu G, Wang P, Qi P, Gao C (2014) Adsorption and desorption properties of Li+ on PVC-H1.6Mn1.6 O4 lithium ion-sieve membrane. Chem Eng J 235:340–348
12.
Zurück zum Zitat Saravaia H, Gupta H, Kulshrestha V (2016) Single step synthesis of a magnesium doped lithium manganese oxide ion sieve nanomaterial and a SPES/ion sieve composite membrane for the separation of lithium. RSC Adv 6:106980–106989 Saravaia H, Gupta H, Kulshrestha V (2016) Single step synthesis of a magnesium doped lithium manganese oxide ion sieve nanomaterial and a SPES/ion sieve composite membrane for the separation of lithium. RSC Adv 6:106980–106989
13.
Zurück zum Zitat Zhang Y, Hu Y, Wang L, Sun W (2019) Systematic review of lithium extraction from salt-lake brines via precipitation approaches. Miner Eng 139:105868 Zhang Y, Hu Y, Wang L, Sun W (2019) Systematic review of lithium extraction from salt-lake brines via precipitation approaches. Miner Eng 139:105868
14.
Zurück zum Zitat Swain B (2016) Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review. J Chem Technol Biotechnol 91(10):2549–2562 Swain B (2016) Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review. J Chem Technol Biotechnol 91(10):2549–2562
15.
Zurück zum Zitat Li W, Shi C, Zhou A, He X, Sun Y, Zhang J (2017) A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation. Sep Purif Technol 186:233–242 Li W, Shi C, Zhou A, He X, Sun Y, Zhang J (2017) A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation. Sep Purif Technol 186:233–242
16.
Zurück zum Zitat Hoshino T (2015) Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination 359:59–63 Hoshino T (2015) Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination 359:59–63
17.
Zurück zum Zitat Parsa N, Moheb A, Mehrabani-Zeinabad A, Masigol MA (2015) Recovery of lithium ions from sodium-contaminated lithium bromide solution by using electrodialysis process. Chem Eng Res Des 98:81–88 Parsa N, Moheb A, Mehrabani-Zeinabad A, Masigol MA (2015) Recovery of lithium ions from sodium-contaminated lithium bromide solution by using electrodialysis process. Chem Eng Res Des 98:81–88
18.
Zurück zum Zitat Ji PY, Ji ZY, Chen QB, Liu J, Zhao YY, Wang SZ, Li F, Yuan JS (2018) Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. Sep Purif Technol 207:1–11 Ji PY, Ji ZY, Chen QB, Liu J, Zhao YY, Wang SZ, Li F, Yuan JS (2018) Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis. Sep Purif Technol 207:1–11
19.
Zurück zum Zitat Nie XY, Sun SY, Sun Z, Song X, Yu JG (2017) Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion exchange membranes. Desalination 403:128–135 Nie XY, Sun SY, Sun Z, Song X, Yu JG (2017) Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion exchange membranes. Desalination 403:128–135
20.
Zurück zum Zitat Li X, Mo Y, Qing W, Shao S, Tang CY, Li J (2019) Membrane-based technologies for lithium recovery from water lithium resources: a review. J Membr Sci 591:117317 Li X, Mo Y, Qing W, Shao S, Tang CY, Li J (2019) Membrane-based technologies for lithium recovery from water lithium resources: a review. J Membr Sci 591:117317
21.
Zurück zum Zitat Lu J, Qin YY, Zhang Q, Wu YL, Cui JY, Li CX, Wang L, Yan YS (2018) Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone. Appl Surf Sci 427:931–941 Lu J, Qin YY, Zhang Q, Wu YL, Cui JY, Li CX, Wang L, Yan YS (2018) Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone. Appl Surf Sci 427:931–941
22.
Zurück zum Zitat Cui JY, Zhang YF, Wang Y, Ding JY, Yu PH, Yan YS, Li CX, Zhou ZP (2018) Fabrication of lithium ion imprinted hybrid membranes with antifouling performance for selective recovery of lithium, new. J Chem 42:118–128 Cui JY, Zhang YF, Wang Y, Ding JY, Yu PH, Yan YS, Li CX, Zhou ZP (2018) Fabrication of lithium ion imprinted hybrid membranes with antifouling performance for selective recovery of lithium, new. J Chem 42:118–128
23.
Zurück zum Zitat Zante G, Boltoeva M, Masmoudi A, Barillon R, Trébouet D (2019) Lithium extraction from complex aqueous solutions using supported ionic liquid membranes. J Membr Sci 580:62–76 Zante G, Boltoeva M, Masmoudi A, Barillon R, Trébouet D (2019) Lithium extraction from complex aqueous solutions using supported ionic liquid membranes. J Membr Sci 580:62–76
24.
Zurück zum Zitat Lu J, Zhang H, Hou J, Li X, Hu X, Hu Y et al (2020) Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat Mater 19:767–774 Lu J, Zhang H, Hou J, Li X, Hu X, Hu Y et al (2020) Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat Mater 19:767–774
25.
Zurück zum Zitat Razmjou A, Eshaghi G, Orooji Y, Hosseini E, Korayem AH, Mohagheghian F, Chen V (2019) Lithium ion-selective membrane with 2D subnanometer channels. Water Res 159:313–323 Razmjou A, Eshaghi G, Orooji Y, Hosseini E, Korayem AH, Mohagheghian F, Chen V (2019) Lithium ion-selective membrane with 2D subnanometer channels. Water Res 159:313–323
26.
Zurück zum Zitat Razmjou A, Asadnia M, Hosseini E, Habibnejad Korayem A, Chen V (2019) Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat Commun 10(1):1–15 Razmjou A, Asadnia M, Hosseini E, Habibnejad Korayem A, Chen V (2019) Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat Commun 10(1):1–15
27.
Zurück zum Zitat Yamada H, Takemoto K (2016) Local structure and composition change at surface of lithium-ion conducting solid electrolyte. Solid State Ionics 285:41–46 Yamada H, Takemoto K (2016) Local structure and composition change at surface of lithium-ion conducting solid electrolyte. Solid State Ionics 285:41–46
28.
Zurück zum Zitat Li Y, Xing Y (2015) Nafion coated lithium ion conducting ceramic for aqueous Li-air batteries. ECS Trans 64:31–37 Li Y, Xing Y (2015) Nafion coated lithium ion conducting ceramic for aqueous Li-air batteries. ECS Trans 64:31–37
29.
Zurück zum Zitat Agel E, Bouet J, Fauvarque JF (2001) Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources 101:267–274 Agel E, Bouet J, Fauvarque JF (2001) Characterization and use of anionic membranes for alkaline fuel cells. J Power Sources 101:267–274
30.
Zurück zum Zitat Selmane BHHE, Ouejhani A, Lalléve G, Fauvarque JF, Dachraoui M (2010) A novel anionic electrodialysis membrane can be used to remove nitrate and nitrite from wastewater. Desalin Water Treat 23:13–19 Selmane BHHE, Ouejhani A, Lalléve G, Fauvarque JF, Dachraoui M (2010) A novel anionic electrodialysis membrane can be used to remove nitrate and nitrite from wastewater. Desalin Water Treat 23:13–19
31.
Zurück zum Zitat Mabrouk W, Ogier L, Vidal S, Sollogoub C, Matoussi F, Fauvarque JF (2013) Ion exchange membranes based upon crosslinked sulfonated polyethersulfone for electrochemical applications. J Membr Sci 452:263–270 Mabrouk W, Ogier L, Vidal S, Sollogoub C, Matoussi F, Fauvarque JF (2013) Ion exchange membranes based upon crosslinked sulfonated polyethersulfone for electrochemical applications. J Membr Sci 452:263–270
32.
Zurück zum Zitat Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer-inorganic nanocomposite membranes for gaz separation. Sep Purif Technol 55:281–291 Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer-inorganic nanocomposite membranes for gaz separation. Sep Purif Technol 55:281–291
33.
Zurück zum Zitat Xu Z, Yu L, Han L (2009) Polymer-nanoinorganic particles composite membranes: a brief overview. Front Chem Eng China 3:318–329 Xu Z, Yu L, Han L (2009) Polymer-nanoinorganic particles composite membranes: a brief overview. Front Chem Eng China 3:318–329
34.
Zurück zum Zitat Laberty-Robert C, Valle K, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic-inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005 Laberty-Robert C, Valle K, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic-inorganic membranes for fuel cells. Chem Soc Rev 40:961–1005
35.
Zurück zum Zitat Stephan R, Ranganathaiah C, Vargèse S, Joseph K, Thomas S (2006) Gass transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer 47:1211–1221 Stephan R, Ranganathaiah C, Vargèse S, Joseph K, Thomas S (2006) Gass transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer 47:1211–1221
36.
Zurück zum Zitat Ghalloussi R, Garcia-Vasquez W, Bellakhal N, Larchet C, Dammak L, Huguet P, Grande D (2011) Ageing of ion-exchange membranes used in electrodialysis: investigation of static parameters, electrolyte permeability and tensile strength. Sep Purif Technol 80:270–275 Ghalloussi R, Garcia-Vasquez W, Bellakhal N, Larchet C, Dammak L, Huguet P, Grande D (2011) Ageing of ion-exchange membranes used in electrodialysis: investigation of static parameters, electrolyte permeability and tensile strength. Sep Purif Technol 80:270–275
37.
Zurück zum Zitat Lteif R, Dammak L, Larchet C, Auclair B (1999) Conductivitéélectrique membranaire: étude de l’effet de la concentration, de la nature de l’électrolyte et de la structure membranaire. Eur Polymer J 35(7):1187–1195 Lteif R, Dammak L, Larchet C, Auclair B (1999) Conductivitéélectrique membranaire: étude de l’effet de la concentration, de la nature de l’électrolyte et de la structure membranaire. Eur Polymer J 35(7):1187–1195
38.
Zurück zum Zitat Sarapulova V, Nevakshenova E, Pismenskaya N, Dammak L, Nikonenko V (2015) Unusual concentration dependence of ion-exchange membrane conductivity in ampholyte-containing solutions: effect of ampholyte nature. J Membr Sci 479:28–38 Sarapulova V, Nevakshenova E, Pismenskaya N, Dammak L, Nikonenko V (2015) Unusual concentration dependence of ion-exchange membrane conductivity in ampholyte-containing solutions: effect of ampholyte nature. J Membr Sci 479:28–38
39.
Zurück zum Zitat Belaid N, Ngom B, Dammak L, Larchet C, Auclair B (1999) Conductivité membranaire: interprétation et exploitation selon le modèle à solution interstitielle hétérogène. Eur Polymer J 35(5):879–897 Belaid N, Ngom B, Dammak L, Larchet C, Auclair B (1999) Conductivité membranaire: interprétation et exploitation selon le modèle à solution interstitielle hétérogène. Eur Polymer J 35(5):879–897
40.
Zurück zum Zitat Kim H, Suslick K (2018) The effects of ultrasound on crystals: sonocrystallization and sonofragmentation. Crystals 8:280–300 Kim H, Suslick K (2018) The effects of ultrasound on crystals: sonocrystallization and sonofragmentation. Crystals 8:280–300
41.
Zurück zum Zitat Jordens J, Appermont T, Gielen B, Van Gerven T, Braeken L (2016) Sonofragmentation: effect of ultrasound frequency and power on particle breakage. Cryst Growth Des 16:6167–6177 Jordens J, Appermont T, Gielen B, Van Gerven T, Braeken L (2016) Sonofragmentation: effect of ultrasound frequency and power on particle breakage. Cryst Growth Des 16:6167–6177
42.
Zurück zum Zitat Hussain T, Ahmad MN, Nawaz A, Mujahid A, Bashir F, Mustafa G (2017) Surfactant incorporated Co nanoparticles polymer composites with uniform dispersion and double percolation. J Chem 2017:1–6 Hussain T, Ahmad MN, Nawaz A, Mujahid A, Bashir F, Mustafa G (2017) Surfactant incorporated Co nanoparticles polymer composites with uniform dispersion and double percolation. J Chem 2017:1–6
43.
Zurück zum Zitat Huang GY, Xu SM, Li LY, Wang XJ (2014) Effect of surfactants on dispersion property and morphology of nano-sized nickel powders. Trans Nonferrous Met Soc China 24:3739–3746 Huang GY, Xu SM, Li LY, Wang XJ (2014) Effect of surfactants on dispersion property and morphology of nano-sized nickel powders. Trans Nonferrous Met Soc China 24:3739–3746
44.
Zurück zum Zitat Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Coll Interface Sci 128–130:5–15 Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Coll Interface Sci 128–130:5–15
45.
Zurück zum Zitat Bronstein LM, Dixit S, Tomaszewski J, Stein B, Svergun DI, Konarev PV, Shtykova E, Werner-Zwanziger U, Dragnea B (2006) Hybrid polymer particles with a protective shell: synthesis, structure, and templating. Chem Mater 18:2418–2430 Bronstein LM, Dixit S, Tomaszewski J, Stein B, Svergun DI, Konarev PV, Shtykova E, Werner-Zwanziger U, Dragnea B (2006) Hybrid polymer particles with a protective shell: synthesis, structure, and templating. Chem Mater 18:2418–2430
46.
Zurück zum Zitat Bdiri M, Dammak L, Larchet C, Hellal F, Porozhnyy M, Nevakshenova E, Nikonenko V (2018) Characterization and cleaning of anion-exchange membranes used in electrodialysis of polyphenol-containing food industry solutions; comparison with cation-exchange membranes. Sep Purif Technol 210:636–650 Bdiri M, Dammak L, Larchet C, Hellal F, Porozhnyy M, Nevakshenova E, Nikonenko V (2018) Characterization and cleaning of anion-exchange membranes used in electrodialysis of polyphenol-containing food industry solutions; comparison with cation-exchange membranes. Sep Purif Technol 210:636–650
47.
Zurück zum Zitat Cassady HJ, Cimino EC, Kumar M, Hickner MA (2016) Specific ion effects on the permselectivity of sulfonated poly(ether sulfone) cation exchange membranes. J Membr Sci 508:146–152 Cassady HJ, Cimino EC, Kumar M, Hickner MA (2016) Specific ion effects on the permselectivity of sulfonated poly(ether sulfone) cation exchange membranes. J Membr Sci 508:146–152
48.
Zurück zum Zitat Atkins P, Paula Jd (2006) Physical chemistry, 8th edn. Oxford University Press, New York Atkins P, Paula Jd (2006) Physical chemistry, 8th edn. Oxford University Press, New York
49.
Zurück zum Zitat Luo T, Abdu S, Wessling M (2018) Selectivity of ion exchange membranes: a review. J Membr Sci 555:429–454 Luo T, Abdu S, Wessling M (2018) Selectivity of ion exchange membranes: a review. J Membr Sci 555:429–454
50.
Zurück zum Zitat Hannachi C, Guesmi F, Marzouk I, Hamrouni B (2010) Effect of ionic strength on ion exchange equilibrium between cationic membranes and K+/Na+, K+/Li+ and Na+/Li+ binary systems. Desalin Water Treat 22(1–3):265–270 Hannachi C, Guesmi F, Marzouk I, Hamrouni B (2010) Effect of ionic strength on ion exchange equilibrium between cationic membranes and K+/Na+, K+/Li+ and Na+/Li+ binary systems. Desalin Water Treat 22(1–3):265–270
51.
Zurück zum Zitat Weinstock A (1998) Homogeneous-phase electron-transfer reactions of polyoxo-metarates. Chem Rev 98:113–170 Weinstock A (1998) Homogeneous-phase electron-transfer reactions of polyoxo-metarates. Chem Rev 98:113–170
52.
Zurück zum Zitat Guo Y, Ying Y, Mao Y, Peng X, Chen B (2016) Polystyrene sulfonate threaded through a metal–organic framework membrane for fast and selective lithium-ion separation. Angew Chem Int Ed 55:1–6 Guo Y, Ying Y, Mao Y, Peng X, Chen B (2016) Polystyrene sulfonate threaded through a metal–organic framework membrane for fast and selective lithium-ion separation. Angew Chem Int Ed 55:1–6
53.
Zurück zum Zitat Garifzyanov AR, Davletshina NV, Garipova AR, Cherkasov RA (2014) Sinergetic membrane extraction of lithium ions with new organophosphorus carriers. Russ J Gen Chem 84(2):285–288 Garifzyanov AR, Davletshina NV, Garipova AR, Cherkasov RA (2014) Sinergetic membrane extraction of lithium ions with new organophosphorus carriers. Russ J Gen Chem 84(2):285–288
54.
Zurück zum Zitat Wen Q et al (2016) Highly selective ionic transport through subnanometer pores in polymer films. Adv Funct Mater 26:5796–5803 Wen Q et al (2016) Highly selective ionic transport through subnanometer pores in polymer films. Adv Funct Mater 26:5796–5803
Metadaten
Titel
Novel lithium selective composite membranes: synthesis, characterization and validation tests in dialysis
Publikationsdatum
08.09.2020
Erschienen in
Journal of Materials Science / Ausgabe 34/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05147-8

Weitere Artikel der Ausgabe 34/2020

Journal of Materials Science 34/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.