Skip to main content
Erschienen in: Strength of Materials 5/2022

05.12.2022

Numerical Investigation of the Influence of Circular Fillings on the Failure Mechanism in Samples Containing Nonpersistent Joints Under Shear Loading Conditions

verfasst von: Y. Zhou, J. W. Fu, D. C. Wang, H. Haeri, L. J. Sun, C. L. Guo

Erschienen in: Strength of Materials | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the current research, the influence of filling on the failure mechanism of nonpersistent joints under applied shear stress has been scrutinized using particle flow code (PFC2D). Additionally, the effects of nonpersistent joints on tunnel stability in jointed samples have been investigated. First, to reproduce the concrete specimen, PF2D was calibrated. The modeled samples with dimensions of 100×100 mm were numerically solved. The notch lengths were 15, 10, and 5 mm. The circular filling was situated in the middle part of the model, and the filling diameter was 30 mm. Gypsum materials have been employed to study the filling of modeled samples. The flat joint model was used for calibration. The tensile strengths of the concrete and gypsum samples were 3.4 and 1.4 MPa, respectively. Finally, shear tests were carried out on nine models. A shear load of 0.001 mm/sec was applied until the model’s failure occurred. The results indicated that for fixed notch lengths and under normal loading conditions, shear cracks were induced in the filling layer. The tensile cracks were initiated from the original crack (joint) tips and extended within the model until coalescence with other joints and extended toward the model’s boundaries. The maximum shear displacements accompanied by the shear strengths of the models increased with decreasing joint filling for the fixed notch lengths.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. J. Song, “Distribution-free method for estimating size distribution and volumetric frequency of rock joints,” Int. J. Rock Mech. Min. Sci., 46, 748–760 (2009).CrossRef J. J. Song, “Distribution-free method for estimating size distribution and volumetric frequency of rock joints,” Int. J. Rock Mech. Min. Sci., 46, 748–760 (2009).CrossRef
2.
Zurück zum Zitat Q. Deng and P. Zhang, “Research on the geometry of shear fracture zones,” J. Geophys. Res. Solid Earth, 89, 5699–5710 (1984).CrossRef Q. Deng and P. Zhang, “Research on the geometry of shear fracture zones,” J. Geophys. Res. Solid Earth, 89, 5699–5710 (1984).CrossRef
3.
Zurück zum Zitat P. Segall and D. D. Pollard, “Nucleation and growth of strike slip faults in granite,” J. Geophys. Res. Solid Earth , 88, 555–568 (1983).CrossRef P. Segall and D. D. Pollard, “Nucleation and growth of strike slip faults in granite,” J. Geophys. Res. Solid Earth , 88, 555–568 (1983).CrossRef
4.
Zurück zum Zitat Y. Cheng, L. N. Y. Wong, and C. Zou, “Experimental study on the formation of faults from en-echelon fractures in Carrara marble,” Eng. Geol., 195, 312–326 (2015).CrossRef Y. Cheng, L. N. Y. Wong, and C. Zou, “Experimental study on the formation of faults from en-echelon fractures in Carrara marble,” Eng. Geol., 195, 312–326 (2015).CrossRef
5.
Zurück zum Zitat C. Gehle and H. K. Kutter, “Breakage and shear behaviour of intermittent rock joints,” Int. J. Rock Mech. Min. Sci., 40, 687–700 (2003).CrossRef C. Gehle and H. K. Kutter, “Breakage and shear behaviour of intermittent rock joints,” Int. J. Rock Mech. Min. Sci., 40, 687–700 (2003).CrossRef
6.
Zurück zum Zitat Z. Tuckey and D. Stead, “Improvements of field and remote sensing methods for mapping discontinuity persistence and intact rock bridges in rock slopes,” Eng. Geol., 208, 136–153 (2016).CrossRef Z. Tuckey and D. Stead, “Improvements of field and remote sensing methods for mapping discontinuity persistence and intact rock bridges in rock slopes,” Eng. Geol., 208, 136–153 (2016).CrossRef
7.
Zurück zum Zitat J. P. Seidel and C. M. Haberfield, “A theoretical model for rock joints subjected to constant normal stiffness direct shear,” Int. J. Rock Mech. Min. Sci., 39, 539–553 (2002).CrossRef J. P. Seidel and C. M. Haberfield, “A theoretical model for rock joints subjected to constant normal stiffness direct shear,” Int. J. Rock Mech. Min. Sci., 39, 539–553 (2002).CrossRef
8.
Zurück zum Zitat Y. Jiang, B. Li, and Y. Tanabashi, “Estimating the relation between surface roughness and mechanical properties of rock joints,” Int. J. Rock Mech. Min. Sci., 43, 837–846 (2006).CrossRef Y. Jiang, B. Li, and Y. Tanabashi, “Estimating the relation between surface roughness and mechanical properties of rock joints,” Int. J. Rock Mech. Min. Sci., 43, 837–846 (2006).CrossRef
9.
Zurück zum Zitat Y. Ge, P. H. S.W. Kulatilake, H. Tang, and C. Xiong, “Investigation of natural rock joint roughness,” Comput. Geotech., 55, 290–305 (2014).CrossRef Y. Ge, P. H. S.W. Kulatilake, H. Tang, and C. Xiong, “Investigation of natural rock joint roughness,” Comput. Geotech., 55, 290–305 (2014).CrossRef
10.
Zurück zum Zitat Y.-K. Lee, J.-W. Park, J.-J. Song, “Model for the shear behavior of rock joints under CNL and CNS conditions,” Int. J. Rock Mech. Min. Sci., 70, 252–263 (2014).CrossRef Y.-K. Lee, J.-W. Park, J.-J. Song, “Model for the shear behavior of rock joints under CNL and CNS conditions,” Int. J. Rock Mech. Min. Sci., 70, 252–263 (2014).CrossRef
11.
Zurück zum Zitat Y. Ge, H. Tang, M. A. M. Ez Eldin, et al., “Evolution process of natural rock joint roughness during direct shear tests,” Int. J. Geomech., 17, E4016013 (2017).CrossRef Y. Ge, H. Tang, M. A. M. Ez Eldin, et al., “Evolution process of natural rock joint roughness during direct shear tests,” Int. J. Geomech., 17, E4016013 (2017).CrossRef
12.
Zurück zum Zitat S. H. Prassetyo, M. Gutierrez, and N. Barton, “Nonlinear shear behavior of rock joints using a linearized implementation of the Barton–Bandis model,” J. Rock Mech. Geotech. Eng., 9, 671–682 (2017). S. H. Prassetyo, M. Gutierrez, and N. Barton, “Nonlinear shear behavior of rock joints using a linearized implementation of the Barton–Bandis model,” J. Rock Mech. Geotech. Eng., 9, 671–682 (2017).
13.
Zurück zum Zitat Q. Zhang, X. Li, B. Bai, and H. Hu, “The shear behavior of sandstone joints under different fluid and temperature conditions,” Eng. Geol., 257, 105143 (2019). Q. Zhang, X. Li, B. Bai, and H. Hu, “The shear behavior of sandstone joints under different fluid and temperature conditions,” Eng. Geol., 257, 105143 (2019).
14.
Zurück zum Zitat R. Liu, S. Lou, X. Li, et al., “Anisotropic surface roughness and shear behaviors of rough-walled plaster joints under constant normal load and constant normal stiffness conditions,” J. RockMech. Geotech. Eng., 12, 338–352 (2020).CrossRef R. Liu, S. Lou, X. Li, et al., “Anisotropic surface roughness and shear behaviors of rough-walled plaster joints under constant normal load and constant normal stiffness conditions,” J. RockMech. Geotech. Eng., 12, 338–352 (2020).CrossRef
15.
Zurück zum Zitat A. Ghazvinian, M. R. Nikudel, and V. Sarfarazi, “Effect of rock bridge continuity and area on shear behavior of joints,” in: Proc. of the Int. Soc. for Rock Mechanics and Rock Engineering, Lisbon, Portugal (2007). A. Ghazvinian, M. R. Nikudel, and V. Sarfarazi, “Effect of rock bridge continuity and area on shear behavior of joints,” in: Proc. of the Int. Soc. for Rock Mechanics and Rock Engineering, Lisbon, Portugal (2007).
16.
Zurück zum Zitat A. Ghazvinian, V. Sarfarazi, W. Schubert, and M. Blumel, “A study of the failure mechanism of planar non-persistent open joints using PFC2D,” Rock Mech. Rock Eng., 45, 677–693 (2012). A. Ghazvinian, V. Sarfarazi, W. Schubert, and M. Blumel, “A study of the failure mechanism of planar non-persistent open joints using PFC2D,” Rock Mech. Rock Eng., 45, 677–693 (2012).
17.
Zurück zum Zitat M. Jiang, J. Liu, G. B Crosta, and T. Li, “DEM Analysis of the effect of joint geometry on the shear behavior of rocks,” Comptes Rendus Mécanique, 345, 779–796 (2017).CrossRef M. Jiang, J. Liu, G. B Crosta, and T. Li, “DEM Analysis of the effect of joint geometry on the shear behavior of rocks,” Comptes Rendus Mécanique, 345, 779–796 (2017).CrossRef
18.
Zurück zum Zitat D. Elmo, D. Donati, and D. Stead, “Challenges in the characterisation of intact rock bridges in rock slopes,” Eng. Geol., 245, 81–96 (2018).CrossRef D. Elmo, D. Donati, and D. Stead, “Challenges in the characterisation of intact rock bridges in rock slopes,” Eng. Geol., 245, 81–96 (2018).CrossRef
19.
Zurück zum Zitat D. Shaunik and M. Singh, “Strength behaviour of a model rock intersected by non-persistent joint,” J. Rock Mech. Geotech. Eng., 11, 1243–1255 (2019).CrossRef D. Shaunik and M. Singh, “Strength behaviour of a model rock intersected by non-persistent joint,” J. Rock Mech. Geotech. Eng., 11, 1243–1255 (2019).CrossRef
20.
Zurück zum Zitat J. Shang, Z. Zhao, J. Hu, and K. Handley, “3D Particle-based DEM investigation into the shear behaviour of incipient rock joints with various geometries of rock bridges,” Rock Mech. Rock Eng., 51, 3563–3584 (2018).CrossRef J. Shang, Z. Zhao, J. Hu, and K. Handley, “3D Particle-based DEM investigation into the shear behaviour of incipient rock joints with various geometries of rock bridges,” Rock Mech. Rock Eng., 51, 3563–3584 (2018).CrossRef
21.
Zurück zum Zitat C. Romer and M. Ferentinou, “Numerical investigations of rock bridge effect on open pit slope stability,” J. Rock Mech. Geotech. Eng., 11, 1184–1200 (2019).CrossRef C. Romer and M. Ferentinou, “Numerical investigations of rock bridge effect on open pit slope stability,” J. Rock Mech. Geotech. Eng., 11, 1184–1200 (2019).CrossRef
22.
Zurück zum Zitat M. Bahaaddini, G. Sharrock, and B. K. Hebblewhite, “Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression,” Computers and Geotechnics, 49, 206−225 (2013).CrossRef M. Bahaaddini, G. Sharrock, and B. K. Hebblewhite, “Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression,” Computers and Geotechnics, 49, 206−225 (2013).CrossRef
23.
Zurück zum Zitat D. O. Potyondy and P. A. Cundall, “A bonded-particle model for rock,” Int. J. Rock Mech. Min. Sci., 41, No. 8, 1329–1364 (2004).CrossRef D. O. Potyondy and P. A. Cundall, “A bonded-particle model for rock,” Int. J. Rock Mech. Min. Sci., 41, No. 8, 1329–1364 (2004).CrossRef
24.
Zurück zum Zitat V. Sarfarazi, A. Ghazvinian, W. Schubert, et al., “Numerical simulation of the process of fracture of echelon rock joints,” Rock Mech Rock Eng., 47, No. 4, 1355–1371 (2014).CrossRef V. Sarfarazi, A. Ghazvinian, W. Schubert, et al., “Numerical simulation of the process of fracture of echelon rock joints,” Rock Mech Rock Eng., 47, No. 4, 1355–1371 (2014).CrossRef
Metadaten
Titel
Numerical Investigation of the Influence of Circular Fillings on the Failure Mechanism in Samples Containing Nonpersistent Joints Under Shear Loading Conditions
verfasst von
Y. Zhou
J. W. Fu
D. C. Wang
H. Haeri
L. J. Sun
C. L. Guo
Publikationsdatum
05.12.2022
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 5/2022
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-022-00465-5

Weitere Artikel der Ausgabe 5/2022

Strength of Materials 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.