Skip to main content
Erschienen in: Optical and Quantum Electronics 2/2017

01.02.2017

Numerically analyzed spectral and temporal management of all-optical switching based on chalcogenide bistable fiber Bragg gratings

verfasst von: Ľubomír Scholtz, Libor Ladányi, Jarmila Müllerová

Erschienen in: Optical and Quantum Electronics | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

All-optical switching in nonlinear chalcogenide fiber Bragg gratings (FBG) can be achieved thanks to the third-order nonlinear optical parameters of chalcogenide glasses. Spectral and temporal characteristics of these gratings are shown. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. This paper is devoted to the comparison of SPM and XPM switching simulated using the time-domain transfer matrix method. Further we present the results of numerical investigation of the effect of modulation instability formed in nonlinear FBGs. The modulation instability occurs if the grating response time is lower than the transit time of the pulse through the grating. Possibilities of the successful elimination of the output pulse degradation via the modulation instability under different conditions implemented into numerical experiments are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aas, S., Mustecaplıglu, O.E.: Optical bistability in one-dimensional doped photonic crystals with spontaneously generated coherence. Phys. Rev. A 88, 053846 (2013)ADSCrossRef Aas, S., Mustecaplıglu, O.E.: Optical bistability in one-dimensional doped photonic crystals with spontaneously generated coherence. Phys. Rev. A 88, 053846 (2013)ADSCrossRef
Zurück zum Zitat Ahmad, R., Rochette, M.: All-chalcogenide raman-parametric laser, wavelength converter, and amplifier in a single microwire. IEEE J. Sel. Topics Quantum Electron. 20(5), 299–304 (2014)CrossRef Ahmad, R., Rochette, M.: All-chalcogenide raman-parametric laser, wavelength converter, and amplifier in a single microwire. IEEE J. Sel. Topics Quantum Electron. 20(5), 299–304 (2014)CrossRef
Zurück zum Zitat Broderick, N.G.R.: Bistable switching in nonlinear Bragg gratings. Opt. Commun. 148(1–3), 90–941 (1998)ADSCrossRef Broderick, N.G.R.: Bistable switching in nonlinear Bragg gratings. Opt. Commun. 148(1–3), 90–941 (1998)ADSCrossRef
Zurück zum Zitat Eggleton, B.J., Sterke, C.M.: Nonlinear pulse propagation in Bragg Gratings. J. Opt. Soc. Am. B 14(11), 2980–2993 (1997)ADSCrossRef Eggleton, B.J., Sterke, C.M.: Nonlinear pulse propagation in Bragg Gratings. J. Opt. Soc. Am. B 14(11), 2980–2993 (1997)ADSCrossRef
Zurück zum Zitat Eggleton, B.J., Sterke, C.M.: Bragg grating solitons. Phys. Rev. Lett. 76(10), 1627–1630 (1996)ADSCrossRef Eggleton, B.J., Sterke, C.M.: Bragg grating solitons. Phys. Rev. Lett. 76(10), 1627–1630 (1996)ADSCrossRef
Zurück zum Zitat Eggleton, B.J., Ta’eed, V.G., Luther-Davies, B.: Chalcogenide glass advanced for all-optical processing. Photonics Spectra 41(9), 88–95 (2007) Eggleton, B.J., Ta’eed, V.G., Luther-Davies, B.: Chalcogenide glass advanced for all-optical processing. Photonics Spectra 41(9), 88–95 (2007)
Zurück zum Zitat Gan, X., Wang, Y., Zhang, F., Zhao, Ch., Jiang, B., Fang, L., Li, D., Wu, H., Ren, Z., Zhao, J.: Graphene-controlled fiber Bragg grating and enabled optical bistability. Opt. Lett. 41, 603–606 (2016)ADSCrossRef Gan, X., Wang, Y., Zhang, F., Zhao, Ch., Jiang, B., Fang, L., Li, D., Wu, H., Ren, Z., Zhao, J.: Graphene-controlled fiber Bragg grating and enabled optical bistability. Opt. Lett. 41, 603–606 (2016)ADSCrossRef
Zurück zum Zitat Cherukulappurath, S., Guignard, M., Marchand, C., Smektala, F., Boudebs, G.: Linear and nonlinear optical characterization of tellurium based chalcogenide glasses. Opt. Commun. 242(1–3), 313–319 (2004)ADSCrossRef Cherukulappurath, S., Guignard, M., Marchand, C., Smektala, F., Boudebs, G.: Linear and nonlinear optical characterization of tellurium based chalcogenide glasses. Opt. Commun. 242(1–3), 313–319 (2004)ADSCrossRef
Zurück zum Zitat Kabakova, I.V., Grobnic, D., Mihailov, S., Mägi, E.C., Sterke, C.M., Eggleton, B.J.: Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity. Opt. Express 19, 5868–5873 (2011)ADSCrossRef Kabakova, I.V., Grobnic, D., Mihailov, S., Mägi, E.C., Sterke, C.M., Eggleton, B.J.: Bragg grating-based optical switching in a bismuth-oxide fiber with strong χ(3)-nonlinearity. Opt. Express 19, 5868–5873 (2011)ADSCrossRef
Zurück zum Zitat Kabakova I.V., Sterke C.M., Eggleton B. J: Picoseconds all-optical switch and pulse re-shaper based in a bistable Bragg grating cavity. In: SPIE, vol. 7728, p 77280R. Nonlinear Optics and Applications IV (2010) Kabakova I.V., Sterke C.M., Eggleton B. J: Picoseconds all-optical switch and pulse re-shaper based in a bistable Bragg grating cavity. In: SPIE, vol. 7728, p 77280R. Nonlinear Optics and Applications IV (2010)
Zurück zum Zitat Kabakova, I.V., Corcoran, B., Bolger, J.A., Sterke, C.M., Eggleton, B.J.: All-optical self-switching in optimized phase-shifted fiber Bragg grating. Opt. Express 17, 5083–5088 (2009)ADSCrossRef Kabakova, I.V., Corcoran, B., Bolger, J.A., Sterke, C.M., Eggleton, B.J.: All-optical self-switching in optimized phase-shifted fiber Bragg grating. Opt. Express 17, 5083–5088 (2009)ADSCrossRef
Zurück zum Zitat Kim, B.S., Chung, Ch., Lee, J.S.: An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes. IEEE J. Quantum Electron. 36(7), 787–794 (2000)ADSCrossRef Kim, B.S., Chung, Ch., Lee, J.S.: An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes. IEEE J. Quantum Electron. 36(7), 787–794 (2000)ADSCrossRef
Zurück zum Zitat Lee, H., Agrawal, G.P.: Nonlinear switching of optical pulses in fiber Bragg gratings. IEEE J. Quantum Electron. 39(3), 508–515 (2003)ADSCrossRef Lee, H., Agrawal, G.P.: Nonlinear switching of optical pulses in fiber Bragg gratings. IEEE J. Quantum Electron. 39(3), 508–515 (2003)ADSCrossRef
Zurück zum Zitat Melloni, A., Chinello, M., Martinelli, M.: All-optical switching in phase- shifted fiber Bragg grating. IEEE Photon. Technol. Lett. 12, 42–44 (2000)ADSCrossRef Melloni, A., Chinello, M., Martinelli, M.: All-optical switching in phase- shifted fiber Bragg grating. IEEE Photon. Technol. Lett. 12, 42–44 (2000)ADSCrossRef
Zurück zum Zitat Mescia, L., Smektala, F., Prudenzano, F.: New trends in amplifiers and sources via chalcogenide photonic crystal fibers. Int. J. Opt. 2012, 1–8 (2012)CrossRef Mescia, L., Smektala, F., Prudenzano, F.: New trends in amplifiers and sources via chalcogenide photonic crystal fibers. Int. J. Opt. 2012, 1–8 (2012)CrossRef
Zurück zum Zitat Nguyen, H.C., Finsterbusch, K., Moss, D.J., Eggleton, B.J.: Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre. Electron. lett. 42(10), 1–2 (2006)CrossRef Nguyen, H.C., Finsterbusch, K., Moss, D.J., Eggleton, B.J.: Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre. Electron. lett. 42(10), 1–2 (2006)CrossRef
Zurück zum Zitat Nguyen, H.C., Yeom, D.I., Mägi, E.C., Kuhlmey, B.T., Sterke, C.M., Eggleton, B.J.: Nonlinear switching using long period gratings in chalcogenide fiber. JOSA B 25, 1393–1401 (2008)ADSCrossRef Nguyen, H.C., Yeom, D.I., Mägi, E.C., Kuhlmey, B.T., Sterke, C.M., Eggleton, B.J.: Nonlinear switching using long period gratings in chalcogenide fiber. JOSA B 25, 1393–1401 (2008)ADSCrossRef
Zurück zum Zitat Saremi, M.S., Ta’eed, V.G., Baker, N.J., Littler, I.C.M., Moss, D.J., Eggleton, B.J., Ruan, Y., Davies, B.L.: High performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer. J. Opt. Soc. Am. B 23(7), 1323–1331 (2006)ADSCrossRef Saremi, M.S., Ta’eed, V.G., Baker, N.J., Littler, I.C.M., Moss, D.J., Eggleton, B.J., Ruan, Y., Davies, B.L.: High performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer. J. Opt. Soc. Am. B 23(7), 1323–1331 (2006)ADSCrossRef
Zurück zum Zitat Ta’eed, V.G., Lamont, M.R.E., Moss, D.J., Eggleton, B.J., Choi, D.Y., Madden, S., Luther-Davies, B.: All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides. Opt. Express 14, 11242–11247 (2006)ADSCrossRef Ta’eed, V.G., Lamont, M.R.E., Moss, D.J., Eggleton, B.J., Choi, D.Y., Madden, S., Luther-Davies, B.: All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides. Opt. Express 14, 11242–11247 (2006)ADSCrossRef
Zurück zum Zitat Toroker, Z., Horowitz, M.: Optimized split-step method for modelling nonlinear pulse propagating in fiber Bragg gratings. J. Opt. Soc. Am. B 25(3), 448–457 (2008)ADSCrossRef Toroker, Z., Horowitz, M.: Optimized split-step method for modelling nonlinear pulse propagating in fiber Bragg gratings. J. Opt. Soc. Am. B 25(3), 448–457 (2008)ADSCrossRef
Zurück zum Zitat Yosia, Y., Shum, P.: Optical bistability in periodic media with third-, fifth-, and seventh-order nonlinearities. J. Lightwave Technol. 25(3), 875–882 (2007)ADSCrossRef Yosia, Y., Shum, P.: Optical bistability in periodic media with third-, fifth-, and seventh-order nonlinearities. J. Lightwave Technol. 25(3), 875–882 (2007)ADSCrossRef
Zurück zum Zitat Zakery, A., Elliott, S.R.: Optical nonlinearities in chalcogenide glasses and their applications. Springer, Berlin (2007) Zakery, A., Elliott, S.R.: Optical nonlinearities in chalcogenide glasses and their applications. Springer, Berlin (2007)
Zurück zum Zitat Zang, Z., Zhang, Y.: Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation. Appl. Opt. 51, 3424–3430 (2012)ADSCrossRef Zang, Z., Zhang, Y.: Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation. Appl. Opt. 51, 3424–3430 (2012)ADSCrossRef
Zurück zum Zitat Zeng, F., Yao, J.: All-optical microwave filters using uniform fiber Bragg gratings with identical reflectivities. J. Lightwave Technol. 23(3), 1410–1418 (2005)ADSCrossRef Zeng, F., Yao, J.: All-optical microwave filters using uniform fiber Bragg gratings with identical reflectivities. J. Lightwave Technol. 23(3), 1410–1418 (2005)ADSCrossRef
Metadaten
Titel
Numerically analyzed spectral and temporal management of all-optical switching based on chalcogenide bistable fiber Bragg gratings
verfasst von
Ľubomír Scholtz
Libor Ladányi
Jarmila Müllerová
Publikationsdatum
01.02.2017
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 2/2017
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-016-0878-2

Weitere Artikel der Ausgabe 2/2017

Optical and Quantum Electronics 2/2017 Zur Ausgabe

Neuer Inhalt