Skip to main content
Erschienen in:
Buchtitelbild

2017 | OriginalPaper | Buchkapitel

Oligooxopiperazines as Topographical Helix Mimetics

verfasst von : Brooke Bullock Lao, Paramjit S. Arora

Erschienen in: Peptidomimetics II

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Protein–protein interactions are often mediated by amino acid side chain functionality organized on secondary structures. Small molecule scaffolds that reproduce the array of protein-like functionality at interfaces offer an attractive approach to target therapeutically important interactions. Here, we describe the design, synthesis, and the biological potential of small molecule helix mimetics derived from an oxopiperazine scaffold to target protein complexes in which binding is largely dictated by one face of the interfacial helix. The oxopiperazine helix mimetics can be assembled from α-amino acids using standard solid-phase peptide synthesis methodology, enabling rapid diversification of the scaffold and discovery of ligands for protein targets. We have evaluated the biological potential of the oxopiperazine mimetics in cell-free, cell culture, and in vivo models. Our results support the hypothesis that the scaffold offers an attractive platform for the development of novel inhibitors of protein–protein interactions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Azzarito V, Long K, Murphy NS, Wilson AJ (2013) Inhibition of alpha-helix-mediated protein–protein interactions using designed molecules. Nat Chem 5(3):161–173CrossRef Azzarito V, Long K, Murphy NS, Wilson AJ (2013) Inhibition of alpha-helix-mediated protein–protein interactions using designed molecules. Nat Chem 5(3):161–173CrossRef
2.
Zurück zum Zitat Jayatunga MKP, Thompson S, Hamilton AD (2014) α-Helix mimetics: outwards and upwards. Bioorg Med Chem Lett 24(3):717–724CrossRef Jayatunga MKP, Thompson S, Hamilton AD (2014) α-Helix mimetics: outwards and upwards. Bioorg Med Chem Lett 24(3):717–724CrossRef
3.
Zurück zum Zitat London N, Raveh B, Schueler-Furman O (2013) Druggable protein–protein interactions – from hot spots to hot segments. Curr Opin Chem Biol 17(6):952–959CrossRef London N, Raveh B, Schueler-Furman O (2013) Druggable protein–protein interactions – from hot spots to hot segments. Curr Opin Chem Biol 17(6):952–959CrossRef
4.
Zurück zum Zitat Milroy L-G, Grossmann TN, Hennig S, Brunsveld L, Ottmann C (2014) Modulators of protein–protein interactions. Chem Rev 114(9):4695–4748CrossRef Milroy L-G, Grossmann TN, Hennig S, Brunsveld L, Ottmann C (2014) Modulators of protein–protein interactions. Chem Rev 114(9):4695–4748CrossRef
5.
Zurück zum Zitat Walensky LD, Bird GH (2014) Hydrocarbon-stapled peptides: principles, practice, and progress. J Med Chem 57(15):6275–6288CrossRef Walensky LD, Bird GH (2014) Hydrocarbon-stapled peptides: principles, practice, and progress. J Med Chem 57(15):6275–6288CrossRef
6.
Zurück zum Zitat Jochim AL, Arora PS (2009) Assessment of helical interfaces in protein–protein interactions. Mol Biosyst 5:924–926CrossRef Jochim AL, Arora PS (2009) Assessment of helical interfaces in protein–protein interactions. Mol Biosyst 5:924–926CrossRef
7.
Zurück zum Zitat Jochim AL, Arora PS (2010) Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors. ACS Chem Biol 5(10):919–923CrossRef Jochim AL, Arora PS (2010) Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors. ACS Chem Biol 5(10):919–923CrossRef
8.
Zurück zum Zitat Jones S, Thornton JM (1996) Principles of protein–protein interactions. Proc Natl Acad Sci U S A 93(1):13–20CrossRef Jones S, Thornton JM (1996) Principles of protein–protein interactions. Proc Natl Acad Sci U S A 93(1):13–20CrossRef
9.
Zurück zum Zitat Bullock BN, Jochim AL, Arora PS (2011) Assessing helical protein interfaces for inhibitor design. J Am Chem Soc 133(36):14220–14223CrossRef Bullock BN, Jochim AL, Arora PS (2011) Assessing helical protein interfaces for inhibitor design. J Am Chem Soc 133(36):14220–14223CrossRef
10.
Zurück zum Zitat Ko E, Liu J, Burgess K (2011) Minimalist and universal peptidomimetics. Chem Soc Rev 40:4411–4421CrossRef Ko E, Liu J, Burgess K (2011) Minimalist and universal peptidomimetics. Chem Soc Rev 40:4411–4421CrossRef
11.
Zurück zum Zitat Ko E, Liu J, Perez LM, Lu G, Schaefer A, Burgess K (2010) Universal peptidomimetics. J Am Chem Soc 133(3):462–477CrossRef Ko E, Liu J, Perez LM, Lu G, Schaefer A, Burgess K (2010) Universal peptidomimetics. J Am Chem Soc 133(3):462–477CrossRef
12.
Zurück zum Zitat Orner BP, Ernst JT, Hamilton AD (2001) Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an alpha-helix. J Am Chem Soc 123(22):5382–5383CrossRef Orner BP, Ernst JT, Hamilton AD (2001) Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an alpha-helix. J Am Chem Soc 123(22):5382–5383CrossRef
13.
Zurück zum Zitat Chen L, Yin H, Farooqi B, Sebti S, Hamilton AD, Chen J (2005) p53 alpha-Helix mimetics antagonize p53/MDM2 interaction and activate p53. Mol Cancer Ther 4(6):1019–1025CrossRef Chen L, Yin H, Farooqi B, Sebti S, Hamilton AD, Chen J (2005) p53 alpha-Helix mimetics antagonize p53/MDM2 interaction and activate p53. Mol Cancer Ther 4(6):1019–1025CrossRef
14.
Zurück zum Zitat Ernst JT, Kutzki O, Debnath AK, Jiang S, Lu H, Hamilton AD (2002) Design of a protein surface antagonist based on alpha-helix mimicry: inhibition of gp41 assembly and viral fusion. Angew Chem Int Ed Engl 41(2):278–281CrossRef Ernst JT, Kutzki O, Debnath AK, Jiang S, Lu H, Hamilton AD (2002) Design of a protein surface antagonist based on alpha-helix mimicry: inhibition of gp41 assembly and viral fusion. Angew Chem Int Ed Engl 41(2):278–281CrossRef
15.
Zurück zum Zitat Kutzki O, Park HS, Ernst JT, Orner BP, Yin H, Hamilton AD (2002) Development of a potent Bcl-x(L) antagonist based on alpha-helix mimicry. J Am Chem Soc 124(40):11838–11839CrossRef Kutzki O, Park HS, Ernst JT, Orner BP, Yin H, Hamilton AD (2002) Development of a potent Bcl-x(L) antagonist based on alpha-helix mimicry. J Am Chem Soc 124(40):11838–11839CrossRef
16.
Zurück zum Zitat Buhrlage SJ, Bates CA, Rowe SP, Minter AR, Brennan BB, Majmudar CY, Wemmer DE, Al-Hashimi H, Mapp AK (2009) Amphipathic small molecules mimic the binding mode and function of endogenous transcription factors. ACS Chem Biol 4(5):335–344CrossRef Buhrlage SJ, Bates CA, Rowe SP, Minter AR, Brennan BB, Majmudar CY, Wemmer DE, Al-Hashimi H, Mapp AK (2009) Amphipathic small molecules mimic the binding mode and function of endogenous transcription factors. ACS Chem Biol 4(5):335–344CrossRef
17.
Zurück zum Zitat Lee JH, Zhang Q, Jo S, Chai SC, Oh M, Im W, Lu H, Lim HS (2011) Novel pyrrolopyrimidine-based alpha-helix mimetics: cell-permeable inhibitors of protein–protein interactions. J Am Chem Soc 133(4):676–679CrossRef Lee JH, Zhang Q, Jo S, Chai SC, Oh M, Im W, Lu H, Lim HS (2011) Novel pyrrolopyrimidine-based alpha-helix mimetics: cell-permeable inhibitors of protein–protein interactions. J Am Chem Soc 133(4):676–679CrossRef
18.
Zurück zum Zitat Maity P, Konig B (2008) Synthesis and structure of 1,4-dipiperazino benzenes: chiral terphenyl-type peptide helix mimetics. Org Lett 10(7):1473–1476CrossRef Maity P, Konig B (2008) Synthesis and structure of 1,4-dipiperazino benzenes: chiral terphenyl-type peptide helix mimetics. Org Lett 10(7):1473–1476CrossRef
19.
Zurück zum Zitat Marimganti S, Cheemala MN, Ahn JM (2009) Novel amphiphilic alpha-helix mimetics based on a bis-benzamide scaffold. Org Lett 11(19):4418–4421CrossRef Marimganti S, Cheemala MN, Ahn JM (2009) Novel amphiphilic alpha-helix mimetics based on a bis-benzamide scaffold. Org Lett 11(19):4418–4421CrossRef
20.
Zurück zum Zitat Plante JP, Burnley T, Malkova B, Webb ME, Warriner SL, Edwards TA, Wilson AJ (2009) Oligobenzamide proteomimetic inhibitors of the p53-hDM2 protein–protein interaction. Chem Commun 34:5091–5093CrossRef Plante JP, Burnley T, Malkova B, Webb ME, Warriner SL, Edwards TA, Wilson AJ (2009) Oligobenzamide proteomimetic inhibitors of the p53-hDM2 protein–protein interaction. Chem Commun 34:5091–5093CrossRef
21.
Zurück zum Zitat Restorp P, Rebek J Jr (2008) Synthesis of alpha-helix mimetics with four side-chains. Bioorg Med Chem Lett 18(22):5909–5911CrossRef Restorp P, Rebek J Jr (2008) Synthesis of alpha-helix mimetics with four side-chains. Bioorg Med Chem Lett 18(22):5909–5911CrossRef
22.
Zurück zum Zitat Rodriguez JM, Nevola L, Ross NT, Lee GI, Hamilton AD (2009) Synthetic inhibitors of extended helix-protein interactions based on a biphenyl 4,4′-dicarboxamide scaffold. Chembiochem 10(5):829–833CrossRef Rodriguez JM, Nevola L, Ross NT, Lee GI, Hamilton AD (2009) Synthetic inhibitors of extended helix-protein interactions based on a biphenyl 4,4′-dicarboxamide scaffold. Chembiochem 10(5):829–833CrossRef
23.
Zurück zum Zitat Shaginian A, Whitby LR, Hong S, Hwang I, Farooqi B, Searcey M, Chen J, Vogt PK, Boger DL (2009) Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein–protein interactions. J Am Chem Soc 131(15):5564–5572CrossRef Shaginian A, Whitby LR, Hong S, Hwang I, Farooqi B, Searcey M, Chen J, Vogt PK, Boger DL (2009) Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein–protein interactions. J Am Chem Soc 131(15):5564–5572CrossRef
24.
Zurück zum Zitat Tosovska P, Arora PS (2010) Oligooxopiperazines as nonpeptidic alpha-helix mimetics. Org Lett 12:1588–1591CrossRef Tosovska P, Arora PS (2010) Oligooxopiperazines as nonpeptidic alpha-helix mimetics. Org Lett 12:1588–1591CrossRef
25.
Zurück zum Zitat Yin H, Hamilton AD (2005) Strategies for targeting protein–protein interactions with synthetic agents. Angew Chem Int Ed 44(27):4130–4163CrossRef Yin H, Hamilton AD (2005) Strategies for targeting protein–protein interactions with synthetic agents. Angew Chem Int Ed 44(27):4130–4163CrossRef
26.
Zurück zum Zitat Yin H, Lee G-i, Sedey KA, Rodriguez JM, Wang H-G, Sebti SM, Hamilton AD (2005) Terephthalamide derivatives as mimetics of helical peptides: disruption of the Bcl-xL/Bak interaction. J Am Chem Soc 127(15):5463–5468CrossRef Yin H, Lee G-i, Sedey KA, Rodriguez JM, Wang H-G, Sebti SM, Hamilton AD (2005) Terephthalamide derivatives as mimetics of helical peptides: disruption of the Bcl-xL/Bak interaction. J Am Chem Soc 127(15):5463–5468CrossRef
27.
Zurück zum Zitat Burslem GM, Kyle HF, Breeze AL, Edwards TA, Nelson A, Warriner SL, Wilson AJ (2014) Small-molecule proteomimetic inhibitors of the HIF-1α–p300 protein–protein interaction. Chembiochem. doi:10.1002/cbic.201400009 Burslem GM, Kyle HF, Breeze AL, Edwards TA, Nelson A, Warriner SL, Wilson AJ (2014) Small-molecule proteomimetic inhibitors of the HIF-1α–p300 protein–protein interaction. Chembiochem. doi:10.​1002/​cbic.​201400009
28.
Zurück zum Zitat Cao X, Yap JL, Newell-Rogers MK, Peddaboina C, Jiang W, Papaconstantinou HT, Jupitor D, Rai A, Jung KY, Tubin RP, Yu W, Vanommeslaeghe K, Wilder PT, MacKerell AD Jr, Fletcher S, Smythe RW (2013) The novel BH3 alpha-helix mimetic JY-1-106 induces apoptosis in a subset of cancer cells (lung cancer, colon cancer and mesothelioma) by disrupting Bcl-xL and Mcl-1 protein–protein interactions with Bak. Mol Cancer 12(1):42CrossRef Cao X, Yap JL, Newell-Rogers MK, Peddaboina C, Jiang W, Papaconstantinou HT, Jupitor D, Rai A, Jung KY, Tubin RP, Yu W, Vanommeslaeghe K, Wilder PT, MacKerell AD Jr, Fletcher S, Smythe RW (2013) The novel BH3 alpha-helix mimetic JY-1-106 induces apoptosis in a subset of cancer cells (lung cancer, colon cancer and mesothelioma) by disrupting Bcl-xL and Mcl-1 protein–protein interactions with Bak. Mol Cancer 12(1):42CrossRef
29.
Zurück zum Zitat Lao BB, Grishagin I, Mesallati H, Brewer TF, Olenyuk BZ, Arora PS (2014) In vivo modulation of hypoxia-inducible signaling by topographical helix mimetics. Proc Natl Acad Sci U S A 111(21):7531–7536CrossRef Lao BB, Grishagin I, Mesallati H, Brewer TF, Olenyuk BZ, Arora PS (2014) In vivo modulation of hypoxia-inducible signaling by topographical helix mimetics. Proc Natl Acad Sci U S A 111(21):7531–7536CrossRef
30.
Zurück zum Zitat Oh M, Lee JH, Wang W, Lee HS, Lee WS, Burlak C, Im W, Hoang QQ, Lim H-S (2014) Potential pharmacological chaperones targeting cancer-associated MCL-1 and Parkinson disease-associated α-synuclein. Proc Natl Acad Sci 111(30):11007–11012CrossRef Oh M, Lee JH, Wang W, Lee HS, Lee WS, Burlak C, Im W, Hoang QQ, Lim H-S (2014) Potential pharmacological chaperones targeting cancer-associated MCL-1 and Parkinson disease-associated α-synuclein. Proc Natl Acad Sci 111(30):11007–11012CrossRef
31.
Zurück zum Zitat Ravindranathan P, Lee TK, Yang L, Centenera MM, Butler L, Tilley WD, Hsieh JT, Ahn JM, Raj GV (2013) Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat Commun 4:1923CrossRef Ravindranathan P, Lee TK, Yang L, Centenera MM, Butler L, Tilley WD, Hsieh JT, Ahn JM, Raj GV (2013) Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nat Commun 4:1923CrossRef
32.
Zurück zum Zitat Gante J (1994) Peptidomimetics – tailored enzyme-inhibitors. Angew Chem Int Ed Engl 33(17):1699–1720CrossRef Gante J (1994) Peptidomimetics – tailored enzyme-inhibitors. Angew Chem Int Ed Engl 33(17):1699–1720CrossRef
33.
Zurück zum Zitat Patchett AA, Nargund RP (2000) Privileged structures - an update. Annu Rep Med Chem 35:289–298CrossRef Patchett AA, Nargund RP (2000) Privileged structures - an update. Annu Rep Med Chem 35:289–298CrossRef
34.
Zurück zum Zitat Giannis A, Kolter T (1993) Peptidomimetics for receptor ligands discovery, development, and medical perspectives. Angew Chem Int Ed 32(9):1244–1267CrossRef Giannis A, Kolter T (1993) Peptidomimetics for receptor ligands discovery, development, and medical perspectives. Angew Chem Int Ed 32(9):1244–1267CrossRef
35.
Zurück zum Zitat Hansen TK, Schlienger N, Hansen BS, Andersen PH, Bryce MR (1999) Synthesis of piperazinones and their application in constrained mimetics of the growth hormone secretagogue NN703. Tetrahedron Lett 40(18):3651–3654CrossRef Hansen TK, Schlienger N, Hansen BS, Andersen PH, Bryce MR (1999) Synthesis of piperazinones and their application in constrained mimetics of the growth hormone secretagogue NN703. Tetrahedron Lett 40(18):3651–3654CrossRef
36.
Zurück zum Zitat Tian X, Mishra RK, Switzer AG, Hu XE, Kim N, Mazur AW, Ebetino FH, Wos JA, Crossdoersen D, Pinney BB, Farmer JA, Sheldon RJ (2006) Design and synthesis of potent and selective 1,3,4-trisubstituted-2-oxopiperazine based melanocortin-4 receptor agonists. Bioorg Med Chem Lett 16(17):4668–4673CrossRef Tian X, Mishra RK, Switzer AG, Hu XE, Kim N, Mazur AW, Ebetino FH, Wos JA, Crossdoersen D, Pinney BB, Farmer JA, Sheldon RJ (2006) Design and synthesis of potent and selective 1,3,4-trisubstituted-2-oxopiperazine based melanocortin-4 receptor agonists. Bioorg Med Chem Lett 16(17):4668–4673CrossRef
37.
Zurück zum Zitat Macromodel (2011) Macromodel. Version 9.9. Schrodinger Inc., New York Macromodel (2011) Macromodel. Version 9.9. Schrodinger Inc., New York
38.
Zurück zum Zitat Mohamadi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) Macromodel - an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11(4):440–467CrossRef Mohamadi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) Macromodel - an integrated software system for modeling organic and bioorganic molecules using molecular mechanics. J Comput Chem 11(4):440–467CrossRef
39.
Zurück zum Zitat Bhatt U, Mohamed N, Just G, Roberts E (1997) Derivatized oxopiperazine rings from amino acids. Tetrahedron Lett 38(21):3679–3682CrossRef Bhatt U, Mohamed N, Just G, Roberts E (1997) Derivatized oxopiperazine rings from amino acids. Tetrahedron Lett 38(21):3679–3682CrossRef
40.
Zurück zum Zitat Franceschini N, Sonnet P, Guillaume D (2005) Simple, versatile and highly diastereoselective synthesis of 1,3,4-trisubstituted-2-oxopiperazine-containing peptidomimetic precursors. Org Biomol Chem 3(5):787–793CrossRef Franceschini N, Sonnet P, Guillaume D (2005) Simple, versatile and highly diastereoselective synthesis of 1,3,4-trisubstituted-2-oxopiperazine-containing peptidomimetic precursors. Org Biomol Chem 3(5):787–793CrossRef
41.
Zurück zum Zitat Sugihara H, Fukushi H, Miyawaki T, Imai Y, Terashita Z, Kawamura M, Fujisawa Y, Kita S (1998) Novel non-peptide fibrinogen receptor antagonists. 1. Synthesis and glycoprotein IIb-IIIa antagonistic activities of 1,3,4-trisubstituted 2-oxopiperazine derivatives incorporating side-chain functions of the RGDF peptide. J Med Chem 41(4):489–502CrossRef Sugihara H, Fukushi H, Miyawaki T, Imai Y, Terashita Z, Kawamura M, Fujisawa Y, Kita S (1998) Novel non-peptide fibrinogen receptor antagonists. 1. Synthesis and glycoprotein IIb-IIIa antagonistic activities of 1,3,4-trisubstituted 2-oxopiperazine derivatives incorporating side-chain functions of the RGDF peptide. J Med Chem 41(4):489–502CrossRef
42.
Zurück zum Zitat Tong YS, Fobian YM, Wu MY, Boyd ND, Moeller KD (2000) Conformationally constrained substance P analogues: the total synthesis of a constrained peptidomimetic for the Phe(7)-Phe(8) region. J Org Chem 65(8):2484–2493CrossRef Tong YS, Fobian YM, Wu MY, Boyd ND, Moeller KD (2000) Conformationally constrained substance P analogues: the total synthesis of a constrained peptidomimetic for the Phe(7)-Phe(8) region. J Org Chem 65(8):2484–2493CrossRef
43.
Zurück zum Zitat Bergey CM, Watkins AM, Arora PS (2013) HippDB: a database of readily targeted helical protein–protein interactions. Bioinformatics 29(21):2806–2807CrossRef Bergey CM, Watkins AM, Arora PS (2013) HippDB: a database of readily targeted helical protein–protein interactions. Bioinformatics 29(21):2806–2807CrossRef
44.
Zurück zum Zitat Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein–protein interfaces. Sci STKE 2004(219):pl2 Kortemme T, Kim DE, Baker D (2004) Computational alanine scanning of protein–protein interfaces. Sci STKE 2004(219):pl2
45.
Zurück zum Zitat Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557–582CrossRef Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557–582CrossRef
46.
Zurück zum Zitat Soussi T, Ishioka C, Claustres M, Beroud C (2006) Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer 6(1):83–90CrossRef Soussi T, Ishioka C, Claustres M, Beroud C (2006) Locus-specific mutation databases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer 6(1):83–90CrossRef
47.
Zurück zum Zitat Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299CrossRef Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299CrossRef
48.
Zurück zum Zitat Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420(1):25–27CrossRef Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420(1):25–27CrossRef
49.
Zurück zum Zitat Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303CrossRef Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303CrossRef
50.
Zurück zum Zitat Honda R, Yasuda H (1999) Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18(1):22–27CrossRef Honda R, Yasuda H (1999) Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 18(1):22–27CrossRef
51.
Zurück zum Zitat Chene P (2003) Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 3(2):102–109CrossRef Chene P (2003) Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 3(2):102–109CrossRef
52.
Zurück zum Zitat Cheok CF, Verma CS, Baselga J, Lane DP (2011) Translating p53 into the clinic. Nat Rev Clin Oncol 8(1):25–37CrossRef Cheok CF, Verma CS, Baselga J, Lane DP (2011) Translating p53 into the clinic. Nat Rev Clin Oncol 8(1):25–37CrossRef
53.
Zurück zum Zitat Shangary S, Wang S (2008) Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res 14(17):5318–5324CrossRef Shangary S, Wang S (2008) Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res 14(17):5318–5324CrossRef
54.
Zurück zum Zitat Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7(12):979–987CrossRef Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7(12):979–987CrossRef
55.
Zurück zum Zitat Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289):948–953CrossRef Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ, Pavletich NP (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274(5289):948–953CrossRef
56.
Zurück zum Zitat Picksley SM, Vojtesek B, Sparks A, Lane DP (1994) Immunochemical analysis of the interaction of p53 with MDM2;--fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9(9):2523–2529 Picksley SM, Vojtesek B, Sparks A, Lane DP (1994) Immunochemical analysis of the interaction of p53 with MDM2;--fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9(9):2523–2529
57.
Zurück zum Zitat Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL (2007) Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 129(9):2456–2457CrossRef Bernal F, Tyler AF, Korsmeyer SJ, Walensky LD, Verdine GL (2007) Reactivation of the p53 tumor suppressor pathway by a stapled p53 peptide. J Am Chem Soc 129(9):2456–2457CrossRef
58.
Zurück zum Zitat Brown ZZ, Akula K, Arzumanyan A, Alleva J, Jackson M, Bichenkov E, Sheffield JB, Feitelson MA, Schafmeister CE (2012) A spiroligomer α-helix mimic that binds HDM2, penetrates human cells and stabilizes HDM2 in cell culture. PLoS One 7(10):e45948CrossRef Brown ZZ, Akula K, Arzumanyan A, Alleva J, Jackson M, Bichenkov E, Sheffield JB, Feitelson MA, Schafmeister CE (2012) A spiroligomer α-helix mimic that binds HDM2, penetrates human cells and stabilizes HDM2 in cell culture. PLoS One 7(10):e45948CrossRef
59.
Zurück zum Zitat Chang YS, Graves B, Guerlavais V, Tovar C, Packman K, To K-H, Olson KA, Kesavan K, Gangurde P, Mukherjee A, Baker T, Darlak K, Elkin C, Filipovic Z, Qureshi FZ, Cai H, Berry P, Feyfant E, Shi XE, Horstick J, Annis DA, Manning AM, Fotouhi N, Nash H, Vassilev LT, Sawyer TK (2013) Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci U S A 110(36):E3445–E3454CrossRef Chang YS, Graves B, Guerlavais V, Tovar C, Packman K, To K-H, Olson KA, Kesavan K, Gangurde P, Mukherjee A, Baker T, Darlak K, Elkin C, Filipovic Z, Qureshi FZ, Cai H, Berry P, Feyfant E, Shi XE, Horstick J, Annis DA, Manning AM, Fotouhi N, Nash H, Vassilev LT, Sawyer TK (2013) Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci U S A 110(36):E3445–E3454CrossRef
60.
Zurück zum Zitat Henchey LK, Porter JR, Ghosh I, Arora PS (2010) High specificity in protein recognition by hydrogen-bond-surrogate alpha-helices: selective inhibition of the p53/MDM2 complex. Chembiochem 11(15):2104–2107CrossRef Henchey LK, Porter JR, Ghosh I, Arora PS (2010) High specificity in protein recognition by hydrogen-bond-surrogate alpha-helices: selective inhibition of the p53/MDM2 complex. Chembiochem 11(15):2104–2107CrossRef
61.
Zurück zum Zitat Kritzer JA, Lear JD, Hodsdon ME, Schepartz A (2004) Helical β-peptide inhibitors of the p53-hDM2 interaction. J Am Chem Soc 126(31):9468–9469CrossRef Kritzer JA, Lear JD, Hodsdon ME, Schepartz A (2004) Helical β-peptide inhibitors of the p53-hDM2 interaction. J Am Chem Soc 126(31):9468–9469CrossRef
62.
Zurück zum Zitat Murray JK, Gellman SH (2007) Targeting protein–protein interactions: lessons from p53/MDM2. Biopolymers 88(5):657–686CrossRef Murray JK, Gellman SH (2007) Targeting protein–protein interactions: lessons from p53/MDM2. Biopolymers 88(5):657–686CrossRef
63.
Zurück zum Zitat Popowicz GM, Dömling A, Holak TA (2011) The structure-based design of Mdm2/Mdmx–p53 inhibitors gets serious. Angew Chem Int Ed 50(12):2680–2688CrossRef Popowicz GM, Dömling A, Holak TA (2011) The structure-based design of Mdm2/Mdmx–p53 inhibitors gets serious. Angew Chem Int Ed 50(12):2680–2688CrossRef
64.
Zurück zum Zitat Sakurai K, Chung HS, Kahne D (2004) Use of a retroinverso p53 peptide as an inhibitor of MDM2. J Am Chem Soc 126(50):16288–16289CrossRef Sakurai K, Chung HS, Kahne D (2004) Use of a retroinverso p53 peptide as an inhibitor of MDM2. J Am Chem Soc 126(50):16288–16289CrossRef
65.
Zurück zum Zitat Massova I, Kollman PA (1999) Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121(36):8133–8143CrossRef Massova I, Kollman PA (1999) Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121(36):8133–8143CrossRef
66.
Zurück zum Zitat Böttger A, Böttger V, Garcia-Echeverria C, Chène P, Hochkeppel H-K, Sampson W, Ang K, Howard SF, Picksley SM, Lane DP (1997) Molecular characterization of the hdm2-p53 interaction. J Mol Biol 269(5):744–756CrossRef Böttger A, Böttger V, Garcia-Echeverria C, Chène P, Hochkeppel H-K, Sampson W, Ang K, Howard SF, Picksley SM, Lane DP (1997) Molecular characterization of the hdm2-p53 interaction. J Mol Biol 269(5):744–756CrossRef
67.
Zurück zum Zitat Lao BB, Drew K, Guarracino DA, Brewer TF, Heindel DW, Bonneau R, Arora PS (2014) Rational design of topographical helix mimics as potent inhibitors of protein–protein interactions. J Am Chem Soc 136(22):7877–7888CrossRef Lao BB, Drew K, Guarracino DA, Brewer TF, Heindel DW, Bonneau R, Arora PS (2014) Rational design of topographical helix mimics as potent inhibitors of protein–protein interactions. J Am Chem Soc 136(22):7877–7888CrossRef
68.
Zurück zum Zitat Knight SM, Umezawa N, Lee HS, Gellman SH, Kay BK (2002) A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein–protein interaction. Anal Biochem 300(2):230–236CrossRef Knight SM, Umezawa N, Lee HS, Gellman SH, Kay BK (2002) A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein–protein interaction. Anal Biochem 300(2):230–236CrossRef
69.
Zurück zum Zitat Butterfoss GL, Kuhlman B (2006) Computer-based design of novel protein structures. Ann Rev Biophys Biomol Struct 35:49–65CrossRef Butterfoss GL, Kuhlman B (2006) Computer-based design of novel protein structures. Ann Rev Biophys Biomol Struct 35:49–65CrossRef
70.
Zurück zum Zitat Jiang L, Althoff EA, Clemente FR, Doyle L, Rothlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF, Hilvert D, Houk KN, Stoddard BL, Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319(5868):1387–1391CrossRef Jiang L, Althoff EA, Clemente FR, Doyle L, Rothlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF, Hilvert D, Houk KN, Stoddard BL, Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319(5868):1387–1391CrossRef
71.
Zurück zum Zitat Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649):1364–1368CrossRef Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649):1364–1368CrossRef
72.
Zurück zum Zitat Drew K, Renfrew PD, Craven TW, Butterfoss GL, Chou F-C, Lyskov S, Bullock BN, Watkins A, Labonte JW, Pacella M, Kilambi KP, Leaver-Fay A, Kuhlman B, Gray JJ, Bradley P, Kirshenbaum K, Arora PS, Das R, Bonneau R (2013) Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design. PLoS One 8(7):e67051CrossRef Drew K, Renfrew PD, Craven TW, Butterfoss GL, Chou F-C, Lyskov S, Bullock BN, Watkins A, Labonte JW, Pacella M, Kilambi KP, Leaver-Fay A, Kuhlman B, Gray JJ, Bradley P, Kirshenbaum K, Arora PS, Das R, Bonneau R (2013) Adding diverse noncanonical backbones to rosetta: enabling peptidomimetic design. PLoS One 8(7):e67051CrossRef
73.
Zurück zum Zitat Xin D, Ko E, Perez LM, Ioerger TR, Burgess K (2013) Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS). Org Biomol Chem 11(44):7789–7801CrossRef Xin D, Ko E, Perez LM, Ioerger TR, Burgess K (2013) Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS). Org Biomol Chem 11(44):7789–7801CrossRef
74.
Zurück zum Zitat Korkegian A, Black ME, Baker D, Stoddard BL (2005) Computational thermostabilization of an enzyme. Science 308(5723):857–860CrossRef Korkegian A, Black ME, Baker D, Stoddard BL (2005) Computational thermostabilization of an enzyme. Science 308(5723):857–860CrossRef
75.
Zurück zum Zitat Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ, Stoddard BL, Baker D (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441(7093):656–659CrossRef Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ, Stoddard BL, Baker D (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441(7093):656–659CrossRef
76.
Zurück zum Zitat Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence selection. Science 278(5335):82–87CrossRef Dahiyat BI, Mayo SL (1997) De novo protein design: fully automated sequence selection. Science 278(5335):82–87CrossRef
77.
Zurück zum Zitat Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, Strauch E-M, Wilson IA, Baker D (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332(6031):816–821CrossRef Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, Strauch E-M, Wilson IA, Baker D (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332(6031):816–821CrossRef
78.
Zurück zum Zitat Harbury PB, Plecs JJ, Tidor B, Alber T, Kim PS (1998) High-resolution protein design with backbone freedom. Science 282(5393):1462–1467CrossRef Harbury PB, Plecs JJ, Tidor B, Alber T, Kim PS (1998) High-resolution protein design with backbone freedom. Science 282(5393):1462–1467CrossRef
79.
Zurück zum Zitat Joachimiak LA, Kortemme T, Stoddard BL, Baker D (2006) Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein–protein interface. J Mol Biol 361:195–208CrossRef Joachimiak LA, Kortemme T, Stoddard BL, Baker D (2006) Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein–protein interface. J Mol Biol 361:195–208CrossRef
80.
Zurück zum Zitat Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453(7192):190–195CrossRef Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453(7192):190–195CrossRef
81.
Zurück zum Zitat Shifman JM, Mayo SL (2003) Exploring the origins of binding specificity through the computational redesign of calmodulin. Proc Natl Acad Sci U S A 100(23):13274–13279CrossRef Shifman JM, Mayo SL (2003) Exploring the origins of binding specificity through the computational redesign of calmodulin. Proc Natl Acad Sci U S A 100(23):13274–13279CrossRef
82.
Zurück zum Zitat Butterfoss GL, Renfrew PD, Kuhlman B, Kirshenbaum K, Bonneau R (2009) A preliminary survey of the peptoid folding landscape. J Am Chem Soc 131(46):16798–16807CrossRef Butterfoss GL, Renfrew PD, Kuhlman B, Kirshenbaum K, Bonneau R (2009) A preliminary survey of the peptoid folding landscape. J Am Chem Soc 131(46):16798–16807CrossRef
83.
Zurück zum Zitat Lyskov S, Chou F-C, Conchúir SÓ, Der BS, Drew K, Kuroda D, Xu J, Weitzner BD, Renfrew PD, Sripakdeevong P, Borgo B, Havranek JJ, Kuhlman B, Kortemme T, Bonneau R, Gray JJ, Das R (2013) Serverification of molecular modeling applications: the Rosetta online server that includes everyone (ROSIE). PLoS One 8(5):e63906CrossRef Lyskov S, Chou F-C, Conchúir SÓ, Der BS, Drew K, Kuroda D, Xu J, Weitzner BD, Renfrew PD, Sripakdeevong P, Borgo B, Havranek JJ, Kuhlman B, Kortemme T, Bonneau R, Gray JJ, Das R (2013) Serverification of molecular modeling applications: the Rosetta online server that includes everyone (ROSIE). PLoS One 8(5):e63906CrossRef
84.
Zurück zum Zitat Renfrew PD, Choi EJ, Bonneau R, Kuhlman B (2012) Incorporation of noncanonical amino acids into Rosetta and use in computational protein-peptide interface design. PLoS One 7(3):e32637CrossRef Renfrew PD, Choi EJ, Bonneau R, Kuhlman B (2012) Incorporation of noncanonical amino acids into Rosetta and use in computational protein-peptide interface design. PLoS One 7(3):e32637CrossRef
85.
Zurück zum Zitat Giaccia A, Siim BG, Johnson RS (2003) HIF-1 as a target for drug development. Nat Rev Drug Discov 2(10):803–811CrossRef Giaccia A, Siim BG, Johnson RS (2003) HIF-1 as a target for drug development. Nat Rev Drug Discov 2(10):803–811CrossRef
86.
Zurück zum Zitat Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732CrossRef Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732CrossRef
87.
Zurück zum Zitat Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5(5):343–354CrossRef Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5(5):343–354CrossRef
88.
Zurück zum Zitat Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59(1):15–26CrossRef Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59(1):15–26CrossRef
89.
Zurück zum Zitat Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468CrossRef Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468CrossRef
90.
Zurück zum Zitat Orourke JF, Pugh CW, Bartlett SM, Ratcliffe PJ (1996) Identification of hypoxically inducible mRNAs in HeLa cells using differential-display PCR – role of hypoxia-inducible factor-1. Eur J Biochem 241(2):403–410CrossRef Orourke JF, Pugh CW, Bartlett SM, Ratcliffe PJ (1996) Identification of hypoxically inducible mRNAs in HeLa cells using differential-display PCR – role of hypoxia-inducible factor-1. Eur J Biochem 241(2):403–410CrossRef
91.
Zurück zum Zitat Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE (2002) Structural basis for Hif-1 alpha/CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci U S A 99(8):5271–5276CrossRef Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE (2002) Structural basis for Hif-1 alpha/CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci U S A 99(8):5271–5276CrossRef
92.
Zurück zum Zitat Freedman SJ, Sun ZY, Poy F, Kung AL, Livingston DM, Wagner G, Eck MJ (2002) Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc Natl Acad Sci U S A 99(8):5367–5372CrossRef Freedman SJ, Sun ZY, Poy F, Kung AL, Livingston DM, Wagner G, Eck MJ (2002) Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc Natl Acad Sci U S A 99(8):5367–5372CrossRef
93.
Zurück zum Zitat Kushal S, Lao BB, Henchey LK, Dubey R, Mesallati H, Traaseth NJ, Olenyuk BZ, Arora PS (2013) Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling. Proc Natl Acad Sci U S A 110(39):15602–15607CrossRef Kushal S, Lao BB, Henchey LK, Dubey R, Mesallati H, Traaseth NJ, Olenyuk BZ, Arora PS (2013) Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling. Proc Natl Acad Sci U S A 110(39):15602–15607CrossRef
94.
Zurück zum Zitat Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A (2001) Regulation of GLUT1 mRNA by hypoxia-inducible factor-1. J Biol Chem 276(12):9519–9525CrossRef Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A (2001) Regulation of GLUT1 mRNA by hypoxia-inducible factor-1. J Biol Chem 276(12):9519–9525CrossRef
95.
Zurück zum Zitat Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(7088):1222–1226CrossRef Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, Chi JT, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(7088):1222–1226CrossRef
96.
Zurück zum Zitat Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells: identification of a 5′ enhancer. Circ Res 77(3):638–643CrossRef Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells: identification of a 5′ enhancer. Circ Res 77(3):638–643CrossRef
97.
Zurück zum Zitat Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17(11):3005–3015CrossRef Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17(11):3005–3015CrossRef
98.
Zurück zum Zitat Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3(4):347–361CrossRef Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3(4):347–361CrossRef
99.
Zurück zum Zitat Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discov 3(4):301–317CrossRef Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discov 3(4):301–317CrossRef
100.
Zurück zum Zitat Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW (2014) Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer 14(4):248–262CrossRef Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW (2014) Oncogenic protein interfaces: small molecules, big challenges. Nat Rev Cancer 14(4):248–262CrossRef
101.
Zurück zum Zitat Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450(7172):1001–1009CrossRef Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450(7172):1001–1009CrossRef
102.
Zurück zum Zitat Heeres JT, Hergenrother PJ (2011) High-throughput screening for modulators of protein–protein interactions: use of photonic crystal biosensors and complementary technologies. Chem Soc Rev 40(8):4398–4410CrossRef Heeres JT, Hergenrother PJ (2011) High-throughput screening for modulators of protein–protein interactions: use of photonic crystal biosensors and complementary technologies. Chem Soc Rev 40(8):4398–4410CrossRef
103.
Zurück zum Zitat Stockwell BR (2000) Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet 1(2):116–125CrossRef Stockwell BR (2000) Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet 1(2):116–125CrossRef
104.
Zurück zum Zitat Stockwell BR (2004) Exploring biology with small organic molecules. Nature 432(7019):846–854CrossRef Stockwell BR (2004) Exploring biology with small organic molecules. Nature 432(7019):846–854CrossRef
105.
Zurück zum Zitat Tan DS (2005) Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat Chem Biol 1(2):74–84CrossRef Tan DS (2005) Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat Chem Biol 1(2):74–84CrossRef
106.
Zurück zum Zitat Clackson T, Wells JA (1995) A hot-spot of binding-energy in a hormone-receptor interface. Science 267(5196):383–386CrossRef Clackson T, Wells JA (1995) A hot-spot of binding-energy in a hormone-receptor interface. Science 267(5196):383–386CrossRef
107.
Zurück zum Zitat Raj M, Bullock BN, Arora PS (2013) Plucking the high hanging fruit: a systematic approach for targeting protein–protein interactions. Bioorg Med Chem 21(14):4051–4057CrossRef Raj M, Bullock BN, Arora PS (2013) Plucking the high hanging fruit: a systematic approach for targeting protein–protein interactions. Bioorg Med Chem 21(14):4051–4057CrossRef
108.
Zurück zum Zitat Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51(13):3661–3680CrossRef Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51(13):3661–3680CrossRef
109.
Zurück zum Zitat Fesik SW (2000) Insights into programmed cell death through structural biology. Cell 103(2):273–282CrossRef Fesik SW (2000) Insights into programmed cell death through structural biology. Cell 103(2):273–282CrossRef
110.
Zurück zum Zitat Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6(3):211–219CrossRef Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6(3):211–219CrossRef
111.
Zurück zum Zitat Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nat Chem 1(3):187–192CrossRef Murray CW, Rees DC (2009) The rise of fragment-based drug discovery. Nat Chem 1(3):187–192CrossRef
112.
Zurück zum Zitat Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW (2012) Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed 51(25):6140–6143CrossRef Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW (2012) Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed 51(25):6140–6143CrossRef
113.
Zurück zum Zitat Chapman RN, Dimartino G, Arora PS (2004) A highly stable short alpha-helix constrained by a main-chain hydrogen-bond surrogate. J Am Chem Soc 126(39):12252–12253CrossRef Chapman RN, Dimartino G, Arora PS (2004) A highly stable short alpha-helix constrained by a main-chain hydrogen-bond surrogate. J Am Chem Soc 126(39):12252–12253CrossRef
114.
Zurück zum Zitat Patgiri A, Jochim AL, Arora PS (2008) A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation. Acc Chem Res 41(10):1289–1300CrossRef Patgiri A, Jochim AL, Arora PS (2008) A hydrogen bond surrogate approach for stabilization of short peptide sequences in alpha-helical conformation. Acc Chem Res 41(10):1289–1300CrossRef
115.
Zurück zum Zitat Patgiri A, Yadav KK, Arora PS, Bar-Sagi D (2011) An orthosteric inhibitor of the Ras-Sos interaction. Nat Chem Biol 7(9):585–587CrossRef Patgiri A, Yadav KK, Arora PS, Bar-Sagi D (2011) An orthosteric inhibitor of the Ras-Sos interaction. Nat Chem Biol 7(9):585–587CrossRef
116.
Zurück zum Zitat Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein–protein interactions: progressing toward the reality. Chem Biol 21(9):1102–1114CrossRef Arkin MR, Tang Y, Wells JA (2014) Small-molecule inhibitors of protein–protein interactions: progressing toward the reality. Chem Biol 21(9):1102–1114CrossRef
117.
Zurück zum Zitat Verdine GL, Hilinski GJ (2012) Stapled peptides for intracellular drug targets. Methods Enzymol 503:3–33CrossRef Verdine GL, Hilinski GJ (2012) Stapled peptides for intracellular drug targets. Methods Enzymol 503:3–33CrossRef
118.
Zurück zum Zitat Arkin MR, Randal M, DeLano WL, Hyde J, Luong TN, Oslob JD, Raphael DR, Taylor L, Wang J, McDowell RS, Wells JA, Braisted AC (2003) Binding of small molecules to an adaptive protein–protein interface. Proc Natl Acad Sci U S A 100(4):1603–1608CrossRef Arkin MR, Randal M, DeLano WL, Hyde J, Luong TN, Oslob JD, Raphael DR, Taylor L, Wang J, McDowell RS, Wells JA, Braisted AC (2003) Binding of small molecules to an adaptive protein–protein interface. Proc Natl Acad Sci U S A 100(4):1603–1608CrossRef
Metadaten
Titel
Oligooxopiperazines as Topographical Helix Mimetics
verfasst von
Brooke Bullock Lao
Paramjit S. Arora
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/7081_2015_195