Skip to main content
Erschienen in: Fluid Dynamics 2/2021

01.03.2021

Numerical Investigation of the Characteristics and Interference Effect of Flow Past Multi-Cylinder at Low Reynolds Numbers

verfasst von: Jianjun Yin, Tao Jia, Di Gao

Erschienen in: Fluid Dynamics | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The flow around an staggered arrangement of seven cylinders is numerically studied using the finite element method to solve the two-dimensional and incompressible Navier—Stokes equations. The Reynolds number is 200 and the spacing ratios \(L{\text{/}}D\) = 1.1–5. In accordance with different hydrodynamic characteristics and vortex street arrangements, three distinct forms of wake flow can be identified, namely, the single bluff-body pattern (\(1.1 < L{\text{/}}D < 1.5\)), the deflected pattern (\(1.5 < L{\text{/}}D\) < 3), and the vortex impact pattern (\(3 < L{\text{/}}D < 5\)). For the further in-depth study of the characteristics of different wake patterns, the variations of the hydrodynamic forces on seven cylinders and the underlying mechanisms are analyzed and the wake structures are presented. The results of the analysis show that the gap flow under different wake patterns has different effects on the change of the hydrodynamic characteristics. It is found that the change of the wake structure is closely related to the change of the wake pattern.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat A. N. Mikheev, N. I. Mikheev, and V. M. Molochnikov, “Vortex formation behind a cylinder in a fluctuating flow,” Fluid Dynamics 49(5), 596–601 (2014).CrossRef A. N. Mikheev, N. I. Mikheev, and V. M. Molochnikov, “Vortex formation behind a cylinder in a fluctuating flow,” Fluid Dynamics 49(5), 596–601 (2014).CrossRef
3.
Zurück zum Zitat B. G. Sanli and H. Akilli, “Effects of permeable cylinder on the flow structure in deep water,” Fluid Dynamics 53(5), 711–721 (2018).CrossRef B. G. Sanli and H. Akilli, “Effects of permeable cylinder on the flow structure in deep water,” Fluid Dynamics 53(5), 711–721 (2018).CrossRef
4.
Zurück zum Zitat G. V. Papaioannou, D. K. P. Yue, M. S. Triantafyllou, and G. E. Karniadakis, “Three-dimensionality effects in flow around two tandem cylinders,” J. Fluid Mech. 558, 387–413 (2006).ADSCrossRef G. V. Papaioannou, D. K. P. Yue, M. S. Triantafyllou, and G. E. Karniadakis, “Three-dimensionality effects in flow around two tandem cylinders,” J. Fluid Mech. 558, 387–413 (2006).ADSCrossRef
5.
Zurück zum Zitat D. Sumner, S. J. Price, and M. P. Païdoussis, “Flow-pattern identification for two staggered circular cylinders in cross-flow,” J. Fluid Mech. 411, 263–303 (2000).ADSCrossRef D. Sumner, S. J. Price, and M. P. Païdoussis, “Flow-pattern identification for two staggered circular cylinders in cross-flow,” J. Fluid Mech. 411, 263–303 (2000).ADSCrossRef
6.
Zurück zum Zitat M. Y. Younis, M. M. Alam, and Y. Zhou, “Flow around two non-parallel tandem cylinders,” Phys. Fluids 28(12), 125106 (2016).ADSCrossRef M. Y. Younis, M. M. Alam, and Y. Zhou, “Flow around two non-parallel tandem cylinders,” Phys. Fluids 28(12), 125106 (2016).ADSCrossRef
7.
Zurück zum Zitat Z. F. Gu and T. F Sun, “Classifications of flow pattern on three circular cylinders in equilateral-triangular arrangements,” J. Wind Eng. Industr. Aerodynamics 89(6), 553–568 (2001).CrossRef Z. F. Gu and T. F Sun, “Classifications of flow pattern on three circular cylinders in equilateral-triangular arrangements,” J. Wind Eng. Industr. Aerodynamics 89(6), 553–568 (2001).CrossRef
8.
Zurück zum Zitat M. S. Bansal and S. Yarusevych, “Experimental study of flow through a cluster of three equally spaced cylinders,” Exp. Therm. Fluid Sci. 80, 203–217 (2017).CrossRef M. S. Bansal and S. Yarusevych, “Experimental study of flow through a cluster of three equally spaced cylinders,” Exp. Therm. Fluid Sci. 80, 203–217 (2017).CrossRef
9.
Zurück zum Zitat K. Lam and X. Fang, “The effect of interference of four equispaced cylinders in cross flow on pressure and force coefficients,” J. Fluids Structures 9(2), 195–214 (1995).ADSCrossRef K. Lam and X. Fang, “The effect of interference of four equispaced cylinders in cross flow on pressure and force coefficients,” J. Fluids Structures 9(2), 195–214 (1995).ADSCrossRef
10.
Zurück zum Zitat K. Lam, J. Y. Li, K. T. Chan, and R. M. C. So, “Flow pattern and velocity field distribution of cross-flow around four cylinders in a square configuration at a low Reynolds number,” J. Fluids Structures 17(5), 665–679 (2003).ADSCrossRef K. Lam, J. Y. Li, K. T. Chan, and R. M. C. So, “Flow pattern and velocity field distribution of cross-flow around four cylinders in a square configuration at a low Reynolds number,” J. Fluids Structures 17(5), 665–679 (2003).ADSCrossRef
11.
Zurück zum Zitat K. Lam, J.Y. Li, and R. M. C. So, “Force coefficients and Strouhal numbers of four cylinders in cross flow,” J. Fluids Structures 18(3–4), 305–324 (2003).ADSCrossRef K. Lam, J.Y. Li, and R. M. C. So, “Force coefficients and Strouhal numbers of four cylinders in cross flow,” J. Fluids Structures 18(3–4), 305–324 (2003).ADSCrossRef
12.
Zurück zum Zitat K. Lam and L. Zou, “Experimental study and large eddy simulation for the turbulent flow around four cylinders in an in-line square configuration,” Intern. J. Heat Fluid Flow 30(2), 276–285 (2009).CrossRef K. Lam and L. Zou, “Experimental study and large eddy simulation for the turbulent flow around four cylinders in an in-line square configuration,” Intern. J. Heat Fluid Flow 30(2), 276–285 (2009).CrossRef
13.
Zurück zum Zitat K. Lam and L. Zou, “Three-dimensional numerical simulations of cross-flow around four cylinders in an in-line square configuration,” J. Fluids Structures 26(3), 482–502 (2010).ADSCrossRef K. Lam and L. Zou, “Three-dimensional numerical simulations of cross-flow around four cylinders in an in-line square configuration,” J. Fluids Structures 26(3), 482–502 (2010).ADSCrossRef
14.
Zurück zum Zitat F. Tong, L. Cheng, M. Zhao, T. Zhou, and X. Chen, “The vortex shedding around four circular cylinders in an in-line square configuration,” Phys. Fluids 26(2), 024112 (2014).ADSCrossRef F. Tong, L. Cheng, M. Zhao, T. Zhou, and X. Chen, “The vortex shedding around four circular cylinders in an in-line square configuration,” Phys. Fluids 26(2), 024112 (2014).ADSCrossRef
15.
Zurück zum Zitat A. Nicolle and I. Eames, “Numerical study of flow through and around a circular array of cylinders,” J. Fluid Mech. 679, 1–31 (2011).ADSCrossRef A. Nicolle and I. Eames, “Numerical study of flow through and around a circular array of cylinders,” J. Fluid Mech. 679, 1–31 (2011).ADSCrossRef
16.
Zurück zum Zitat L. Zong and H. Nepf, “Vortex development behind a finite porous obstruction in a channel,” J. Fluid Mech. 691, 368–391 (2011).ADSCrossRef L. Zong and H. Nepf, “Vortex development behind a finite porous obstruction in a channel,” J. Fluid Mech. 691, 368–391 (2011).ADSCrossRef
17.
Zurück zum Zitat I. Eames, J. C. R. Hunt, and S. E. Belcher, “Inviscid mean flow through and around groups of bodies,” J. Fluid Mech. 515, 371–389 (2004).ADSMathSciNetCrossRef I. Eames, J. C. R. Hunt, and S. E. Belcher, “Inviscid mean flow through and around groups of bodies,” J. Fluid Mech. 515, 371–389 (2004).ADSMathSciNetCrossRef
18.
Zurück zum Zitat B. Ghadiri Dehkordi and H. Houri Jafari, “Numerical simulation of flow through tube bundles in in-line square and general staggered arrangements,” Intern. J. Numer. Methods for Heat & Fluid Flow 19(8), 1038–1062 (2009). B. Ghadiri Dehkordi and H. Houri Jafari, “Numerical simulation of flow through tube bundles in in-line square and general staggered arrangements,” Intern. J. Numer. Methods for Heat & Fluid Flow 19(8), 1038–1062 (2009).
19.
Zurück zum Zitat B. L. Da Silva, R. D. Luciano, J. Utzig, and H. F. Meier, “Flow patterns and turbulence effects in large cylinder arrays,” Intern. J. Heat Fluid Flow 69, 136–149 (2018).CrossRef B. L. Da Silva, R. D. Luciano, J. Utzig, and H. F. Meier, “Flow patterns and turbulence effects in large cylinder arrays,” Intern. J. Heat Fluid Flow 69, 136–149 (2018).CrossRef
20.
Zurück zum Zitat B. L. Da Silva, R. D. Luciano, J. Utzig, and H. F. Meier, “Analysis of flow behavior and fluid forces in large cylinder bundles by numerical simulations,” Intern. J. Heat Fluid Flow 75, 209–226 (2019).CrossRef B. L. Da Silva, R. D. Luciano, J. Utzig, and H. F. Meier, “Analysis of flow behavior and fluid forces in large cylinder bundles by numerical simulations,” Intern. J. Heat Fluid Flow 75, 209–226 (2019).CrossRef
21.
Zurück zum Zitat W. Y. Chang, G. Constantinescu, and W. F. Tsai, “Effect of array submergence on flow and coherent structures through and around a circular array of rigid vertical cylinders,” Phys. Fluids 32(3), 035110 (2020).ADSCrossRef W. Y. Chang, G. Constantinescu, and W. F. Tsai, “Effect of array submergence on flow and coherent structures through and around a circular array of rigid vertical cylinders,” Phys. Fluids 32(3), 035110 (2020).ADSCrossRef
22.
Zurück zum Zitat K. Chang and G. Constantinescu, “Numerical investigation of flow and turbulence structure through and around a circular array of rigid cylinders,” J. Fluid Mech. 776, 161–199 (2015).ADSCrossRef K. Chang and G. Constantinescu, “Numerical investigation of flow and turbulence structure through and around a circular array of rigid cylinders,” J. Fluid Mech. 776, 161–199 (2015).ADSCrossRef
23.
Zurück zum Zitat T.J. Barth and D.C. Jespersen, “The design and application of upwind schemes on unstructured meshes,” AIAA Paper 89–0366 (1989). T.J. Barth and D.C. Jespersen, “The design and application of upwind schemes on unstructured meshes,” AIAA Paper 89–0366 (1989).
24.
Zurück zum Zitat J. G. Rice and R. J. Schnipke, “An equal-order velocity-pressure formulation that does not exhibit spurious pressure modes,” Computer Methods in Applied Mechanics and Engineering 58(2), 135–149 (1986).ADSCrossRef J. G. Rice and R. J. Schnipke, “An equal-order velocity-pressure formulation that does not exhibit spurious pressure modes,” Computer Methods in Applied Mechanics and Engineering 58(2), 135–149 (1986).ADSCrossRef
25.
Zurück zum Zitat T. Farrant, M. Tan, and W. G. Price, “A cell boundary element method applied to laminar vortex-shedding from arrays of cylinders in various arrangements,” J. Fluids Structures 14(3), 375–402 (2000).ADSCrossRef T. Farrant, M. Tan, and W. G. Price, “A cell boundary element method applied to laminar vortex-shedding from arrays of cylinders in various arrangements,” J. Fluids Structures 14(3), 375–402 (2000).ADSCrossRef
26.
Zurück zum Zitat J. R. Meneghini, F. Saltara, C. L. R. Siqueira, and J. A. Ferrari, “Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements,” J. Fluids Structures 15(2), 327–350 (2001).ADSCrossRef J. R. Meneghini, F. Saltara, C. L. R. Siqueira, and J. A. Ferrari, “Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements,” J. Fluids Structures 15(2), 327–350 (2001).ADSCrossRef
27.
Zurück zum Zitat K. Lam, W. Q. Gong, and R. M. C. So, “Numerical simulation of cross-flow around four cylinders in an in-line square configuration,” J. Fluids Structures 24(1), 34–57 (2008).ADSCrossRef K. Lam, W. Q. Gong, and R. M. C. So, “Numerical simulation of cross-flow around four cylinders in an in-line square configuration,” J. Fluids Structures 24(1), 34–57 (2008).ADSCrossRef
28.
Zurück zum Zitat C. Norberg, “Flow around a circular cylinder: Aspects of fluctuating lift,” J. Fluids Structures 15, 459–469 (2001).ADSCrossRef C. Norberg, “Flow around a circular cylinder: Aspects of fluctuating lift,” J. Fluids Structures 15, 459–469 (2001).ADSCrossRef
29.
Zurück zum Zitat A. Nicolle and I. Eames, “Numerical study of flow through and around a circular array of cylinders,” J. Fluid Mech. 679, 1–31 (2011).ADSCrossRef A. Nicolle and I. Eames, “Numerical study of flow through and around a circular array of cylinders,” J. Fluid Mech. 679, 1–31 (2011).ADSCrossRef
30.
Zurück zum Zitat M. S. Bansal and S. Yarusevych, “Experimental study of flow through a cluster of three equally spaced cylinders,” Exper. Thermal Fluid Sci. 80, 203–217 (2017).CrossRef M. S. Bansal and S. Yarusevych, “Experimental study of flow through a cluster of three equally spaced cylinders,” Exper. Thermal Fluid Sci. 80, 203–217 (2017).CrossRef
31.
Zurück zum Zitat K. Lam and W. C. Cheung, “Phenomena of vortex shedding and flow interference of three cylinders in different equilateral arrangements,” J. Fluid Mech. 196, 1–26 (1988).ADSCrossRef K. Lam and W. C. Cheung, “Phenomena of vortex shedding and flow interference of three cylinders in different equilateral arrangements,” J. Fluid Mech. 196, 1–26 (1988).ADSCrossRef
32.
Zurück zum Zitat A. S. Zhang and L. Zhang, “Equilateral arrangement of three cylindrical flow around the numerical analysis,” Chinese J. Appl. Mech. 20(1), 31–36 (2003).ADS A. S. Zhang and L. Zhang, “Equilateral arrangement of three cylindrical flow around the numerical analysis,” Chinese J. Appl. Mech. 20(1), 31–36 (2003).ADS
33.
Zurück zum Zitat C. Liu, X. Zheng, and C. H. Sung, “Preconditioned multigrid methods for unsteady incompressible flows,” J. Comput. Phys. 139, 35–57 (1998).ADSCrossRef C. Liu, X. Zheng, and C. H. Sung, “Preconditioned multigrid methods for unsteady incompressible flows,” J. Comput. Phys. 139, 35–57 (1998).ADSCrossRef
Metadaten
Titel
Numerical Investigation of the Characteristics and Interference Effect of Flow Past Multi-Cylinder at Low Reynolds Numbers
verfasst von
Jianjun Yin
Tao Jia
Di Gao
Publikationsdatum
01.03.2021
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 2/2021
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462821020130

Weitere Artikel der Ausgabe 2/2021

Fluid Dynamics 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.