Skip to main content
Erschienen in: Applied Composite Materials 3/2016

01.06.2016

Numerical and Experimental Investigations on Deep Drawing of G1151 Carbon Fiber Woven Composites

verfasst von: A. Gherissi, F. Abbassi, A. Ammar, A. Zghal

Erschienen in: Applied Composite Materials | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study proposes to simulate the deep drawing on carbon woven composites in order to reduce the manufacturing cost and waste of composite material during the stamping process, The multi-scale anisotropic approach of woven composite was used to develop a finite element model for simulating the orientation of fibers accurately and predicting the deformation of composite during mechanical tests and forming process. The proposed experimental investigation for bias test and hemispherical deep drawing process is investigated in the G1151 Interlock. The mechanical properties of carbon fiber have great influence on the deformation of carbon fiber composites. In this study, shear angle–displacement curves and shear load–shear angle curves were obtained from a bias extension test. Deep drawing experiments and simulation were conducted, and the shear load–displacement curves under different forming depths and shear angle–displacement curves were obtained. The results showed that the compression and shear between fibers bundles were the main deformation mechanism of carbon fiber woven composite, as well as the maximum shear angle for the composites with G1151 woven fiber was 58°. In addition, during the drawing process, it has been found that the forming depth has a significant influence on the drawing force. It increases rapidly with the increasing of forming depth. In this approach the suitable forming depth deep drawing of the sheet carbon fiber woven composite was approximately 45 mm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang Q., Cai J., Gao Q.: Simulation and experimental study on thermal deep drawing of carbon fiber woven composites. J. Mater. Process. Technol. 214, 802–810 (2014)CrossRef Zhang Q., Cai J., Gao Q.: Simulation and experimental study on thermal deep drawing of carbon fiber woven composites. J. Mater. Process. Technol. 214, 802–810 (2014)CrossRef
2.
Zurück zum Zitat Boisse Ph. Hamila N., Badel P., Vidal-Sallé E., Simulations éléments-finis de la déformation de textiles aux échelles macro et mésoscopique, Mécanique & Industries 10, (2009)15–19. Boisse Ph. Hamila N., Badel P., Vidal-Sallé E., Simulations éléments-finis de la déformation de textiles aux échelles macro et mésoscopique, Mécanique & Industries 10, (2009)15–19.
3.
Zurück zum Zitat Nguyen Q.T., Vidal-Sallé E., Ph B., Park C.H., Saouab A., Bréard J.: Hivet. G. Mesoscopic scale analyses of textile composite reinforcement compaction. Compos. Part B. 44(1), 231–241 (2013)CrossRef Nguyen Q.T., Vidal-Sallé E., Ph B., Park C.H., Saouab A., Bréard J.: Hivet. G. Mesoscopic scale analyses of textile composite reinforcement compaction. Compos. Part B. 44(1), 231–241 (2013)CrossRef
4.
Zurück zum Zitat Sagar T.V., Potluri P., Hearle J.W.S.: Textile composites group: mesoscale modelling of interlaced fibre assemblies using energy method. Comput. Mater. Sci. 28, 49–62 (2003)CrossRef Sagar T.V., Potluri P., Hearle J.W.S.: Textile composites group: mesoscale modelling of interlaced fibre assemblies using energy method. Comput. Mater. Sci. 28, 49–62 (2003)CrossRef
5.
Zurück zum Zitat Assidi M., Ben B.B.: Ganghoffer J.F.. equivalent properties of monolayer fabric from mesoscopic modelling strategies. Int. J. Solids Struct. 48, 2920–2930 (2011)CrossRef Assidi M., Ben B.B.: Ganghoffer J.F.. equivalent properties of monolayer fabric from mesoscopic modelling strategies. Int. J. Solids Struct. 48, 2920–2930 (2011)CrossRef
6.
Zurück zum Zitat Ten Thije R.H.W., Akkerman R., Huetink J.: Large deformation simulation of anisotropic material using an updated lagrangian finite element method. Comput. Methods Appl. Mech. Eng. 196, 3141–3150 (2007)CrossRef Ten Thije R.H.W., Akkerman R., Huetink J.: Large deformation simulation of anisotropic material using an updated lagrangian finite element method. Comput. Methods Appl. Mech. Eng. 196, 3141–3150 (2007)CrossRef
7.
Zurück zum Zitat Boisse P., Zouari B., Gassert A.: A mesoscopic approach for the simulation of woven fibre forming. Compos. Sci. Technol. 65, 429–436 (2005)CrossRef Boisse P., Zouari B., Gassert A.: A mesoscopic approach for the simulation of woven fibre forming. Compos. Sci. Technol. 65, 429–436 (2005)CrossRef
8.
Zurück zum Zitat Boisse P., Zouari B., Daniel J.L.: Importance of in-plane shear rigidity in finite element analyses of woven fabric composite preforming. Composites Part A. 37-12, 2201–2212 (2006)CrossRef Boisse P., Zouari B., Daniel J.L.: Importance of in-plane shear rigidity in finite element analyses of woven fabric composite preforming. Composites Part A. 37-12, 2201–2212 (2006)CrossRef
9.
Zurück zum Zitat Peng X., Guo Z., Du T., Yu W.R.: A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation. Compos. Part B. 52, 275–281 (2013)CrossRef Peng X., Guo Z., Du T., Yu W.R.: A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation. Compos. Part B. 52, 275–281 (2013)CrossRef
10.
Zurück zum Zitat Ben B.B., Haussy B., Ganghoffer J.F.: Discrete models of woven structures. Macroscopic Approach. Composites Part B. 38, 498–505 (2007)CrossRef Ben B.B., Haussy B., Ganghoffer J.F.: Discrete models of woven structures. Macroscopic Approach. Composites Part B. 38, 498–505 (2007)CrossRef
11.
Zurück zum Zitat Ben B.B., Haussy B.: Mesoscopic fabric models using a discrete mass-spring approach: yarn-yarn interactions analysis. J. Mater. Sci. 40, 5925–5932 (2005)CrossRef Ben B.B., Haussy B.: Mesoscopic fabric models using a discrete mass-spring approach: yarn-yarn interactions analysis. J. Mater. Sci. 40, 5925–5932 (2005)CrossRef
12.
Zurück zum Zitat Haanappel S.P., Ten Thije R.H.W., Sachs U., Rietman B., Akkerman R.: Formability analyses of uni-directional and textile reinforced thermoplastics. Compos. Part A. 56, 80–92 (2014)CrossRef Haanappel S.P., Ten Thije R.H.W., Sachs U., Rietman B., Akkerman R.: Formability analyses of uni-directional and textile reinforced thermoplastics. Compos. Part A. 56, 80–92 (2014)CrossRef
13.
Zurück zum Zitat Harrison P., Gomes R., Curado-Correia N.: Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry. Compos. Part A. 54, 56–69 (2013)CrossRef Harrison P., Gomes R., Curado-Correia N.: Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry. Compos. Part A. 54, 56–69 (2013)CrossRef
14.
Zurück zum Zitat Gatouillat S., Bareggi A., Vidal-Sallé E., Boisse P.: Meso modelling for composite preform shaping – simulation of the loss of cohesion of the woven fibre network. Compos. Part A. 54, 135–144 (2013)CrossRef Gatouillat S., Bareggi A., Vidal-Sallé E., Boisse P.: Meso modelling for composite preform shaping – simulation of the loss of cohesion of the woven fibre network. Compos. Part A. 54, 135–144 (2013)CrossRef
15.
Zurück zum Zitat Allaoui S., Launay J., Soulat D., Chatel S., Experimental tool of woven reinforcement forming. Int. J. Mater. Form., April 2008 Volume 1, Issue 1, pp 815–818. Allaoui S., Launay J., Soulat D., Chatel S., Experimental tool of woven reinforcement forming. Int. J. Mater. Form., April 2008 Volume 1, Issue 1, pp 815–818.
16.
Zurück zum Zitat Allaoui S., Hivet G., Wendling A., Soulat D., Chatel S. (7–10 June, 2010). Experimental approach for optimizing dry fabric formability. the 14th European Conference on Composite Materials (ECCM 14), Budapest, Hungary, ID347- ECCM14. Allaoui S., Hivet G., Wendling A., Soulat D., Chatel S. (7–10 June, 2010). Experimental approach for optimizing dry fabric formability. the 14th European Conference on Composite Materials (ECCM 14), Budapest, Hungary, ID347- ECCM14.
17.
Zurück zum Zitat Launay J., Hivet G., Duong A.V., Boisse P.: Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos. Sci. Technol. 68(2), 506–515 (2008)CrossRef Launay J., Hivet G., Duong A.V., Boisse P.: Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos. Sci. Technol. 68(2), 506–515 (2008)CrossRef
18.
Zurück zum Zitat Boisse P., Hamila N., Vidal-Salle E., Dumont F.: Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses-. Compos. Sci. Technol. 71(5), 683 (2011)CrossRef Boisse P., Hamila N., Vidal-Salle E., Dumont F.: Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses-. Compos. Sci. Technol. 71(5), 683 (2011)CrossRef
19.
Zurück zum Zitat Onate E., Zarate F.: Rotation-free triangular plate and shell elements Int. J. for Numerical Method in Engineering. 47, 557–603 (2000)CrossRef Onate E., Zarate F.: Rotation-free triangular plate and shell elements Int. J. for Numerical Method in Engineering. 47, 557–603 (2000)CrossRef
20.
Zurück zum Zitat Sabourin F., Brunet M.: Detailed formulation of the rotation-free triangular element “S3” for general purpose shell analysis. Eng. Comput. 23(5), 469–502 (2006)CrossRef Sabourin F., Brunet M.: Detailed formulation of the rotation-free triangular element “S3” for general purpose shell analysis. Eng. Comput. 23(5), 469–502 (2006)CrossRef
21.
Zurück zum Zitat CAO J., Akkerman R., Boisse P., Chen J., Cheng H.S., de Graaf E.F., Gorczyca J.L., Harrison P., Hivet G., Launay J., Lee W., Liud L., Lomov S.V., Long A., de Luycker E., Morestin F., Padvoiskis J., Peng X.Q., Sherwood J.: Stoilova Tz., Tao X.M., verpoest I., Willems a., wiggers J., Yu T.X., Zhu B.: characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos. A: Appl. Sci. Manuf. 39, 1037–1053 (2008)CrossRef CAO J., Akkerman R., Boisse P., Chen J., Cheng H.S., de Graaf E.F., Gorczyca J.L., Harrison P., Hivet G., Launay J., Lee W., Liud L., Lomov S.V., Long A., de Luycker E., Morestin F., Padvoiskis J., Peng X.Q., Sherwood J.: Stoilova Tz., Tao X.M., verpoest I., Willems a., wiggers J., Yu T.X., Zhu B.: characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos. A: Appl. Sci. Manuf. 39, 1037–1053 (2008)CrossRef
22.
Zurück zum Zitat Gatouillat S. Approche mésoscopique pour la mise en forme des renforts tissés de composites, PhD (2010) l'Institut National des Sciences Appliquées de Lyon. Gatouillat S. Approche mésoscopique pour la mise en forme des renforts tissés de composites, PhD (2010) l'Institut National des Sciences Appliquées de Lyon.
23.
Zurück zum Zitat Allaoui S., Hivet G., Soulat D., Wendling A., Ouagne P., Chatel S., Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement, Int. J. Mater. Form. 7 (2), 155–165 Allaoui S., Hivet G., Soulat D., Wendling A., Ouagne P., Chatel S., Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement, Int. J. Mater. Form. 7 (2), 155–165
24.
Zurück zum Zitat Abaqus Version 6.11, 2011. Analysis User's Manual. Dassault Systemes Simulia Corp., Providence, RI. Abaqus Version 6.11, 2011. Analysis User's Manual. Dassault Systemes Simulia Corp., Providence, RI.
25.
Zurück zum Zitat De Luycker E., Morestin F., Boisse P., Marsal D.: Numerical analysis of 3D interlock composite preforming. Int. J. Mater. Form. 1, 843–846 (2012)CrossRef De Luycker E., Morestin F., Boisse P., Marsal D.: Numerical analysis of 3D interlock composite preforming. Int. J. Mater. Form. 1, 843–846 (2012)CrossRef
26.
Zurück zum Zitat Cherouat A., Louis B.J.: Mechanical and numerical modelling of composite manufacturing processes deep-drawing and laying-up of thin pre-impregnated woven fabrics. J. Mater. Process. Technol. 118, 460–471 (2001)CrossRef Cherouat A., Louis B.J.: Mechanical and numerical modelling of composite manufacturing processes deep-drawing and laying-up of thin pre-impregnated woven fabrics. J. Mater. Process. Technol. 118, 460–471 (2001)CrossRef
Metadaten
Titel
Numerical and Experimental Investigations on Deep Drawing of G1151 Carbon Fiber Woven Composites
verfasst von
A. Gherissi
F. Abbassi
A. Ammar
A. Zghal
Publikationsdatum
01.06.2016
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 3/2016
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-015-9468-x

Weitere Artikel der Ausgabe 3/2016

Applied Composite Materials 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.