Skip to main content
Erschienen in: BIT Numerical Mathematics 4/2020

12.05.2020

Numerical method with fractional splines for a subdiffusion problem

verfasst von: Carla Jesus, Ercília Sousa

Erschienen in: BIT Numerical Mathematics | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider a subdiffusion problem described by a time fractional Riemann–Liouville derivative of order \(0<\alpha <1\). The main purpose of this work is to show how we can apply fractional splines of order \(0<\beta \le 1\) to approximate a fractional integral and hence how to solve the subdiffusion problem using this approach. To discuss the convergence of the numerical method we present the error bounds for the fractional splines and the fractional integral approximations and study the von Neumann stability analysis. We observe that, depending on the smoothness of the solution, the order of convergence will be affected by the values of \(\alpha \) and \(\beta \). Numerical tests are presented along the work to highlight several properties of the fractional splines and the numerical tests in the end illustrate the performance of the numerical method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Angstmann, C.N., Donnelly, I.C., Henry, B.I., Jacobs, B.A., Langlands, T.A.M., Nichols, J.A.: From stochastic processes to numerical methods: a new scheme for solving reaction subdiffusion fractional partial differential equations. J. Comput. Phys. 307, 508–534 (2016)MathSciNetCrossRef Angstmann, C.N., Donnelly, I.C., Henry, B.I., Jacobs, B.A., Langlands, T.A.M., Nichols, J.A.: From stochastic processes to numerical methods: a new scheme for solving reaction subdiffusion fractional partial differential equations. J. Comput. Phys. 307, 508–534 (2016)MathSciNetCrossRef
2.
Zurück zum Zitat Blu, T., Unser, M.: Quantitative Fourier analysis of approximation techniques. Part II: Wavelets. IEEE Trans. Signal Process. 47, 2796–2806 (1999)MathSciNetCrossRef Blu, T., Unser, M.: Quantitative Fourier analysis of approximation techniques. Part II: Wavelets. IEEE Trans. Signal Process. 47, 2796–2806 (1999)MathSciNetCrossRef
3.
Zurück zum Zitat Chen, C.M., Liu, F., Turner, I., Ahn, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)MathSciNetCrossRef Chen, C.M., Liu, F., Turner, I., Ahn, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)MathSciNetCrossRef
4.
Zurück zum Zitat Gustafsson, B., Kreiss, H.-O., Oliger, J.: The Time Dependent Problems and Finite Difference Methods. Wiley, Hoboken (1995)MATH Gustafsson, B., Kreiss, H.-O., Oliger, J.: The Time Dependent Problems and Finite Difference Methods. Wiley, Hoboken (1995)MATH
5.
Zurück zum Zitat Heinsalu, E., Patriarca, M., Goychuk, I., Hänggi, P.: Use and abuse of a fractional Fokker–Planck dynamics for time-dependent driving. Phys. Rev. Lett. 99, 120602 (2007)CrossRef Heinsalu, E., Patriarca, M., Goychuk, I., Hänggi, P.: Use and abuse of a fractional Fokker–Planck dynamics for time-dependent driving. Phys. Rev. Lett. 99, 120602 (2007)CrossRef
6.
Zurück zum Zitat Huang, C., Stynes, M., An, N.: Optimal \(L^\infty (L^2)\) error analysis of a direct discontinuous Galerkin method for a time-fractional reaction-diffusion problem. BIT Numer. Math. 58, 661–690 (2018)CrossRef Huang, C., Stynes, M., An, N.: Optimal \(L^\infty (L^2)\) error analysis of a direct discontinuous Galerkin method for a time-fractional reaction-diffusion problem. BIT Numer. Math. 58, 661–690 (2018)CrossRef
7.
Zurück zum Zitat Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)MathSciNetMATH Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)MathSciNetMATH
8.
Zurück zum Zitat Kopteva, N.: Error analysis of the \(L1\) method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)MathSciNetCrossRef Kopteva, N.: Error analysis of the \(L1\) method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)MathSciNetCrossRef
9.
Zurück zum Zitat Le, K.N., McLean, W., Mustapha, K.: Numerical solution of the time fractional Fokker–Planck equation with general forcing. SIAM J. Numer. Anal. 54, 1763–1784 (2016)MathSciNetCrossRef Le, K.N., McLean, W., Mustapha, K.: Numerical solution of the time fractional Fokker–Planck equation with general forcing. SIAM J. Numer. Anal. 54, 1763–1784 (2016)MathSciNetCrossRef
10.
Zurück zum Zitat Li, C., Deng, W., Wu, Y.: Finite difference approximations and dynamics simulations for the Lévy fractional Klein–Kramers equation. Numer. Methods Partial Differ. Equ. 28, 1944–1965 (2012)CrossRef Li, C., Deng, W., Wu, Y.: Finite difference approximations and dynamics simulations for the Lévy fractional Klein–Kramers equation. Numer. Methods Partial Differ. Equ. 28, 1944–1965 (2012)CrossRef
11.
Zurück zum Zitat Li, C., Zhang, F.: Numerical Methods for Fractional Calculus. CRC Press, Boca Raton (2015)CrossRef Li, C., Zhang, F.: Numerical Methods for Fractional Calculus. CRC Press, Boca Raton (2015)CrossRef
12.
Zurück zum Zitat Magdziarz, M., Gajda, J., Zorawik, T.: Comment on fractional Fokker–Planck equation with space and time dependent drift and diffusion. J. Stat. Phys. 154, 1242–1250 (2014)MathSciNetCrossRef Magdziarz, M., Gajda, J., Zorawik, T.: Comment on fractional Fokker–Planck equation with space and time dependent drift and diffusion. J. Stat. Phys. 154, 1242–1250 (2014)MathSciNetCrossRef
13.
Zurück zum Zitat Marden, M.: Geometry of Polynomials. American Mathematical Society, Providence (1989)MATH Marden, M.: Geometry of Polynomials. American Mathematical Society, Providence (1989)MATH
14.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRef Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRef
15.
Zurück zum Zitat Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)MathSciNetCrossRef Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)MathSciNetCrossRef
16.
Zurück zum Zitat Nichols, J.A., Henry, B.I., Angstmann, C.N.: Subdiffusive discrete time random walks via Monte Carlo and subordination. J. Comput. Phys. 372, 373–384 (2018)MathSciNetCrossRef Nichols, J.A., Henry, B.I., Angstmann, C.N.: Subdiffusive discrete time random walks via Monte Carlo and subordination. J. Comput. Phys. 372, 373–384 (2018)MathSciNetCrossRef
17.
Zurück zum Zitat Pezza, L., Pitolli, F.: A fractional spline collocation-Galerkin method for the time fractional diffusion equation. Commun. Appl. Ind. Math. 9, 104–120 (2018)MathSciNetMATH Pezza, L., Pitolli, F.: A fractional spline collocation-Galerkin method for the time fractional diffusion equation. Commun. Appl. Ind. Math. 9, 104–120 (2018)MathSciNetMATH
18.
Zurück zum Zitat Pinto, L., Sousa, E.: Numerical solution of a time-space fractional Fokker Planck equation with variable force field and diffusion. Commun. Nonlinear Sci. Numer. Simul. 50, 211–228 (2017)MathSciNetCrossRef Pinto, L., Sousa, E.: Numerical solution of a time-space fractional Fokker Planck equation with variable force field and diffusion. Commun. Nonlinear Sci. Numer. Simul. 50, 211–228 (2017)MathSciNetCrossRef
19.
Zurück zum Zitat Tang, T.: A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 11, 309–319 (1993)MathSciNetCrossRef Tang, T.: A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 11, 309–319 (1993)MathSciNetCrossRef
20.
Zurück zum Zitat Unser, M.: Splines: a perfect fit for signal and image processing. IEEE Signal Process. Mag. 16, 22–38 (1999)CrossRef Unser, M.: Splines: a perfect fit for signal and image processing. IEEE Signal Process. Mag. 16, 22–38 (1999)CrossRef
22.
Zurück zum Zitat Wang, Y.M.: A compact finite difference method for solving a class of time fractional convection-subdiffusion equations. BIT Numer. Math. 55, 1187–1217 (2015)MathSciNetCrossRef Wang, Y.M.: A compact finite difference method for solving a class of time fractional convection-subdiffusion equations. BIT Numer. Math. 55, 1187–1217 (2015)MathSciNetCrossRef
23.
Zurück zum Zitat Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetCrossRef Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)MathSciNetCrossRef
24.
Zurück zum Zitat Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)MathSciNetCrossRef Zeng, F., Zhang, Z., Karniadakis, G.E.: Fast difference schemes for solving high-dimensional time-fractional subdiffusion equations. J. Comput. Phys. 307, 15–33 (2016)MathSciNetCrossRef
25.
Zurück zum Zitat Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)MathSciNetCrossRef Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)MathSciNetCrossRef
Metadaten
Titel
Numerical method with fractional splines for a subdiffusion problem
verfasst von
Carla Jesus
Ercília Sousa
Publikationsdatum
12.05.2020
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 4/2020
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-020-00808-1

Weitere Artikel der Ausgabe 4/2020

BIT Numerical Mathematics 4/2020 Zur Ausgabe

Premium Partner