Skip to main content

2014 | OriginalPaper | Buchkapitel

Observing the Gravity Field of Different Planets and Moons by Space-Borne Techniques: Predictions by Fast Error Propagation Tools

verfasst von : P. N. A. M. Visser

Erschienen in: Gravity, Geoid and Height Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the first decade of the twenty first century, great strides have been made in observing the Earth’s gravity field by space-borne techniques such as high-low Satellite-to-Satellite tracking by the Global Positioning System (hl-SST, providing 3D information about orbit perturbations), low-low Satellite-to-Satellite tracking (ll-SST) and Satellite Gravity Gradiometry (SGG). In addition, great advances have been made in (preparations for) gravity field recovery for other bodies in the solar system as well, including Mars and the Moon, using tracking from the Deep Space Network (DSN), but also techniques such as hl-SST, ll-SST, Satellite Laser Ranging (SLR) and Delta VLBI.The purpose of the work described in this paper is to gain insight in the possibilities of observing the gravity field of various planetary bodies by space-borne observation techniques. For low-earth orbiting (LEO) satellites, efficient error propagation tools are available that allow an assessment of the gravity field performance as a function of orbital geometry and instrument or observation technique. These tools have been extended for use to other bodies in our solar system, including the Earth’s Moon, Jupiter, Mars, Titan, Enceladus, Europa and Phobos, which are in the scientific spotlight for various reasons. The gravity field performance has been assessed for satellites orbiting these bodies assuming these satellites can make use of DSN tracking or can acquire ll-SST or SGG observations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson JD, Schubert G, Jacobson RA et al (1998) Europa’s differentiated internal structure: inferences from four galileo encounters. Science 281:2019–2022CrossRef Anderson JD, Schubert G, Jacobson RA et al (1998) Europa’s differentiated internal structure: inferences from four galileo encounters. Science 281:2019–2022CrossRef
Zurück zum Zitat Bills BG, Lemoine FG (1995) Gravitational and topographic isotropy of the earth, moon, mars, and venus. J Geophys Res 100(E12):26275. doi:10.1029/95JE02982CrossRef Bills BG, Lemoine FG (1995) Gravitational and topographic isotropy of the earth, moon, mars, and venus. J Geophys Res 100(E12):26275. doi:10.1029/95JE02982CrossRef
Zurück zum Zitat Boyce JM (2008) The smithsonian book of mars Konecky & Konecky, Old Saybrook, CT, p 107. ISBN 1-56852-714-4 Boyce JM (2008) The smithsonian book of mars Konecky & Konecky, Old Saybrook, CT, p 107. ISBN 1-56852-714-4
Zurück zum Zitat Colombo OL (1984) The global mapping of gravity with two satellites. vol 7, no. 3. Netherlands Geodetic Commission, Publications on Geodesy, New Series Colombo OL (1984) The global mapping of gravity with two satellites. vol 7, no. 3. Netherlands Geodetic Commission, Publications on Geodesy, New Series
Zurück zum Zitat Drinkwater M, Haagmans R, Muzzi D et al (2007) The GOCE gravity mission: ESA’s first core explorer. In: 3 rd GOCE user workshop, 6–8 November 2006, Frascati, pp 1–7. ESA SP-627 Drinkwater M, Haagmans R, Muzzi D et al (2007) The GOCE gravity mission: ESA’s first core explorer. In: 3 rd GOCE user workshop, 6–8 November 2006, Frascati, pp 1–7. ESA SP-627
Zurück zum Zitat ESA (1999) Gravity field and steady-state ocean circulation mission Reports for mission selection, The four candidate earth explorer core missions, SP-1233(1). European Space Agency (July 1999) ESA (1999) Gravity field and steady-state ocean circulation mission Reports for mission selection, The four candidate earth explorer core missions, SP-1233(1). European Space Agency (July 1999)
Zurück zum Zitat Flokstra J, Cupurus R, Wiegerink RJ, van Essen MC (2009) A MEMS-based gravity gradiometer for future planetary missions. Cryogenics 49(11):665–668. ISSN 0011-2275 Flokstra J, Cupurus R, Wiegerink RJ, van Essen MC (2009) A MEMS-based gravity gradiometer for future planetary missions. Cryogenics 49(11):665–668. ISSN 0011-2275
Zurück zum Zitat Guillot T, Stevenson DJ, Hubbard WB, Saumon D (2004) Chapter 3: The interior of jupiter. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter: the planet, satellites and magnetosphere. Cambridge University Press, Cambridge. ISBN 0-521-81808-7 Guillot T, Stevenson DJ, Hubbard WB, Saumon D (2004) Chapter 3: The interior of jupiter. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter: the planet, satellites and magnetosphere. Cambridge University Press, Cambridge. ISBN 0-521-81808-7
Zurück zum Zitat Iess L, Rappaport NJ, Jacobson RA et al (2010) Gravity field, shape, and moment of inertia of titan. Science 327:1367–1369CrossRef Iess L, Rappaport NJ, Jacobson RA et al (2010) Gravity field, shape, and moment of inertia of titan. Science 327:1367–1369CrossRef
Zurück zum Zitat Matsumoto K, Goossens S, Ishihara Y et al (2010) An improved lunar gravity field model from SELENE and historical tracking data: Revealing the farside gravity features. J Geophys Res 115(E06007):1–20. doi:10.1029/2009JE003499 Matsumoto K, Goossens S, Ishihara Y et al (2010) An improved lunar gravity field model from SELENE and historical tracking data: Revealing the farside gravity features. J Geophys Res 115(E06007):1–20. doi:10.1029/2009JE003499
Zurück zum Zitat Mazarico E, Rowlands DD, Neumann GA et al (2012) Orbit determination of the lunar reconnaissance orbiter. J Geod 86:193–207. doi:10.1007/s00190-011-0509-4CrossRef Mazarico E, Rowlands DD, Neumann GA et al (2012) Orbit determination of the lunar reconnaissance orbiter. J Geod 86:193–207. doi:10.1007/s00190-011-0509-4CrossRef
Zurück zum Zitat Pail R, Bruinsma S, Migliaccio F et al (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843. doi: 10.1007/s00190–011–0467–x)CrossRef Pail R, Bruinsma S, Migliaccio F et al (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843. doi: 10.1007/s00190–011–0467–x)CrossRef
Zurück zum Zitat Porco CC, Helfenstein P, Thomas PC et al (2006) Cassini observes the active south pole of enceladus. Science 311:1393–1401. doi:10.1126/science.1123013CrossRef Porco CC, Helfenstein P, Thomas PC et al (2006) Cassini observes the active south pole of enceladus. Science 311:1393–1401. doi:10.1126/science.1123013CrossRef
Zurück zum Zitat Rappaport NJ, Iess L, Wahr J et al (2008) Can cassini detect a subsurface ocean in titan from gravity measurements? Icarus 194:711–720CrossRef Rappaport NJ, Iess L, Wahr J et al (2008) Can cassini detect a subsurface ocean in titan from gravity measurements? Icarus 194:711–720CrossRef
Zurück zum Zitat Reigber Ch, Schwintzer P, Lühr H (1999) The CHAMP geopotential mission. In: Marson I, Sünkel H (ed) Bollettino di Geofisica Teorica e Applicata, vol 40, no. 3–4. pp. 285–289. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OHS, Trieste, Italy. ISSN 0006-6729 Reigber Ch, Schwintzer P, Lühr H (1999) The CHAMP geopotential mission. In: Marson I, Sünkel H (ed) Bollettino di Geofisica Teorica e Applicata, vol 40, no. 3–4. pp. 285–289. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OHS, Trieste, Italy. ISSN 0006-6729
Zurück zum Zitat Rosborough GW (1987) Radial, transverse, and normal satellite position perturbations due to the geopotential. Celest Mech 40:409–421CrossRef Rosborough GW (1987) Radial, transverse, and normal satellite position perturbations due to the geopotential. Celest Mech 40:409–421CrossRef
Zurück zum Zitat Rosenblatt P, Rivoldini A, Rambaux N, Dehant V (2011) Mass distribution inside Phobos: a key observational constraint for the origin of Phobos. In: EPSC Abstracts, vol 6, EPSC-DPS2011-761, EPSC-DPS Joint Meeting 2011 Rosenblatt P, Rivoldini A, Rambaux N, Dehant V (2011) Mass distribution inside Phobos: a key observational constraint for the origin of Phobos. In: EPSC Abstracts, vol 6, EPSC-DPS2011-761, EPSC-DPS Joint Meeting 2011
Zurück zum Zitat Schrama EJO (1991) Gravity field error analysis: Applications of global positioning system receivers and gradiometers on low orbiting platforms. J Geophys Res 96(B12):20041–20051CrossRef Schrama EJO (1991) Gravity field error analysis: Applications of global positioning system receivers and gradiometers on low orbiting platforms. J Geophys Res 96(B12):20041–20051CrossRef
Zurück zum Zitat Smith DE, Zuber MT, Sun X et al (2006) Two-way laser link over interplanetary distance. Science 311(53). doi: 10.1126/science.1120091 Smith DE, Zuber MT, Sun X et al (2006) Two-way laser link over interplanetary distance. Science 311(53). doi: 10.1126/science.1120091
Zurück zum Zitat Smith DE, Zuber MT, Torrence MH et al (2009) Time variations of Mars’ gravitational field and seasonal changes in the masses of the polar ice caps. J Geophys Res 114( E05002):1–15 doi:10.1029/2008JE003267 Smith DE, Zuber MT, Torrence MH et al (2009) Time variations of Mars’ gravitational field and seasonal changes in the masses of the polar ice caps. J Geophys Res 114( E05002):1–15 doi:10.1029/2008JE003267
Zurück zum Zitat Tapley BD, Reigber Ch (1999) GRACE: A satellite-to-satellite tracking geopotential mapping mission. In: Marson I, Sünkel H (eds) Bollettino di Geofisica Teorica e Applicata, vol 40, no 3–4, p 291. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OHS, Trieste, Italy. ISSN 0006-6729 Tapley BD, Reigber Ch (1999) GRACE: A satellite-to-satellite tracking geopotential mapping mission. In: Marson I, Sünkel H (eds) Bollettino di Geofisica Teorica e Applicata, vol 40, no 3–4, p 291. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OHS, Trieste, Italy. ISSN 0006-6729
Zurück zum Zitat Visser PNAM (2005) Low-low satellite-to-satellite tracking: Applicability of analytical linear orbit perturbation theory. J Geod 79(1–3):160–166CrossRef Visser PNAM (2005) Low-low satellite-to-satellite tracking: Applicability of analytical linear orbit perturbation theory. J Geod 79(1–3):160–166CrossRef
Metadaten
Titel
Observing the Gravity Field of Different Planets and Moons by Space-Borne Techniques: Predictions by Fast Error Propagation Tools
verfasst von
P. N. A. M. Visser
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-10837-7_41