Skip to main content
Erschienen in: Environmental Earth Sciences 5/2019

01.03.2019 | Original Article

Numerical modeling on flow of groundwater energies in transient well capture zones

verfasst von: Nitha Ayinippully Nalarajan, Suresh Kumar Govindarajan, Indumathi M. Nambi

Erschienen in: Environmental Earth Sciences | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Capture zone delineation is indispensable in all wellhead protection programs for the safeguarding of groundwater supplies. Transients in the flow model tend to influence the capture zone geometry over time. Thus, transient analyses of well capture zones are superior to the steady-state analogs for all practical cases with time-varying flow parameters. Energy gradients drive groundwater flow like any other natural phenomena. Along with the evolving capture zone, energy transformations within the model domain were also, therefore, assessed to portray the state of the system with time. The energy components, in the form of frictional dissipation and change in internal energy, were estimated at all time steps beside delineating the capture zones. This paper numerically models a two-dimensional homogeneous isotropic confined aquifer and thereby delineating the capture zones by subsequent examination of the energies within. The energy approach facilitated the identification of areas having pronounced transient behavior compared to the entire region within the capture zone and model domain. The current study reveals that there was an unusual increase in the internal energy term for two time periods of the entire cycle investigated and highlighted the compressibility effects of the system. This has been correlated to the change in the distribution of capture fraction values within the capture zones of those specific time periods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson MP, Woessner William W, Hunt Randall J (2015) Applied groundwater modeling: simulation of flow and advective transport. Academic Press, Cambridge Anderson MP, Woessner William W, Hunt Randall J (2015) Applied groundwater modeling: simulation of flow and advective transport. Academic Press, Cambridge
Zurück zum Zitat Barry F, Ophori D, Hoffman J, Canace R (2009) Groundwater flow and capture zone analysis of the Central Passaic River Basin, New Jersey. Environ Geol 56:1593–1603CrossRef Barry F, Ophori D, Hoffman J, Canace R (2009) Groundwater flow and capture zone analysis of the Central Passaic River Basin, New Jersey. Environ Geol 56:1593–1603CrossRef
Zurück zum Zitat Baú DA (2012) Planning of groundwater supply systems subject to uncertainty using stochastic flow reduced models and multi-objective evolutionary optimization. Water Resour Manag 26:2513–2536CrossRef Baú DA (2012) Planning of groundwater supply systems subject to uncertainty using stochastic flow reduced models and multi-objective evolutionary optimization. Water Resour Manag 26:2513–2536CrossRef
Zurück zum Zitat Cleary TCBF, Cleary RW (1991) Delineation of wellhead protection areas: theory and practice. Water Sci Technol 24(11):239–250CrossRef Cleary TCBF, Cleary RW (1991) Delineation of wellhead protection areas: theory and practice. Water Sci Technol 24(11):239–250CrossRef
Zurück zum Zitat Cooley RL (1992) A MODular Finite-Element model (MODFE) for areal and axisymmetric ground-water-flow problems, part 2—derivation of finite-element equations and comparisons with analytical solutions: U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, Chap. A4. United States Government Printing Office, Washington, D.C., United States, p 108 Cooley RL (1992) A MODular Finite-Element model (MODFE) for areal and axisymmetric ground-water-flow problems, part 2—derivation of finite-element equations and comparisons with analytical solutions: U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, Chap. A4. ​​United States Government Printing Office, Washington, D.C., United States, p 108
Zurück zum Zitat Fetter CW (2001) Applied hydrogeology fourth edition. Prentice Hall, Upper Saddle River Fetter CW (2001) Applied hydrogeology fourth edition. Prentice Hall, Upper Saddle River
Zurück zum Zitat Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Upper Saddle River Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Upper Saddle River
Zurück zum Zitat Frind EO, Muhammad DS, Molson JW (2002) Delineation of three-dimensional well capture zones for complex multi-aquifer systems. Ground Water 40(6):586–598CrossRef Frind EO, Muhammad DS, Molson JW (2002) Delineation of three-dimensional well capture zones for complex multi-aquifer systems. Ground Water 40(6):586–598CrossRef
Zurück zum Zitat Grubb S (1993) Analytical model for estimation of steady-state capture zones of pumping wells in confined and unconfined aquifers. Ground Water 31(1):27–32CrossRef Grubb S (1993) Analytical model for estimation of steady-state capture zones of pumping wells in confined and unconfined aquifers. Ground Water 31(1):27–32CrossRef
Zurück zum Zitat Karney B, Seneviratne A (1991) Application of energy concepts to groundwater flow: time-step control and integrated sensitivity analysis. Water Resour Res 27(12):3225–3235CrossRef Karney B, Seneviratne A (1991) Application of energy concepts to groundwater flow: time-step control and integrated sensitivity analysis. Water Resour Res 27(12):3225–3235CrossRef
Zurück zum Zitat Kraemer SR, Haitjema HM, Kelson VA (2005) Working with WhAEM2000: capture zone delineation for a city wellfield in a valley fill glacial outwash aquifer supporting wellhead protection. U.S. Environmental Protection Agency, Washington, DC (EPA/600/R-05/151 (NTIS PB2006-102381)) Kraemer SR, Haitjema HM, Kelson VA (2005) Working with WhAEM2000: capture zone delineation for a city wellfield in a valley fill glacial outwash aquifer supporting wellhead protection. U.S. Environmental Protection Agency, Washington, DC (EPA/600/R-05/151 (NTIS PB2006-102381))
Zurück zum Zitat Landmeyer JE (1994) Description and application of capture zone delineation for a wellfield at Hilton Head Island, South Carolina. U.S. Geological Survey, Water-Resources Investigations Report 94-4012 Landmeyer JE (1994) Description and application of capture zone delineation for a wellfield at Hilton Head Island, South Carolina. U.S. Geological Survey, Water-Resources Investigations Report 94-4012
Zurück zum Zitat Lohman SW (1972) Ground-water hydraulics: U.S. geological survey professional paper 708. United States Government Printing Office, Washington, D.C., United States, p 70 Lohman SW (1972) Ground-water hydraulics: U.S. geological survey professional paper 708. ​United States Government Printing Office, Washington, D.C., United States, p 70
Zurück zum Zitat Margat J, van der Gun J (2013) Groundwater around the world: a geographic synopsis. CRC Press/Balkema, Leiden Margat J, van der Gun J (2013) Groundwater around the world: a geographic synopsis. CRC Press/Balkema, Leiden
Zurück zum Zitat Nitha AN, Suresh Kumar G, Nambi IM (2018) Analyzing the flow of energies within the well capture zones under steady state conditions. Groundw Sustain Dev 6:134–140CrossRef Nitha AN, Suresh Kumar G, Nambi IM (2018) Analyzing the flow of energies within the well capture zones under steady state conditions. Groundw Sustain Dev 6:134–140CrossRef
Zurück zum Zitat Oosterbaan RJ, Boonstra J, Rao KVGK (1996) The energy balance of groundwater flow. Published. In: Singh VP, Kumar B (eds) Subsurface-water hydrology. Kluwer Academic Publishers, Dordrecht, pp 153–160CrossRef Oosterbaan RJ, Boonstra J, Rao KVGK (1996) The energy balance of groundwater flow. Published. In: Singh VP, Kumar B (eds) Subsurface-water hydrology. Kluwer Academic Publishers, Dordrecht, pp 153–160CrossRef
Zurück zum Zitat Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing, Washington, DC Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing, Washington, DC
Zurück zum Zitat Phillips OM (2003) Groundwater flow patterns in extensive shallow aquifers with gentle relief: theory and application to the Galena/Locust Grove region of eastern Maryland. Water Resour Res 39(6):1149CrossRef Phillips OM (2003) Groundwater flow patterns in extensive shallow aquifers with gentle relief: theory and application to the Galena/Locust Grove region of eastern Maryland. Water Resour Res 39(6):1149CrossRef
Zurück zum Zitat Pollock DW (1988) Semianalytical computation of path lines for finite-difference models. Ground Water 26(6):743–750CrossRef Pollock DW (1988) Semianalytical computation of path lines for finite-difference models. Ground Water 26(6):743–750CrossRef
Zurück zum Zitat Pollock DW (2012) User Guide for MODPATH Version 6—A Particle-tracking Model for MODFLOW, book 6, chap. A41. U.S. Geological Survey Techniques and Methods, Washington, DC Pollock DW (2012) User Guide for MODPATH Version 6—A Particle-tracking Model for MODFLOW, book 6, chap. A41. U.S. Geological Survey Techniques and Methods, Washington, DC
Zurück zum Zitat Potter ST, Moreno-Barbero E, Divine CE (2008) MODALL: a practical tool for designing and optimizing capture systems. Groundwater 46(2):172–173CrossRef Potter ST, Moreno-Barbero E, Divine CE (2008) MODALL: a practical tool for designing and optimizing capture systems. Groundwater 46(2):172–173CrossRef
Zurück zum Zitat Rayne TW, Bradbury KR, Zheng C (2013) Correct delineation of capture zones using particle tracking under transient conditions. Groundwater 52(3):332–334CrossRef Rayne TW, Bradbury KR, Zheng C (2013) Correct delineation of capture zones using particle tracking under transient conditions. Groundwater 52(3):332–334CrossRef
Zurück zum Zitat Rock G, Kupfersberger H (2002) Numerical delineation of transient capture zones. J Hydrol 269(3–4):134–149CrossRef Rock G, Kupfersberger H (2002) Numerical delineation of transient capture zones. J Hydrol 269(3–4):134–149CrossRef
Zurück zum Zitat Smith M, Cross K, Paden M, Laban P (2016) Spring—managing groundwater sustainability. IUCN, GlandCrossRef Smith M, Cross K, Paden M, Laban P (2016) Spring—managing groundwater sustainability. IUCN, GlandCrossRef
Zurück zum Zitat Tosco T, Di Molfetta A, Sethi R (2010) Automatic delineation of capture zones for pump and treat systems: a case study in piedmont, Italy. Ground Water Monit Remediat 30(2):46–52CrossRef Tosco T, Di Molfetta A, Sethi R (2010) Automatic delineation of capture zones for pump and treat systems: a case study in piedmont, Italy. Ground Water Monit Remediat 30(2):46–52CrossRef
Zurück zum Zitat United States Environmental Protection Agency (U.S. EPA) (1987) Guidelines for delineation of wellhead protection areas. Office of Groundwater Protection, Washington, DC United States Environmental Protection Agency (U.S. EPA) (1987) Guidelines for delineation of wellhead protection areas. Office of Groundwater Protection, Washington, DC
Zurück zum Zitat United States Environmental Protection Agency (U.S. EPA) (2008) A systematic approach for evaluation of capture zones at pump and treat systems: final project report, Office of Research and Development, EPA/600/R-08/003, Washington, DC United States Environmental Protection Agency (U.S. EPA) (2008) A systematic approach for evaluation of capture zones at pump and treat systems: final project report, Office of Research and Development, EPA/600/R-08/003, Washington, DC
Zurück zum Zitat Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson Education, Harlow Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson Education, Harlow
Zurück zum Zitat Vesselinov VV (2007) Uncertainties in transient capture-zone estimates of groundwater supply wells. J Contemp Water Res Educ 137(1):1–7CrossRef Vesselinov VV (2007) Uncertainties in transient capture-zone estimates of groundwater supply wells. J Contemp Water Res Educ 137(1):1–7CrossRef
Zurück zum Zitat Vesselinov VV, Robinson BA (2006) Delineation of capture zones in transient groundwater flow systems. In Bierkens M et al (eds) Model CARE 2005 Calibration and reliability in groundwater modeling: from uncertainty to decision making. IAHS Publication 304, Wallingford, pp 246–252 Vesselinov VV, Robinson BA (2006) Delineation of capture zones in transient groundwater flow systems. In Bierkens M et al (eds) Model CARE 2005 Calibration and reliability in groundwater modeling: from uncertainty to decision making. IAHS Publication 304, Wallingford, pp 246–252
Zurück zum Zitat Wilson JL, Townley LR, Sa da Costa A (1979) Mathematical development and verification of a finite element aquifer flow model AQUIFEM-1: Massachusetts Institute of Technology, Technological Planning Program, TAP Report 79-2 Wilson JL, Townley LR, Sa da Costa A (1979) Mathematical development and verification of a finite element aquifer flow model AQUIFEM-1: Massachusetts Institute of Technology, Technological Planning Program, TAP Report 79-2
Zurück zum Zitat Yang YJ, Spencer RD, Gates TM (1995) Analytical solutions for determination of non-steady-state and steady-state capture zones. Ground Water Monit Remediat 15(1):101–106CrossRef Yang YJ, Spencer RD, Gates TM (1995) Analytical solutions for determination of non-steady-state and steady-state capture zones. Ground Water Monit Remediat 15(1):101–106CrossRef
Metadaten
Titel
Numerical modeling on flow of groundwater energies in transient well capture zones
verfasst von
Nitha Ayinippully Nalarajan
Suresh Kumar Govindarajan
Indumathi M. Nambi
Publikationsdatum
01.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 5/2019
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-019-8176-5

Weitere Artikel der Ausgabe 5/2019

Environmental Earth Sciences 5/2019 Zur Ausgabe