Skip to main content
Erschienen in: Physics of Metals and Metallography 1/2020

01.01.2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Nucleation and Growth of Precipitates in a V-Microalloyed Steel According to Physical Theory and Experimental Results

verfasst von: S. F. Medina, P. Valles, J. Calvo, Jose M. Cabrera

Erschienen in: Physics of Metals and Metallography | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using a theoretical model, the nucleus number and nucleation time were determined for a V‑microalloyed steel. The calculated data has made it possible to plot the nucleus number vs. temperature, nucleation critical time vs. temperature, and precipitate critical radius vs. temperature. The nucleus number was calculated by integration of the nucleation rate expression. On the other hand, an experimental study was performed and the nucleation time vs. temperature was plotted (PTT diagram), thus allowing a comparison between the theoretical values and experimental results. It has been found that the growth of precipitates during precipitation obeys a quadratic growth equation and not a cubic coalescence equation. The experimentally determined growth rate coincides with the theoretically predicted growth rate. The experimental nucleation time is longer than the calculated time due to conceptual differences.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Xu, B. G. Thomas, and R. O’Malley, “Equilibrium model of precipitation in microalloyed steels,” Metall. Mater. Trans. A 42, 524–539 (2011).CrossRef K. Xu, B. G. Thomas, and R. O’Malley, “Equilibrium model of precipitation in microalloyed steels,” Metall. Mater. Trans. A 42, 524–539 (2011).CrossRef
2.
Zurück zum Zitat C. M. Sellars, “Modelling microstructural development during hot rolling,” Mater. Sci. Technol. 6, 1072–1081 (1990).CrossRef C. M. Sellars, “Modelling microstructural development during hot rolling,” Mater. Sci. Technol. 6, 1072–1081 (1990).CrossRef
3.
Zurück zum Zitat W. J. Liu, “A new theory and kinetic modelling of strain-induced precipitation of Nb (CN) in microalloyed austenite,” Metall. Mater. Trans. A 26, 1641–1657 (1995).CrossRef W. J. Liu, “A new theory and kinetic modelling of strain-induced precipitation of Nb (CN) in microalloyed austenite,” Metall. Mater. Trans. A 26, 1641–1657 (1995).CrossRef
4.
Zurück zum Zitat M. Gómez, S. F. Medina, A. Quispe, and P. Valles, “Static recrystallization and induced precipitation in a low Nb microalloyed steel,” ISIJ Int. 42, 423–431 (2002).CrossRef M. Gómez, S. F. Medina, A. Quispe, and P. Valles, “Static recrystallization and induced precipitation in a low Nb microalloyed steel,” ISIJ Int. 42, 423–431 (2002).CrossRef
5.
Zurück zum Zitat H. L. Andrade, M. G. Akben, and J. J. Jonas, “Effect of molybdenum, niobium, and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels,” Metall. Trans. A 14, 1967–1977(1983).CrossRef H. L. Andrade, M. G. Akben, and J. J. Jonas, “Effect of molybdenum, niobium, and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels,” Metall. Trans. A 14, 1967–1977(1983).CrossRef
6.
Zurück zum Zitat O. Kwon, “A technology for the prediction and control of microstructural changes and mechanical properties in steel,” ISIJ Int. 32, 350–358 (1992).CrossRef O. Kwon, “A technology for the prediction and control of microstructural changes and mechanical properties in steel,” ISIJ Int. 32, 350–358 (1992).CrossRef
7.
Zurück zum Zitat M. J. Luton, R. Dorvel, and R. A. Petkovic, “Interaction between deformation, recrystallization and precipitation in niobium steels,” Metall. Trans. A 11, 411–420 (1980).CrossRef M. J. Luton, R. Dorvel, and R. A. Petkovic, “Interaction between deformation, recrystallization and precipitation in niobium steels,” Metall. Trans. A 11, 411–420 (1980).CrossRef
8.
Zurück zum Zitat M. Gómez, L. Rancel, and S. F. Medina, “Effects of aluminium and nitrogen on static recrystallisation in V‑microalloyed steels,” Mater. Sci. Eng., A 506, 165–173 (2009).CrossRef M. Gómez, L. Rancel, and S. F. Medina, “Effects of aluminium and nitrogen on static recrystallisation in V‑microalloyed steels,” Mater. Sci. Eng., A 506, 165–173 (2009).CrossRef
9.
Zurück zum Zitat O. Kwon and A. DeArdo, “Interactions between recrystallization and precipitation in hot-deformed microalloyed steels,” Acta Metall. Mater. 39, 529–538 (1990).CrossRef O. Kwon and A. DeArdo, “Interactions between recrystallization and precipitation in hot-deformed microalloyed steels,” Acta Metall. Mater. 39, 529–538 (1990).CrossRef
10.
Zurück zum Zitat B. Dutta, E. Valdes, and C. M. Sellars, “Mechanisms and kinetics of strain induced precipitation of Nb(C,N) in austenite,” Acta Metall. Mater. 40, 653–662 (1992).CrossRef B. Dutta, E. Valdes, and C. M. Sellars, “Mechanisms and kinetics of strain induced precipitation of Nb(C,N) in austenite,” Acta Metall. Mater. 40, 653–662 (1992).CrossRef
11.
Zurück zum Zitat S. Verninckt, K. Verbeken, P. Thibaux, and Y. Houbaert, “Recrystallization- precipitation interaction during austenite hot deformation of a Nb microalloyed steel,” Mater. Sci. Eng., A 528, 5519–5528 (2011).CrossRef S. Verninckt, K. Verbeken, P. Thibaux, and Y. Houbaert, “Recrystallization- precipitation interaction during austenite hot deformation of a Nb microalloyed steel,” Mater. Sci. Eng., A 528, 5519–5528 (2011).CrossRef
12.
Zurück zum Zitat I. Andersen and O. Grong, “Analytical modelling of grain-growth in metals and alloys in the presence of growing and dissolving precipitates .1. Normal grain-growth,“ Acta Metall. Mater. 43, 2673–2688 (1995).CrossRef I. Andersen and O. Grong, “Analytical modelling of grain-growth in metals and alloys in the presence of growing and dissolving precipitates .1. Normal grain-growth,“ Acta Metall. Mater. 43, 2673–2688 (1995).CrossRef
13.
Zurück zum Zitat H. S. Zurob, Y. Brechet, and G. Purdy, “A model for the competition of precipitation and recrystallization in deformed austenite,”Acta Mater. 49, 4183–4190 (2001).CrossRef H. S. Zurob, Y. Brechet, and G. Purdy, “A model for the competition of precipitation and recrystallization in deformed austenite,”Acta Mater. 49, 4183–4190 (2001).CrossRef
14.
Zurück zum Zitat P. Maugis and M. Gouné, “Kinetics of vanadium carbonitride precipitation in steel: A computer model,” Acta Mater. 53, 3359–3367 (2005).CrossRef P. Maugis and M. Gouné, “Kinetics of vanadium carbonitride precipitation in steel: A computer model,” Acta Mater. 53, 3359–3367 (2005).CrossRef
15.
Zurück zum Zitat M. Mukherjee, U. Prahl, and W. Bleck, “Modelling the strain-induced precipitation kinetics of vanadium carbonitride during hot working of precipitation-hardened of ferritic-pearlitic steels,” Acta Mater. 71, 234–254 (2014).CrossRef M. Mukherjee, U. Prahl, and W. Bleck, “Modelling the strain-induced precipitation kinetics of vanadium carbonitride during hot working of precipitation-hardened of ferritic-pearlitic steels,” Acta Mater. 71, 234–254 (2014).CrossRef
16.
Zurück zum Zitat B. Dutta, E. J. Palmiere, and C. M. Sellars, “Modelling the kinetics of strain induced precipitation in Nb microalloyed steels,” Acta Mater. 49, 785–794 (2001).CrossRef B. Dutta, E. J. Palmiere, and C. M. Sellars, “Modelling the kinetics of strain induced precipitation in Nb microalloyed steels,” Acta Mater. 49, 785–794 (2001).CrossRef
17.
Zurück zum Zitat K. C. Russel, “Nucleation in solids: the induction and steady state effects,” Adv. Colloid Interface Sci. 13, 205–318 (1980).CrossRef K. C. Russel, “Nucleation in solids: the induction and steady state effects,” Adv. Colloid Interface Sci. 13, 205–318 (1980).CrossRef
18.
Zurück zum Zitat R. Wagner, R. Kampmann, and P. W. Voorhees, “Homogeneous Second Phase Precipitation,” in Phase Transformations in Materials, Materials Science Monographs, Ed. by G. Kostorz (Wiley–VCH, Weinheim, 1991). R. Wagner, R. Kampmann, and P. W. Voorhees, “Homogeneous Second Phase Precipitation,” in Phase Transformations in Materials, Materials Science Monographs, Ed. by G. Kostorz (Wiley–VCH, Weinheim, 1991).
19.
Zurück zum Zitat S. F. Medina, A. Quispe, and M. Gomez, “New model for strain induced precipitation kinetics in microalloyed steels,” Metall. Mater. Trans. A 45, 1524–1539 (2014).CrossRef S. F. Medina, A. Quispe, and M. Gomez, “New model for strain induced precipitation kinetics in microalloyed steels,” Metall. Mater. Trans. A 45, 1524–1539 (2014).CrossRef
20.
Zurück zum Zitat M. Perez, M. Dumont, and D. Acevedo-Reyes, “Implementation of classical nucleation and growth theories for precipitation,” Acta Mater. 56, 2119–2132 (2008).CrossRef M. Perez, M. Dumont, and D. Acevedo-Reyes, “Implementation of classical nucleation and growth theories for precipitation,” Acta Mater. 56, 2119–2132 (2008).CrossRef
21.
Zurück zum Zitat N. Fujita and H. K. D. H. Bhadeshia, “Modelling precipitation of niobium carbide in austenite: multicomponent diffusion, capillarity and coarsening,” Mater. Sci. Tecnol. 17, 403–408 (2001).CrossRef N. Fujita and H. K. D. H. Bhadeshia, “Modelling precipitation of niobium carbide in austenite: multicomponent diffusion, capillarity and coarsening,” Mater. Sci. Tecnol. 17, 403–408 (2001).CrossRef
22.
Zurück zum Zitat A. E. Salas-Reyes, I. Mejía, A. Bedolla-Jacuinde, A. Boulaajaj, J. Calvo, and J. M. Cabrera, “Hot ductility behavior of high-Mn austenitic Fe–22Mn–1.5Al–1.5Si–0.45C TWIP steels microalloyed with Ti and V,” Mater. Sci. Eng., A 611, 77–89 (2014).CrossRef A. E. Salas-Reyes, I. Mejía, A. Bedolla-Jacuinde, A. Boulaajaj, J. Calvo, and J. M. Cabrera, “Hot ductility behavior of high-Mn austenitic Fe–22Mn–1.5Al–1.5Si–0.45C TWIP steels microalloyed with Ti and V,” Mater. Sci. Eng., A 611, 77–89 (2014).CrossRef
23.
Zurück zum Zitat I. Mejía, A. E. Salas-Reyes, A. Bedolla-Jacuinde, J. Calvo, and J. M. Cabrera, “Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe–21Mn–1.3Al–1.5Si–0.5C TWIP steel,” Mater. Sci. Eng., A 616, 229–239 (2014).CrossRef I. Mejía, A. E. Salas-Reyes, A. Bedolla-Jacuinde, J. Calvo, and J. M. Cabrera, “Effect of Nb and Mo on the hot ductility behavior of a high-manganese austenitic Fe–21Mn–1.3Al–1.5Si–0.5C TWIP steel,” Mater. Sci. Eng., A 616, 229–239 (2014).CrossRef
24.
Zurück zum Zitat F. Perrard, A. Deschamps, and P. Maugis, “Modelling the precipitation of NbC on dislocations in α-Fe,” Acta Mater. 55, 1255–1266 (2007).CrossRef F. Perrard, A. Deschamps, and P. Maugis, “Modelling the precipitation of NbC on dislocations in α-Fe,” Acta Mater. 55, 1255–1266 (2007).CrossRef
25.
Zurück zum Zitat S. F. Medina, C. A. Hernández, and J. Ruiz, “Modelling austenite flow curves in low alloy and microalloyed steels,” Acta Mater. 44, 155–163 (1996).CrossRef S. F. Medina, C. A. Hernández, and J. Ruiz, “Modelling austenite flow curves in low alloy and microalloyed steels,” Acta Mater. 44, 155–163 (1996).CrossRef
26.
Zurück zum Zitat T. Gladman, The Physical Metallurgy of Microalloyed Steels (The Institute of Materials, London, 1997). T. Gladman, The Physical Metallurgy of Microalloyed Steels (The Institute of Materials, London, 1997).
27.
Zurück zum Zitat M. Perez, E. Courtois, D. Acevedo, T. Epicier, and P. Maugis, “Precipitation of niobium carbonitrides in ferrite: chemical composition measurements and thermodynamic modelling,” Philos. Mag. Lett. 87, 645–656 (2007).CrossRef M. Perez, E. Courtois, D. Acevedo, T. Epicier, and P. Maugis, “Precipitation of niobium carbonitrides in ferrite: chemical composition measurements and thermodynamic modelling,” Philos. Mag. Lett. 87, 645–656 (2007).CrossRef
28.
Zurück zum Zitat M. Perez and A. Deschamps, “Microscopic modelling of simultaneous two phase precipitation: application to carbide precipitation in low carbon steels,” Mater. Sci. Eng., A 360, 214–219 (2003).CrossRef M. Perez and A. Deschamps, “Microscopic modelling of simultaneous two phase precipitation: application to carbide precipitation in low carbon steels,” Mater. Sci. Eng., A 360, 214–219 (2003).CrossRef
29.
Zurück zum Zitat H. Oikawa, “Lattice diffusion in iron—A review,” Trans. Iron Steel Inst. Jpn. 68, 1489–1497 (1982).CrossRef H. Oikawa, “Lattice diffusion in iron—A review,” Trans. Iron Steel Inst. Jpn. 68, 1489–1497 (1982).CrossRef
30.
Zurück zum Zitat J. Ardell, “The effect of volume fraction on particle coarsening: theoretical considerations,” Acta Metall. 20, 61–71 (1972).CrossRef J. Ardell, “The effect of volume fraction on particle coarsening: theoretical considerations,” Acta Metall. 20, 61–71 (1972).CrossRef
31.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the solubility of carbonitrides in low-carbon low-alloy steels,” Phys. Met. Metallogr. 117, 1277–1287 (2016).CrossRef I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the solubility of carbonitrides in low-carbon low-alloy steels,” Phys. Met. Metallogr. 117, 1277–1287 (2016).CrossRef
32.
Zurück zum Zitat A. Deschamps, and Y. Brechet, “Influence of predeformation and ageing of an Al-Zn-Mg alloy-II. Modelling of precipitation kinetics and yield stress,” Acta Mater. 47, 293–305 (1999).CrossRef A. Deschamps, and Y. Brechet, “Influence of predeformation and ageing of an Al-Zn-Mg alloy-II. Modelling of precipitation kinetics and yield stress,” Acta Mater. 47, 293–305 (1999).CrossRef
33.
Zurück zum Zitat Z. Baochun, Z. Tan, L. Guiyan, and L. Qiang, “Metadynamic recrystallizaton behavior of a vanadium–nitrogen microalloyed steel,” Met. Mater. Int. 21, 692–697 (2015).CrossRef Z. Baochun, Z. Tan, L. Guiyan, and L. Qiang, “Metadynamic recrystallizaton behavior of a vanadium–nitrogen microalloyed steel,” Met. Mater. Int. 21, 692–697 (2015).CrossRef
34.
Zurück zum Zitat S. F. Medina, L. Rancel, M. Gómez, R. Ishak, and M. De Sanctis, “Intragranular nucleation of ferrite on precipitates and grain refinement in a hot deformed V‑microalloyed steel,” ISIJ Int. 48, 1063–1608 (2008).CrossRef S. F. Medina, L. Rancel, M. Gómez, R. Ishak, and M. De Sanctis, “Intragranular nucleation of ferrite on precipitates and grain refinement in a hot deformed V‑microalloyed steel,” ISIJ Int. 48, 1063–1608 (2008).CrossRef
35.
Zurück zum Zitat M. Gomez, L. Rancel, and S. F. Medina, “Effects of aluminium and nitrogen on static recrystallisation in V‑microalloyed steels,” Mater. Sci. Eng., A, 506, 165–173 (2009).CrossRef M. Gomez, L. Rancel, and S. F. Medina, “Effects of aluminium and nitrogen on static recrystallisation in V‑microalloyed steels,” Mater. Sci. Eng., A, 506, 165–173 (2009).CrossRef
36.
Zurück zum Zitat S. F. Medina, “From heterogeneous to homogeneous nucleation for precipitation in austenite of microalloyed steels,” Acta Mater. 84, 202–207 (2015).CrossRef S. F. Medina, “From heterogeneous to homogeneous nucleation for precipitation in austenite of microalloyed steels,” Acta Mater. 84, 202–207 (2015).CrossRef
37.
Zurück zum Zitat W. Hui, S. Chen, Y. Zhang, C. Shao, and H. Dong, “Effect of vanadium on the high-cycle fatigue fracture properties of medium-carbon microalloyed steel for fracture splitting connecting rod,” Mater. Des. 66, 227–234 (2015).CrossRef W. Hui, S. Chen, Y. Zhang, C. Shao, and H. Dong, “Effect of vanadium on the high-cycle fatigue fracture properties of medium-carbon microalloyed steel for fracture splitting connecting rod,” Mater. Des. 66, 227–234 (2015).CrossRef
38.
Zurück zum Zitat V. V. Popov, I. I. Gorbachev, and J. A. Alyabieva, “Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei,” Philos. Mag. 85, 2449–2467 (2005).CrossRef V. V. Popov, I. I. Gorbachev, and J. A. Alyabieva, “Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei,” Philos. Mag. 85, 2449–2467 (2005).CrossRef
Metadaten
Titel
Nucleation and Growth of Precipitates in a V-Microalloyed Steel According to Physical Theory and Experimental Results
verfasst von
S. F. Medina
P. Valles
J. Calvo
Jose M. Cabrera
Publikationsdatum
01.01.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 1/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2001010X

Weitere Artikel der Ausgabe 1/2020

Physics of Metals and Metallography 1/2020 Zur Ausgabe