Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2015

Open Access 01.12.2015 | Research

On a product-type operator from Zygmund-type spaces to Bloch-Orlicz spaces

verfasst von: Haiying Li, Zhitao Guo

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2015

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The boundedness and compactness of a product-type operator from Zygmund-type spaces to Bloch-Orlicz spaces are investigated in this paper.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors completed the paper, read and approved the final manuscript.

1 Introduction

Let \(\mathcal{D}\) denote the unit disk in the complex plane \(\mathcal {C}\), and let \(\mathcal{H}(\mathcal{D})\) be the space of all holomorphic functions on \(\mathcal{D}\) with the topology of uniform convergence on compacts of \(\mathcal{D}\).
For \(0<\alpha<\infty\), the α-Bloch space, denoted by \(\mathcal{B}^{\alpha}\), consists of all functions \(f\in\mathcal {H}(\mathcal{D})\) such that
$$\sup_{z\in\mathcal{D}}\bigl(1-|z|^{2}\bigr)^{\alpha}\bigl\vert f'(z)\bigr\vert < \infty. $$
By \(\mathcal{Z}^{\alpha}\) we denote the Zygmund-type space consisting of those functions \(f\in\mathcal{H}(\mathcal{D})\) satisfying
$$\sup_{z\in\mathcal{D}}\bigl(1-|z|^{2}\bigr)^{\alpha}\bigl\vert f''(z)\bigr\vert < \infty. $$
\(\mathcal{B}^{\alpha}\) and \(\mathcal{Z}^{\alpha}\) are Banach spaces under the norms
$$\begin{aligned}& \|f\|_{\mathcal{B}^{\alpha}}=\bigl\vert f(0)\bigr\vert +\sup_{z\in\mathcal {D}} \bigl(1-|z|^{2}\bigr)^{\alpha}\bigl\vert f'(z)\bigr\vert , \\& \|f\|_{\mathcal{Z}^{\alpha}}=\bigl\vert f(0)\bigr\vert +\bigl\vert f'(0)\bigr\vert +\sup_{z\in\mathcal {D}}\bigl(1-|z|^{2} \bigr)^{\alpha}\bigl\vert f''(z)\bigr\vert , \end{aligned}$$
respectively. For some results on the Zygmund-type spaces on various domains in the complex plane and \(\mathcal{C}^{n}\) and operators on them, see, for example, [118]. The α-Bloch space is introduced and studied by numerous authors. For the general theory of α-Bloch or Bloch-type spaces and operators of them, see, e.g., [4, 1941]. Recently, many authors studied different classes of Bloch-type spaces, where the typical weight function, \(\omega(z)=1-|z|^{2}\), \(z\in\mathcal{D}\), is replaced by a bounded continuous positive function μ defined on \(\mathcal{D}\). More precisely, a function \(f\in\mathcal{H}(\mathcal{D})\) is called a μ-Bloch function, denoted by \(f\in\mathcal{B}^{\mu}\), if \(\|f\|_{\mu}=\sup_{z\in\mathcal{D}}\mu(z)|f'(z)|<\infty\). If \(\mu(z)=\omega(z)^{\alpha}\), \(\alpha>0\), \(\mathcal{B}^{\mu}\) is just the α-Bloch space \(\mathcal{B}^{\alpha}\). It is readily seen that \(\mathcal{B}^{\mu}\) is a Banach space with the norm \(\|f\|_{\mathcal{B}^{\mu}}=|f(0)|+\|f\|_{\mu}\).
Recently, Ramos Fernández in [42] used Young’s functions to define the Bloch-Orlicz space. More precisely, let \(\varphi: [0,+\infty)\rightarrow[0,+\infty)\) be a strictly increasing convex function such that \(\varphi(0)=0\) and note that from these conditions it follows that \(\lim_{t\rightarrow+\infty}\varphi(t)=+\infty\). The Bloch-Orlicz space associated with the function φ, denoted by \(\mathcal{B}^{\varphi}\), is the class of all analytic functions f in \(\mathcal{D}\) such that
$$\sup_{z\in\mathcal{D}}\bigl(1-|z|^{2}\bigr)\varphi\bigl(\lambda \bigl\vert f'(z)\bigr\vert \bigr)< \infty $$
for some \(\lambda>0\) depending on f. Also, since φ is convex, it is not hard to see that Minkowski’s functional
$$\|f\|_{\varphi}=\inf \biggl\{ k>0:S_{\varphi} \biggl(\frac{f'}{k} \biggr)\leq1 \biggr\} $$
defines a seminorm for \(\mathcal{B}^{\varphi}\), which, in this case, is known as Luxemburg’s seminorm, where
$$S_{\varphi}(f)=\sup_{z\in\mathcal{D}}\bigl(1-|z|^{2}\bigr) \varphi\bigl(\bigl\vert f(z)\bigr\vert \bigr). $$
Moreover, it can be shown that \(\mathcal{B}^{\varphi}\) is a Banach space with the norm \(\|f\|_{\mathcal{B}^{\varphi}}=|f(0)|+\|f\|_{\varphi}\). We also have that the Bloch-Orlicz space is isometrically equal to a particular μ-Bloch space, where \(\mu(z)=\frac{1}{\varphi^{-1}(\frac{1}{1-|z|^{2}})}\) with \(z\in \mathcal{D}\). Thus, for any \(f\in\mathcal{B}^{\varphi}\), we have
$$\|f\|_{\mathcal{B}^{\varphi}}=\bigl\vert f(0)\bigr\vert +\sup_{z\in\mathcal{D}} \mu(z)\bigl\vert f'(z)\bigr\vert . $$
When φ is the identity map on \([0,+\infty)\), \(\mathcal {B}^{\varphi}\) is the so-called Bloch space ℬ.
Let \(u\in\mathcal{H}(\mathcal{D})\) and ϕ be an analytic self-map of \(\mathcal{D}\). The differentiation operator D, the multiplication operator \(M_{u}\) and the composition operator \(C_{\phi}\) are defined by
$$(Df) (z)=f'(z),\qquad (M_{u}f) (z)=u(z)f(z),\qquad (C_{\phi}f) (z)=f\bigl(\phi(z)\bigr), \quad f\in\mathcal{H}(\mathcal{D}). $$
There is a considerable interest in studying the above mentioned operators as well as their products (see, e.g., [138, 4156] and the related references therein).
A product-type operator \(DM_{u}C_{\phi}\) is defined as follows:
$$(DM_{u}C_{\phi}f) (z)=u'(z)f\bigl(\phi(z) \bigr)+u(z)\phi'(z)f'\bigl(\phi(z)\bigr),\quad u,f\in \mathcal{H}(\mathcal{D}). $$
For \(0<\alpha<\infty\) and \(\frac{1}{2}<|a|<1\), we define the test functions (see [1])
$$\begin{aligned}& f_{a}(z)=\frac{1}{\overline{a}^{2}} \biggl[\frac{(1-|a|^{2})^{2}}{ (1-\overline{a}z)^{\alpha}}-\frac{1-|a|^{2}}{(1-\overline {a}z)^{\alpha-1}} \biggr], \\& h_{a}(z)=\frac{1}{\overline{a}}\int^{z}_{0} \frac {1-|a|^{2}}{(1-\overline{a}\lambda)^{\alpha}}\, d\lambda,\quad z\in\mathcal{D}. \end{aligned}$$
It is easy to show that \(f_{a},h_{a}\in\mathcal{Z}^{\alpha}\) and \(f_{a}(a)=0\),
$$f'_{a}(a)=h'_{a}(a)= \frac{1}{\overline {a}}\bigl(1-|a|^{2}\bigr)^{1-\alpha},\qquad f''_{a}(a)=\frac{2\alpha}{(1-|a|^{2})^{\alpha}}, \qquad h''_{a}(a)=\frac {\alpha}{(1-|a|^{2})^{\alpha}}. $$
Esmaeili and Lindström in [1] investigated weighted composition operators between Zygmund-type spaces. Ramos Fernández in [42] studied the boundedness and compactness of composition operators on Bloch-Orlicz spaces. Li and Stević in [5] investigated products of Volterra-type operator and composition operator from \(H^{\infty}\) and Bloch spaces to Zygmund spaces, and they in [8] studied products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces. Liu and Yu in [25] characterized the boundedness and compactness of products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball. Sharma in [27] studied the boundedness and compactness of products of composition multiplication and differentiation between Bergman and Bloch-type spaces. In [52], Stević investigated the properties of weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces. Stević in [13] studied weighted radial operators from the mixed-norm space to the nth weighted-type space on the unit ball. Stević et al. in [54] characterized the boundedness and compactness of products of multiplication composition and differentiation operators on weighted Bergman spaces. Zhu in [18] studied extended Cesàro operators from mixed-norm spaces to Zygmund-type spaces.
Motivated by the above papers, in this paper, we investigate the boundedness and compactness of the product-type operator \(DM_{u}C_{\phi}\) from Zygmund-type spaces to the Bloch-Orlicz space. The paper is organized as follows. In Section 2, we give some necessary and sufficient conditions for the boundedness of the operator \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\). In Section 3, we give some necessary and sufficient conditions for the compactness of the operator \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\).
Throughout this paper,
$$\mu(z)=\frac{1}{\varphi^{-1}(\frac{1}{1-|z|^{2}})}, $$
and we use letter C to denote a positive constant whose value may change at each occurrence.

2 The boundedness of \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha }\rightarrow\mathcal{B}^{\varphi}\)

The following lemma was essentially proved in [3] and [11] (see also [1]).
Lemma 1
For \(f\in\mathcal{Z}^{\alpha}\) and \(\alpha>0\). Then:
(i)
For \(0<\alpha<1\), \(|f'(z)|\leq\frac{2}{1-\alpha}\|f\|_{\mathcal{Z}^{\alpha}}\) and \(|f(z)|\leq\frac{2}{1-\alpha}\|f\|_{\mathcal{Z}^{\alpha}}\).
 
(ii)
For \(\alpha=1\), \(|f'(z)|\leq\log\frac{e}{1-|z|^{2}}\|f\|_{\mathcal{Z}}\) and \(|f(z)|\leq\|f\|_{\mathcal{Z}}\).
 
(iii)
For \(\alpha>1\), \(|f'(z)|\leq\frac{2}{\alpha-1}\frac{\|f\|_{\mathcal{Z}^{\alpha }}}{(1-|z|^{2})^{\alpha-1}}\). For \(\alpha=2\), \(|f'(z)|\leq\frac{e}{1-|z|^{2}}\|f\|_{\mathcal{Z}^{2}}\).
 
(iv)
For \(1<\alpha<2\), \(|f(z)|\leq\frac{2}{(\alpha-1)(2-\alpha)}\|f\|_{\mathcal {Z}^{\alpha}}\).
 
(v)
For \(\alpha=2\), \(|f(z)|\leq2\log\frac{e}{1-|z|^{2}}\|f\|_{\mathcal{Z}^{2}}\).
 
(vi)
For \(\alpha>2\), \(|f(z)|\leq\frac{2}{(\alpha-1)(\alpha-2)}\frac{\|f\|_{\mathcal {Z}^{\alpha}}}{(1-|z|^{2})^{\alpha-2}}\).
 
Lemma 2
If \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow \mathcal{B}^{\varphi}\) is bounded and \(0<\alpha<\infty\), then the following conditions hold:
$$\begin{aligned}& k_{1}=\sup_{z\in\mathcal{D}}\mu(z)\bigl\vert u''(z)\bigr\vert < \infty, \end{aligned}$$
(1)
$$\begin{aligned}& k_{2}=\sup_{z\in\mathcal{D}}\mu(z)\bigl\vert 2u'(z)\phi'(z)+u(z)\phi ''(z) \bigr\vert < \infty, \end{aligned}$$
(2)
$$\begin{aligned}& k_{3}=\sup_{z\in\mathcal{D}}\mu(z)\bigl\vert u(z)\bigr\vert \bigl\vert \phi'(z)\bigr\vert ^{2}< \infty. \end{aligned}$$
(3)
Proof
Suppose that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded. Taking the function \(f(z)=1\in\mathcal{Z}^{\alpha}\) and using the obvious fact that \(\|f\|_{\mathcal{Z}^{\alpha}}=1\), we have that
$$S_{\varphi} \biggl(\frac{(DM_{u}C_{\phi}f)'(z)}{C\|f\|_{\mathcal {Z}^{\alpha}}} \biggr) =S_{\varphi} \biggl( \frac{u''(z)}{C} \biggr)=\sup_{z\in \mathcal{D}}\bigl(1-|z|^{2} \bigr)\varphi \biggl(\frac{|u''(z)|}{C} \biggr)\leq1, $$
from which it follows that (1) holds. Taking the function \(f(z)=z\in\mathcal{Z}^{\alpha}\) and using the fact that \(\|f\|_{\mathcal{Z}^{\alpha}}=1\), we obtain
$$\begin{aligned}& S_{\varphi} \biggl(\frac{(DM_{u}C_{\phi}f)'(z)}{C\|f\|_{\mathcal {Z}^{\alpha}}} \biggr) \\& \quad = S_{\varphi} \biggl(\frac{u''(z)\phi(z)+2u'(z)\phi'(z)+u(z)\phi ''(z)}{C} \biggr) \\& \quad = \sup_{z\in \mathcal{D}}\bigl(1-|z|^{2}\bigr)\varphi \biggl(\frac{|u''(z)\phi (z)+2u'(z)\phi'(z)+u(z)\phi''(z)|}{C} \biggr)\leq1. \end{aligned}$$
Hence
$$\sup_{z\in\mathcal{D}}\mu(z)\bigl\vert 2u'(z) \phi'(z)+u(z)\phi ''(z)+u''(z) \phi(z)\bigr\vert < \infty. $$
From this, (1) and by the boundedness of \(\phi(z)\), condition (2) easily follows. Now taking the function \(f(z)=z^{2}\in\mathcal{Z}^{\alpha}\) and using the fact that \(\|f\|_{\mathcal{Z}^{\alpha}}=2\), we get
$$ S_{\varphi} \biggl(\frac{u''(z)(\phi(z))^{2}+2\phi (z)(2u'(z)\phi'(z)+u(z)\phi''(z))+2u(z) \phi'(z)^{2}}{2C} \biggr)\leq1. $$
Hence
$$\sup_{z\in\mathcal{D}}\mu(z)\bigl\vert u''(z) \bigl(\phi(z)\bigr)^{2}+2\phi (z) \bigl(2u'(z) \phi'(z)+u(z)\phi''(z)\bigr)+2u(z) \phi'(z)^{2}\bigr\vert < \infty. $$
From this, (1), (2) and the boundedness of \(\phi(z)\), we obtain (3). □
Now, we are ready to characterize the boundedness of the product-type operator \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\). For this purpose we need to break the problem into five different cases: \(0<\alpha<1\), \(\alpha=1\), \(1<\alpha<2\), \(\alpha=2\) and \(\alpha>2\).
Theorem 3
Let \(u\in\mathcal{H}(\mathcal{D})\), ϕ be an analytic self-map of \(\mathcal{D}\) and \(0<\alpha<1\). Then \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded if and only if \(k_{1}<\infty\), \(k_{2}<\infty\) and
$$ k_{4}=\sup_{z\in\mathcal{D}}\frac{\mu(z)|u(z)||\phi '(z)|^{2}}{(1-|\phi(z)|^{2})^{\alpha}}< \infty. $$
(4)
Proof
Suppose that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded, by Lemma 2 we know that \(k_{1}, k_{2}, k_{3}<\infty\). Now we will prove (4). Let
$$g_{\phi(\omega)}(z)=f_{\phi(\omega)}(z)-h_{\phi(\omega )}(z)+h_{\phi(\omega)} \bigl(\phi(\omega)\bigr) $$
for all \(z\in\mathcal{D}\) and \(\omega\in\mathcal{D}\) such that \(\frac{1}{2}<|\phi(\omega)|<1\), then \(g_{\phi(\omega)}\in\mathcal{Z}^{\alpha}\), and
$$g_{\phi(\omega)}\bigl(\phi(\omega)\bigr)=g'_{\phi(\omega)}\bigl( \phi(\omega)\bigr)=0,\qquad g''_{\phi(\omega)}\bigl( \phi(\omega)\bigr)=\frac{\alpha}{(1-|\phi(\omega )|^{2})^{\alpha}}. $$
By the boundedness of \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\), we have \(\|DM_{u}C_{\phi}g_{\phi(\omega)}\|_{\mathcal{B}^{\varphi}}\leq C\), then
$$ 1 \geq S_{\varphi} \biggl(\frac{(DM_{u}C_{\phi }g_{\phi(\omega)})'(z)}{C} \biggr)\geq \sup _{\frac{1}{2}< |\phi(\omega)|<1}\bigl(1-|\omega|^{2}\bigr)\varphi \biggl( \frac{\alpha|u(\omega)| |\phi'(\omega)|^{2}}{C(1-|\phi(\omega)|^{2})^{\alpha}} \biggr). $$
It follows that
$$ \sup_{\frac{1}{2}< |\phi(\omega)|<1} \frac{\mu(\omega)|u(\omega)||\phi'(\omega)|^{2}}{ (1-|\phi(\omega)|^{2})^{\alpha}}<\infty. $$
(5)
By \(k_{3}<\infty\), we see that
$$ \sup_{|\phi(\omega)|\leq\frac{1}{2}}\frac{\mu (\omega)|u(\omega)||\phi'(\omega)|^{2}}{ (1-|\phi(\omega)|^{2})^{\alpha}}\leq C \sup _{|\phi(\omega)|\leq\frac{1}{2}}\mu(\omega)\bigl\vert u(\omega)\bigr\vert \bigl\vert \phi '(\omega)\bigr\vert ^{2}< \infty. $$
(6)
From (5) and (6), we obtain (4).
Suppose that \(k_{1}, k_{2}, k_{4}<\infty\). For each \(f\in\mathcal{Z}^{\alpha}\setminus\{0\}\), by Lemma 1(i) we have
$$\begin{aligned}& S_{\varphi} \biggl(\frac{(DM_{u}C_{\phi }f)'(z)}{C\|f\|_{\mathcal{Z}^{\alpha}}} \biggr) \\& \quad \leq \sup_{z\in\mathcal{D}}\bigl(1-|z|^{2}\bigr)\varphi \biggl[\frac{(k_{1}|f(\phi(z))| +k_{2}|f'(\phi(z))|+k_{4}(1-|\phi(z)|^{2})^{\alpha}|f''(\phi (z))|)}{C\mu(z)\|f\|_{\mathcal{Z}^{\alpha}}} \biggr] \\& \quad \leq \sup_{z\in\mathcal{D}}\bigl(1-|z|^{2}\bigr)\varphi \biggl[\frac{k_{1}\frac{2}{1-\alpha}+ k_{2}\frac{2}{1-\alpha}+k_{4}}{C\mu(z)} \biggr] \leq1, \end{aligned}$$
where C is a constant such that \(C\geq k_{1}\frac{2}{1-\alpha}+k_{2}\frac{2}{1-\alpha}+k_{4}\). Here we use the fact that
$$ \sup_{z\in\mathcal{D}}\bigl(1-\bigl\vert \phi(z)\bigr\vert ^{2}\bigr)^{\alpha }\bigl\vert f'' \bigl(\phi(z)\bigr)\bigr\vert \leq\|f\|_{\mathcal{Z}^{\alpha}}. $$
Now, we can conclude that there exists a constant C such that \(\|DM_{u}C_{\phi}f\|_{\mathcal{B}^{\varphi}}\leq C\|f\|_{\mathcal {Z}^{\alpha}}\) for all \(f\in\mathcal{Z}^{\alpha}\), so the product-type operator \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded. □
Theorem 4
Let \(u\in\mathcal{H}(\mathcal{D})\) and ϕ be an analytic self-map of \(\mathcal{D}\). Then \(DM_{u}C_{\phi}:\mathcal{Z}\rightarrow\mathcal {B}^{\varphi}\) is bounded if and only if \(k_{1}<\infty\),
$$\begin{aligned}& k_{5}=\sup_{z\in\mathcal{D}}\mu(z)\bigl\vert 2u'(z)\phi'(z)+u(z)\phi ''(z) \bigr\vert \log\frac{e}{1-|\phi(z)|^{2}}< \infty, \end{aligned}$$
(7)
$$\begin{aligned}& k_{6}=\sup_{z\in\mathcal{D}}\frac{\mu(z)|u(z)||\phi '(z)|^{2}}{1-|\phi(z)|^{2}}< \infty. \end{aligned}$$
(8)
Proof
Suppose that \(DM_{u}C_{\phi}:\mathcal{Z}\rightarrow \mathcal{B}^{\varphi}\) is bounded, by Lemma 2 we know that \(k_{1}, k_{2}, k_{3}<\infty\). Let
$$\begin{aligned}& r(z)=(z-1) \biggl[ \biggl(1+\log\frac{e}{1-z} \biggr)^{2}+1 \biggr], \\& s_{a}(z)=\frac{r(\bar{a}z)}{\bar{a}} \biggl(\log\frac {e}{1-|a|^{2}} \biggr)^{-1} -\int^{z}_{0}\log \frac{e}{1-\bar{a}\lambda}\, d\lambda-c_{1}+c_{2}, \end{aligned}$$
where
$$ c_{1}=\frac{r(|a|^{2})}{\bar{a}} \biggl(\log\frac {e}{1-|a|^{2}} \biggr)^{-1},\qquad c_{2}=\int^{a}_{0} \log\frac{e}{1-\bar{a}\lambda}\, d\lambda $$
for any \(a\in\mathcal{D}\) such that \(\frac{1}{2}<|a|<1\). Then we have
$$ \bigl\vert s''_{a}(z)\bigr\vert = \frac{2}{1-|z|} \biggl(C+\log\frac{e}{1-|a|} \biggr) \biggl(\log \frac{e}{1-|a|^{2}} \biggr)^{-1} +\frac{1}{1-|z|}\leq\frac{C}{1-|z|} $$
for \(\frac{1}{2}<|a|<1\) and \(\sup_{\frac{1}{2}<|a|<1}\|s_{a}\|_{\mathcal{Z}}<\infty\).
Now let \(a=\phi(\omega)\), \(\omega\in\mathcal{D}\) such that \(\frac{1}{2}<|\phi(\omega)|<1\), then
$$ s_{\phi(\omega)}\bigl(\phi(\omega)\bigr)=s'_{\phi(\omega)}\bigl( \phi(\omega)\bigr)=0,\qquad s''_{\phi(\omega)}\bigl( \phi(\omega)\bigr)=\frac{\overline{\phi(\omega )}}{1-|\phi(\omega)|^{2}}. $$
By the boundedness of \(DM_{u}C_{\phi}:\mathcal{Z}\rightarrow\mathcal {B}^{\varphi}\), we have \(\|DM_{u}C_{\phi}s_{\phi(\omega)}\|_{\mathcal{B}^{\varphi }}\leq C\), then
$$ 1 \geq S_{\varphi } \biggl(\frac{(DM_{u}C_{\phi}s_{\phi(\omega)})'(z)}{C} \biggr)\geq \sup _{\frac{1}{2}< |\phi(\omega)|<1}\bigl(1-|\omega|^{2}\bigr)\varphi \biggl( \frac{|u(\omega)||\phi'(\omega)|^{2}|\phi(\omega )|}{C(1-|\phi(\omega)|^{2})} \biggr). $$
From this it follows that
$$ \frac{1}{2}\sup_{\frac{1}{2}< |\phi(\omega)|<1} \frac{\mu(\omega)|u(\omega)||\phi'(\omega)|^{2}}{1-|\phi(\omega )|^{2}} \leq \sup_{\frac{1}{2}<|\phi(\omega)|<1} \frac{\mu(\omega)|u(\omega)||\phi'(\omega)|^{2}|\phi(\omega )|}{1-|\phi(\omega)|^{2}}<\infty. $$
(9)
By \(k_{3}<\infty\) we see that
$$ \sup_{|\phi(\omega)|\leq\frac{1}{2}}\frac{\mu (\omega)|u(\omega)||\phi'(\omega)|^{2}}{ 1-|\phi(\omega)|^{2}}\leq \frac{4}{3} \sup_{|\phi(\omega)|\leq\frac{1}{2}}\mu(\omega)\bigl\vert u(\omega) \bigr\vert \bigl\vert \phi '(\omega)\bigr\vert ^{2} < \infty. $$
(10)
From (9) and (10) we obtain \(k_{6}<\infty\).
Let
$$ t_{\phi(\omega)}(z)=\frac{r(\overline{\phi(\omega)}z)}{ \overline{\phi(\omega)}} \biggl(\log\frac{e}{1-|\phi(\omega )|^{2}} \biggr)^{-1}-c_{1} $$
for \(\omega\in\mathcal{D}\) such that \(\frac{1}{2}<|\phi(\omega )|<1\), then, as above, we can get that \(t_{\phi(\omega)}\in\mathcal{Z}\) and
$$ t_{\phi(\omega)}\bigl(\phi(\omega)\bigr)=0, \qquad t'_{\phi (\omega)} \bigl(\phi(\omega)\bigr)=\log\frac{e}{1-|\phi(\omega)|^{2}},\qquad t''_{\phi(\omega)} \bigl(\phi(\omega)\bigr)=\frac{2\overline{\phi(\omega )}}{1-|\phi(\omega)|^{2}}. $$
By the boundedness of \(DM_{u}C_{\phi}:\mathcal{Z}\rightarrow\mathcal {B}^{\varphi}\), we have \(\|DM_{u}C_{\phi}t_{\phi(\omega)}\|_{\mathcal{B}^{\varphi }}\leq C\), then
$$\begin{aligned} 1 \geq& S_{\varphi } \biggl(\frac{(DM_{u}C_{\phi}t_{\phi(\omega)})'(z)}{C} \biggr) \\ \geq& \sup _{\frac{1}{2}< |\phi(\omega)|<1}\bigl(1-|\omega|^{2}\bigr)\varphi \biggl( \frac{|(DM_{u}C_{\phi}t_{\phi(\omega)})'(\omega)|}{C} \biggr) \\ \geq&\sup_{\frac{1}{2}<|\phi(\omega )|<1}\bigl(1-|\omega|^{2}\bigr) \\ &{}\cdot\varphi \biggl(\frac{ |(2u'(\omega)\phi '(\omega)+u(\omega) \phi''(\omega))\log\frac{e}{1-|\phi(\omega)|^{2}}+u(\omega)(\phi '(\omega))^{2}\frac{2\overline{\phi(\omega)}}{1-|\phi(\omega)|^{2}} |}{C} \biggr). \end{aligned}$$
From this and by \(k_{6}<\infty\), we get
$$\begin{aligned}& \sup_{\frac{1}{2}< |\phi (\omega)|<1} \mu(\omega)\bigl\vert 2u'(\omega)\phi'(\omega)+u(\omega)\phi''( \omega )\bigr\vert \log\frac{e}{1-|\phi(\omega)|^{2}} \\& \quad \leq C+2Ck_{6}<\infty. \end{aligned}$$
(11)
By \(k_{2}<\infty\) we see that
$$\begin{aligned}& \sup_{|\phi(\omega)|\leq\frac {1}{2}}\mu(\omega)\bigl\vert 2u'(\omega)\phi'(\omega)+u(\omega)\phi ''(\omega) \bigr\vert \log\frac{e}{1-|\phi(\omega)|^{2}} \\& \quad \leq C \sup_{|\phi(\omega)|\leq\frac{1}{2}}\mu(\omega)\bigl\vert 2u'(\omega)\phi '(\omega)+u(\omega) \phi''(\omega) \bigr\vert < \infty. \end{aligned}$$
(12)
From (11) and (12) we obtain (7).
Suppose that \(k_{1}, k_{5}, k_{6}<\infty\). Then, by Lemma 1(ii) and similar to the proof of Theorem 3, we get that \(DM_{u}C_{\phi}:\mathcal{Z}\rightarrow\mathcal{B}^{\varphi}\) is bounded. □
Theorem 5
Let \(u\in\mathcal{H}(\mathcal{D})\), ϕ be an analytic self-map of \(\mathcal{D}\) and \(1<\alpha<2\). Then \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded if and only if \(k_{1}<\infty\),
$$\begin{aligned}& k_{7}=\sup_{z\in\mathcal{D}}\frac{\mu(z)|2u'(z)\phi '(z)+u(z)\phi''(z)|}{(1-|\phi(z)|^{2})^{\alpha-1}}< \infty, \end{aligned}$$
(13)
$$\begin{aligned}& k_{8}=\sup_{z\in\mathcal{D}}\frac{\mu(z)|u(z)||\phi '(z)|^{2}}{(1-|\phi(z)|^{2})^{\alpha}}< \infty. \end{aligned}$$
(14)
Proof
Suppose that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded, by Lemma 2 we know that \(k_{1}, k_{2}, k_{3}<\infty\). Inequality (14) can be proved as in Theorem 3. Using the test function \(f_{\phi(\omega)}(z)\) in Section 1, where \(z\in\mathcal{D}\), \(\omega\in\mathcal{D}\) such that \(\frac{1}{2}<|\phi(\omega)|<1\), then we have that \(f_{\phi(\omega)}\in\mathcal{Z}^{\alpha}\), and
$$\begin{aligned}& f_{\phi(\omega)}\bigl(\phi(\omega)\bigr)=0, \\& f'_{\phi(\omega)} \bigl(\phi(\omega)\bigr)=\frac{1}{\overline{\phi(\omega )}(1-|\phi(\omega)|^{2})^{\alpha-1}}, \\& f''_{\phi(\omega)} \bigl(\phi(\omega)\bigr)=\frac{2\alpha}{(1-|\phi(\omega )|^{2})^{\alpha}}. \end{aligned}$$
By the boundedness of \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\), we have \(\|DM_{u}C_{\phi}f_{\phi(\omega)}\|_{\mathcal{B}^{\varphi}}\leq C\), then
$$\begin{aligned} 1 \geq& S_{\varphi} \biggl(\frac{(DM_{u}C_{\phi }f_{\phi(\omega)})'(z)}{C} \biggr) \\ \geq& \sup_{\frac{1}{2}< |\phi(\omega)|<1}\bigl(1-|\omega|^{2}\bigr)\varphi \biggl(\frac{|(DM_{u}C_{\phi} f_{\phi(\omega)})'(\omega)|}{C} \biggr) \\ \geq&\sup_{\frac{1}{2}<|\phi(\omega)|<1}\bigl(1-|\omega |^{2}\bigr)\varphi \biggl(\frac{ | \frac{2u'(\omega)\phi'(\omega)+u(\omega) \phi''(\omega)}{\overline{\phi(\omega)}(1-|\phi(\omega )|^{2})^{\alpha-1}} +\frac{2\alpha u(\omega)\phi'(\omega)^{2}}{(1-|\phi(\omega)|^{2})^{\alpha}} |}{C} \biggr). \end{aligned}$$
From this and by \(k_{8}<\infty\), we get
$$ \sup_{\frac{1}{2}< |\phi(\omega)|<1} \frac{\mu(\omega)|2u'(\omega)\phi'(\omega)+u(\omega)\phi ''(\omega)|}{(1-|\phi(\omega)|^{2})^{\alpha-1}} \leq C+2C\alpha k_{8}<\infty. $$
Then, according to the former proof with \(k_{2}<\infty\), we can get (13).
Suppose that \(k_{1}, k_{7}, k_{8}<\infty\). Then, by Lemma 1(iii) and (iv) and similar to the proof of Theorem 3, we get that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded. □
Theorem 6
Let \(u\in\mathcal{H}(\mathcal{D})\) and ϕ be an analytic self-map of \(\mathcal{D}\). Then \(DM_{u}C_{\phi}:\mathcal{Z}^{2}\rightarrow \mathcal{B}^{\varphi}\) is bounded if and only if
$$\begin{aligned}& k_{9}=\sup_{z\in\mathcal{D}}\mu(z)\bigl\vert u''(z)\bigr\vert \log\frac{e}{1-|\phi (z)|^{2}}< \infty, \end{aligned}$$
(15)
$$\begin{aligned}& k_{10}=\sup_{z\in\mathcal{D}}\frac{\mu(z)|2u'(z)\phi '(z)+u(z)\phi''(z)|}{1-|\phi(z)|^{2}}< \infty, \end{aligned}$$
(16)
$$\begin{aligned}& k_{11}=\sup_{z\in\mathcal{D}}\frac{\mu(z)|u(z)||\phi '(z)|^{2}}{(1-|\phi(z)|^{2})^{2}}< \infty. \end{aligned}$$
(17)
Proof
Suppose that \(DM_{u}C_{\phi}:\mathcal{Z}^{2}\rightarrow\mathcal{B}^{\varphi}\) is bounded, from Lemma 2 we know that \(k_{1}, k_{2}, k_{3}<\infty\). By repeating the arguments in the proof of Theorem 3 and Theorem 5, (16) and (17) can be proved similarly. Hence we only need to show \(k_{9}<\infty\). For every \(z\in\mathcal{D}\) and \(\omega\in\mathcal{D}\) such that \(\frac{1}{2}<|\phi(\omega)|<1\), let \(p_{\phi(\omega)}(z)=\log\frac{e}{1-\overline{\phi(\omega)}z}\). Clearly \(p_{\phi(\omega)}\in\mathcal{Z}^{2}\), and \(p_{\phi(\omega)}(\phi(\omega))=\log\frac{e}{1-|\phi(\omega)|^{2}}\),
$$\begin{aligned}& p'_{\phi(\omega)}\bigl(\phi(\omega)\bigr)=\frac{\overline{\phi(\omega )}}{1-|\phi(\omega)|^{2}}, \\& p''_{\phi(\omega)}\bigl(\phi(\omega)\bigr)= \frac{\overline{\phi(\omega)}^{2}}{ (1-|\phi(\omega)|^{2})^{2}}. \end{aligned}$$
By the boundedness of \(DM_{u}C_{\phi}:\mathcal{Z}^{2}\rightarrow\mathcal{B}^{\varphi}\), we have \(\|DM_{u}C_{\phi}p_{\phi(\omega)}\|_{\mathcal{B}^{\varphi}}\leq C\), then
$$\begin{aligned} 1 \geq& S_{\varphi} \biggl(\frac{(DM_{u}C_{\phi }p_{\phi(\omega)})'(z)}{C} \biggr) \\ \geq& \sup_{\frac{1}{2}< |\phi(\omega)|<1}\bigl(1-|\omega|^{2}\bigr)\varphi \biggl(\frac{|(DM_{u}C_{\phi}p_{\phi(\omega)})'(\omega)|}{C} \biggr) \\ \geq&\sup_{\frac{1}{2}<|\phi(\omega)|<1}\bigl(1-|\omega|^{2}\bigr) \\ &{}\cdot\varphi \biggl(\frac{ |u''(\omega)\log\frac {e}{1-|\phi(\omega)|^{2}} +\frac {(2u'(\omega)\phi'(\omega)+u(\omega)\phi''(\omega))\overline{\phi(\omega)}}{1-|\phi(\omega)|^{2}} + \frac{u(\omega)(\phi'(\omega))^{2}\overline{\phi(\omega )}^{2}}{(1-|\phi(\omega)|^{2})^{2}}|}{C}\biggr). \end{aligned}$$
By \(k_{10}, k_{11}<\infty\) we get
$$ \sup_{\frac{1}{2}< |\phi(\omega)|<1}\mu(\omega)\bigl\vert u''(\omega)\bigr\vert \log \frac{e}{1-|\phi(\omega)|^{2}} \leq C+Ck_{10}+Ck_{11}<\infty. $$
(18)
By \(k_{1}<\infty\) we see that
$$ \sup_{|\phi(\omega)|\leq\frac{1}{2}}\mu(\omega)\bigl\vert u''(\omega )\bigr\vert \log\frac{e}{1-|\phi(\omega)|^{2}} \leq C \sup_{|\phi(\omega)|\leq\frac{1}{2}}\mu(\omega)\bigl\vert u''( \omega)\bigr\vert < \infty. $$
(19)
From (18) and (19) we obtain (15).
Suppose that \(k_{9}, k_{10}, k_{11}<\infty\). Then, by Lemma 1(iii) and (v) and similar to the proof of Theorem 3, we get that \(DM_{u}C_{\phi}:\mathcal{Z}^{2}\rightarrow\mathcal{B}^{\varphi}\) is bounded. □
Theorem 7
Let \(u\in\mathcal{H}(\mathcal{D})\), ϕ be an analytic self-map of \(\mathcal{D}\) and \(\alpha>2\). Then \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded if and only if
$$\begin{aligned}& k_{12}=\sup_{z\in\mathcal{D}}\frac{\mu(z)|u''(z)|}{(1-|\phi (z)|^{2})^{\alpha-2}}< \infty, \end{aligned}$$
(20)
$$\begin{aligned}& k_{13}=\sup_{z\in\mathcal{D}}\frac{\mu(z)|2u'(z)\phi '(z)+u(z)\phi''(z)|}{(1-|\phi(z)|^{2})^{\alpha-1}}< \infty, \end{aligned}$$
(21)
$$\begin{aligned}& k_{14}=\sup_{z\in\mathcal{D}}\frac{\mu(z)|u(z)||\phi '(z)|^{2}}{(1-|\phi(z)|^{2})^{\alpha}}< \infty. \end{aligned}$$
(22)
Proof
Suppose that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded, by Lemma 2 we know that \(k_{1}, k_{2}, k_{3}<\infty\). With the same argument as in Theorem 5 one can show that (21) and (22) hold.
Now we prove that \(k_{12}<\infty\). For every \(a, z\in\mathcal{D}\), define \(q_{a}(z)=\frac{(1-|a|^{2})^{2}}{(1-\bar{a}z)^{\alpha}}\). Then \(\sup_{z\in\mathcal{D}}(1-|z|^{2})^{\alpha}|q''_{a}(z)|\leq4\alpha \cdot2^{\alpha}\cdot(\alpha+1)\), which shows that \(q_{a}\in\mathcal{Z}^{\alpha}\). Now we let \(a=\phi (\omega)\) for every \(\omega\in\mathcal{D}\) such that \(\frac{1}{2}<|\phi (\omega)|<1\), and we have
$$\begin{aligned}& q_{\phi(\omega)}\bigl(\phi(\omega)\bigr)=\frac{1}{(1-|\phi(\omega )|^{2})^{\alpha-2}}, \\& q'_{\phi(\omega)}\bigl(\phi(\omega)\bigr)=\frac{\alpha\overline{\phi (\omega)}}{(1-|\phi(\omega)|^{2})^{\alpha-1}},\qquad q''_{\phi(\omega)}\bigl(\phi(\omega)\bigr)= \frac{\alpha(\alpha+1)\overline {\phi(\omega)}^{2}}{(1-|\phi(\omega)|^{2})^{\alpha}}. \end{aligned}$$
By the boundedness of \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\), we have \(\|DM_{u}C_{\phi}q_{\phi(\omega)}\|_{\mathcal{B}^{\varphi}}\leq C\), then
$$\begin{aligned} 1 \geq& S_{\varphi} \biggl(\frac{(DM_{u}C_{\phi}q_{\phi(\omega )})'(z)}{C} \biggr) \\ \geq& \sup_{\frac{1}{2}< |\phi(\omega)|<1}\bigl(1-|\omega|^{2}\bigr) \\ &{}\cdot\varphi \biggl(\frac{ |\frac{u''(\omega )}{(1-|\phi(\omega)|^{2})^{\alpha-2}} +\frac{\alpha\overline{\phi(\omega)}(2u'(\omega)\phi'(\omega )+u(\omega)\phi''(\omega))}{(1-|\phi(\omega)|^{2})^{\alpha-1}} +\frac{\alpha(\alpha+1)\overline{\phi(\omega)}^{2}u(\omega )\phi'(\omega)^{2}}{(1-|\phi(\omega)|^{2})^{\alpha}} |}{C} \biggr). \end{aligned}$$
Then we have
$$\begin{aligned}& \sup_{\frac{1}{2}< |\phi(\omega)|<1}\frac{\mu(\omega )|u''(\omega)|}{(1-|\phi(\omega)|^{2})^{\alpha-2}} \\& \quad \leq C+\sup_{\frac{1}{2}<|\phi(\omega)|<1}\alpha \mu(\omega)\biggl\vert \frac{2u'(\omega)\phi'(\omega)+u(\omega)\phi ''(\omega)}{\overline{\phi(\omega)}(1-|\phi(\omega)|^{2})^{\alpha-1}} +\frac{\alpha+1}{2\alpha}\frac{2\alpha u(\omega)\phi'(\omega)^{2}}{(1-|\phi(\omega)|^{2})^{\alpha}}\biggr\vert \\& \quad \leq C +\sup_{\frac{1}{2}<|\phi(\omega)|<1} \alpha \mu(\omega) \biggl\{ \biggl\vert \frac{2u'(\omega)\phi'(\omega)+u(\omega )\phi''(\omega)}{\overline{\phi(\omega)} (1-|\phi(\omega)|^{2})^{\alpha-1}}\biggr\vert +\frac{\alpha+1}{2\alpha}\biggl\vert \frac{2\alpha u(\omega)\phi'(\omega)^{2}}{(1-|\phi(\omega)|^{2})^{\alpha}}\biggr\vert \biggr\} . \end{aligned}$$
(23)
Since \(\frac{\alpha+1}{2\alpha}<1\), then by (21), (22), (23) and according to the former proof with \(k_{1}<\infty\) for \(|\phi(\omega)|\leq\frac{1}{2}\), then \(k_{12}<\infty\). Suppose that \(k_{12}, k_{13}, k_{14}<\infty\). Then, by Lemma 1(iii) and (vi) and similar to the proof of Theorem 3, we get that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded. □

3 The compactness of \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha }\rightarrow\mathcal{B}^{\varphi}\)

In order to prove the compactness of the product-type operator \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\), we need the following lemmas. The proof of the following lemma is similar to that of Proposition 3.11 in [43]. The details are omitted.
Lemma 8
Let \(u\in\mathcal{H}(\mathcal{D})\), ϕ be an analytic self-map of \(\mathcal{D}\) and \(0<\alpha<\infty\). Then \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is compact if and only if \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded and for any bounded sequence \(\{f_{n}\}_{n\in\mathcal{N}}\) in \(\mathcal{Z}^{\alpha}\) which converges to zero uniformly on compact subsets of \(\mathcal{D}\) as \(n\rightarrow\infty\), we have \(\|DM_{u}C_{\phi}f_{n}\|_{\mathcal{B}^{\varphi}}\rightarrow0\) as \(n\rightarrow\infty\).
The following lemma was essentially proved in paper [11] in Lemma 2.5.
Lemma 9
Fix \(0<\alpha<2\) and let \(\{f_{n}\}_{n\in\mathcal{N}}\) be a bounded sequence in \(\mathcal{Z}^{\alpha}\) which converges to zero uniformly on compact subsets of \(\mathcal{D}\) as \(n\rightarrow\infty \). Then \(\lim_{n\rightarrow\infty}\sup_{z\in\mathcal{D}}|f_{n}(z)|=0\). Moreover, for \(0<\alpha<1\), if \(\{f_{n}\}_{n\in\mathcal{N}}\) is a bounded sequence in \(\mathcal{Z}^{\alpha}\) which converges to zero uniformly on compact subsets of \(\mathcal{D}\) as \(n\rightarrow\infty\), then \(\lim_{n\rightarrow\infty}\sup_{z\in\mathcal{D}}|f'_{n}(z)|=0\).
Theorem 10
Let \(u\in\mathcal{H}(\mathcal{D})\), ϕ be an analytic self-map of \(\mathcal{D}\) and \(0<\alpha<1\). Then \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is compact if and only if \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded,
$$ \lim_{|\phi(z)|\rightarrow1}\frac{\mu(z)|u(z)||\phi '(z)|^{2}}{(1-|\phi(z)|^{2})^{\alpha}}=0. $$
(24)
Proof
Suppose that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is compact. It is clear that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow \mathcal{B}^{\varphi}\) is bounded. By Lemma 2, we have that \(k_{1}, k_{2}, k_{3}<\infty\). Let \(\{z_{n}\}_{n\in\mathcal{N}}\) be a sequence in \(\mathcal{D}\) such that \(|\phi(z_{n})|\rightarrow1\) as \(n\rightarrow\infty\). Without loss of generality, suppose that \(|\phi(z_{n})|>\frac{1}{2}\) for all n. Taking the function
$$g_{n}(z)=\frac{1}{\overline{\phi(z_{n})}^{2}} \biggl[\frac{(1-|\phi (z_{n})|^{2})^{2}}{ (1-\overline{\phi(z_{n})}z)^{\alpha}}- \frac{1-|\phi (z_{n})|^{2}}{(1-\overline{\phi(z_{n})}z)^{\alpha-1}} \biggr] -\frac{1}{\overline{\phi(z_{n})}}\int^{z}_{0} \frac{1-|\phi (z_{n})|^{2}}{(1-\overline{\phi(z_{n})}\lambda)^{\alpha}}\, d\lambda. $$
Then \(\sup_{n\in\mathcal{N}}\|g_{n}\|_{\mathcal{Z}^{\alpha }}<\infty\), and \(g_{n}\rightarrow0\) uniformly on compact subsets of \(\mathcal{D}\). Since \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is compact, then \(\lim_{n\rightarrow\infty}\|DM_{u}C_{\phi}g_{n}\|_{\mathcal {B}^{\varphi}}=0\). Since \(\lim_{n\rightarrow\infty}|\phi(z_{n})|=1\), then \(\lim_{n\rightarrow\infty}\sup_{z\in\mathcal{D}}|g_{n}(z)|=0\). Moreover, we have
$$ g'_{n}\bigl(\phi(z_{n})\bigr)=0,\qquad g''_{n}\bigl(\phi(z_{n})\bigr)= \frac{\alpha}{(1-|\phi(z_{n})|^{2})^{\alpha}}. $$
Then
$$1\geq S_{\varphi} \biggl(\frac{(DM_{u}C_{\phi}g_{n})'(z_{n})}{\| DM_{u}C_{\phi}g_{n}\|_{\mathcal{B}^{\varphi}}} \biggr)\geq \bigl(1-|z_{n}|^{2}\bigr)\varphi \biggl(\frac{ |u''(z_{n})g_{n}(\phi(z_{n}))+ \frac{\alpha u(z_{n})\phi'(z_{n})^{2}}{(1-|\phi(z_{n})|^{2})^{\alpha}} |}{ \|DM_{u}C_{\phi}g_{n}\|_{\mathcal{B}^{\varphi}}} \biggr). $$
Hence
$$ \biggl\vert \frac{\alpha \mu(z_{n})|u(z_{n})||\phi'(z_{n})|^{2}}{(1-|\phi (z_{n})|^{2})^{\alpha}} -\mu(z_{n})\bigl\vert u''(z_{n})\bigr\vert \bigl\vert g_{n}\bigl(\phi(z_{n})\bigr)\bigr\vert \biggr\vert \leq \|DM_{u}C_{\phi}g_{n}\|_{\mathcal{B}^{\varphi}}. $$
Therefore
$$ \lim_{|\phi(z_{n})|\rightarrow1}\frac{\mu(z_{n})|u(z_{n})||\phi '(z_{n})|^{2}}{(1-|\phi(z_{n})|^{2})^{\alpha}}= \lim_{n\rightarrow\infty} \frac{\alpha \mu(z_{n})|u(z_{n})||\phi'(z_{n})|^{2}}{(1-|\phi (z_{n})|^{2})^{\alpha}}=0. $$
Suppose that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow \mathcal{B}^{\varphi}\) is bounded and (24) holds. Then \(k_{1}, k_{2}, k_{3}<\infty\) by Lemma 2 and for every \(\epsilon>0\), there is \(\delta\in(0,1)\) such that
$$ \frac{\mu(z)|u(z)||\phi'(z)|^{2}}{(1-|\phi(z)|^{2})^{\alpha }}< \epsilon $$
(25)
whenever \(\delta<|\phi(z)|<1\). Assume that \(\{f_{n}\}_{n\in\mathcal {N}}\) is a sequence in \(\mathcal{Z}^{\alpha}\) such that \(\sup_{n\in\mathcal{N}} \|f_{n}\|_{\mathcal{Z}^{\alpha}}\leq L\), and \(f_{n}\) converges to 0 uniformly on compact subsets of \(\mathcal{D}\) as \(n\rightarrow \infty\). Let \(K=\{z\in\mathcal{D}:|\phi(z)|\leq\delta\}\). Then by \(k_{1}, k_{2}, k_{3}<\infty\) and (25) it follows that
$$\begin{aligned}& \sup_{z\in\mathcal{D}}\mu(z)\bigl\vert (DM_{u}C_{\phi }f_{n})'(z) \bigr\vert \\& \quad \leq \sup_{z\in\mathcal{D}}\mu(z)\bigl\vert u''(z) \bigr\vert \bigl\vert f_{n}\bigl(\phi(z)\bigr)\bigr\vert + \sup _{z\in\mathcal{D}}\mu(z)\bigl\vert 2u'(z) \phi'(z)+u(z)\phi ''(z)\bigr\vert \bigl\vert f'_{n}\bigl(\phi(z)\bigr)\bigr\vert \\& \qquad {}+\sup_{z\in K}\mu(z)\bigl\vert u(z)\bigr\vert \bigl\vert \phi'(z)\bigr\vert ^{2}\bigl\vert f''_{n}\bigl(\phi(z)\bigr)\bigr\vert + \sup _{z\in\mathcal{D}\setminus K}\mu(z)\bigl\vert u(z)\bigr\vert \bigl\vert \phi '(z)\bigr\vert ^{2}\bigl\vert f''_{n} \bigl(\phi(z)\bigr)\bigr\vert \\& \quad \leq k_{1}\sup_{z\in\mathcal{D}}\bigl\vert f_{n}\bigl(\phi(z)\bigr)\bigr\vert +k_{2}\sup _{z\in \mathcal{D}}\bigl\vert f'_{n}\bigl(\phi(z) \bigr)\bigr\vert +k_{3}\sup_{z\in K}\bigl\vert f''_{n}\bigl(\phi(z)\bigr)\bigr\vert \\& \qquad {} +\sup_{z\in\mathcal{D}\setminus K}\frac{\mu(z)\vert u(z)\vert \vert \phi'(z)\vert ^{2}(1-\vert \phi(z)\vert ^{2})^{\alpha }\vert f''_{n}(\phi(z))\vert }{ (1-\vert \phi(z)\vert ^{2})^{\alpha}} \\& \quad \leq k_{1}\sup_{\omega\in\mathcal{D}}\bigl\vert f_{n}(\omega)\bigr\vert +k_{2}\sup_{\omega \in\mathcal{D}} \bigl\vert f'_{n}(\omega)\bigr\vert + k_{3} \sup_{\vert \omega \vert \leq\delta}\bigl\vert f''_{n}( \omega)\bigr\vert +L\epsilon. \end{aligned}$$
Here we use the fact that \(\sup_{z\in\mathcal{D}}(1-|\phi(z)|^{2})^{\alpha}|f''_{n}(\phi (z))|\leq\|f_{n}\|_{\mathcal{Z}^{\alpha}}\leq L\). So we obtain
$$\begin{aligned} \begin{aligned}[b] &\|DM_{u}C_{\phi}f_{n} \|_{B^{\varphi}} \\ &\quad = \bigl\vert u'(0)f_{n}\bigl(\phi(0)\bigr)+u(0) \phi'(0)f'_{n}\bigl(\phi(0)\bigr)\bigr\vert + \sup_{z\in\mathcal{D}}\mu(z)\bigl\vert (DM_{u}C_{\phi}f_{n})'(z) \bigr\vert \\ &\quad \leq \bigl\vert u'(0)\bigr\vert \bigl\vert f_{n}\bigl(\phi(0)\bigr)\bigr\vert +\bigl\vert u(0)\bigr\vert \bigl\vert \phi'(0)\bigr\vert \bigl\vert f'_{n} \bigl(\phi (0)\bigr)\bigr\vert \\ &\qquad {} +k_{1}\sup_{\omega\in\mathcal{D}}\bigl\vert f_{n}(\omega)\bigr\vert +k_{2}\sup_{\omega\in\mathcal{D}} \bigl\vert f'_{n}(\omega)\bigr\vert + k_{3} \sup_{\vert \omega \vert \leq\delta}\bigl\vert f''_{n}( \omega)\bigr\vert +L\epsilon. \end{aligned} \end{aligned}$$
(26)
Since \(f_{n}\) converges to 0 uniformly on compact subsets of \(\mathcal {D}\) as \(n\rightarrow\infty\), Cauchy’s estimation gives that \(f'_{n}\), \(f''_{n}\) also do as \(n\rightarrow\infty\). In particular, since \(\{\omega:|\omega|\leq\delta\}\) and \(\{\phi(0)\}\) are compact, it follows that
$$\lim_{n\rightarrow\infty}\bigl\{ \bigl\vert u'(0)\bigr\vert \bigl\vert f_{n}\bigl(\phi(0)\bigr)\bigr\vert +\bigl\vert u(0) \bigr\vert \bigl\vert \phi '(0)\bigr\vert \bigl\vert f'_{n}\bigl(\phi(0)\bigr)\bigr\vert \bigr\} =0\quad \mbox{and}\quad \lim_{n\rightarrow\infty}k_{3}\sup _{\vert \omega \vert \leq\delta }\bigl\vert f''_{n}( \omega)\bigr\vert =0. $$
Moreover, since \(0<\alpha<1\), by Lemma 9 we have
$$\lim_{n\rightarrow\infty}\sup_{\omega\in\mathcal {D}}\bigl\vert f_{n}(\omega)\bigr\vert =0,\qquad \lim_{n\rightarrow\infty}\sup _{\omega\in\mathcal {D}}\bigl\vert f'_{n}(\omega)\bigr\vert =0. $$
Hence, letting \(n\rightarrow\infty\) in (26), we get
$$\lim_{n\rightarrow\infty}\|DM_{u}C_{\phi}f_{n} \|_{B^{\varphi}}=0. $$
Employing Lemma 8 the implication follows. □
Theorem 11
Let \(u\in\mathcal{H}(\mathcal{D})\) and ϕ be an analytic self-map of \(\mathcal{D}\). Then \(DM_{u}C_{\phi}:\mathcal{Z}\rightarrow\mathcal {B}^{\varphi}\) is compact if and only if \(DM_{u}C_{\phi}:\mathcal{Z}\rightarrow\mathcal {B}^{\varphi}\) is bounded,
$$\begin{aligned}& \lim_{|\phi(z)|\rightarrow1}\mu(z)\bigl\vert 2u'(z) \phi'(z)+u(z)\phi ''(z)\bigr\vert \log \frac{e}{1-|\phi(z)|^{2}} =0, \end{aligned}$$
(27)
$$\begin{aligned}& \lim_{|\phi(z)|\rightarrow1}\frac{\mu(z)|u(z)||\phi '(z)|^{2}}{1-|\phi(z)|^{2}}=0. \end{aligned}$$
(28)
Proof
Suppose that \(DM_{u}C_{\phi}:\mathcal{Z}\rightarrow \mathcal{B}^{\varphi}\) is compact. It is clear that \(DM_{u}C_{\phi}:\mathcal{Z}\rightarrow\mathcal{B}^{\varphi}\) is bounded. By Lemma 2, we have that \(k_{1}, k_{2}, k_{3}<\infty\). Let \(\{z_{n}\}_{n\in \mathcal{N}}\) be a sequence in \(\mathcal{D}\) such that \(|\phi(z_{n})|\rightarrow1\) as \(n\rightarrow\infty\). Without loss of generality, we may suppose that \(|\phi(z_{n})|>\frac{1}{2}\) for all n. Taking the function
$$s_{n}(z)=\frac{r(\overline{\phi(z_{n})}z)}{\overline{\phi(z_{n})}} \biggl(\log\frac{e}{1-|\phi(z_{n})|^{2}} \biggr)^{-1}- \biggl(\log\frac{e}{1-|\phi(z_{n})|^{2}} \biggr)^{-2} \int ^{z}_{0}\log^{3}\frac{e}{1-\overline{\phi(z_{n})}\lambda }\, d \lambda. $$
Then \(\sup_{n\in\mathcal{N}}\|s_{n}\|_{\mathcal{Z}}<\infty\) by the proof of Theorem 4, and \(s_{n}\rightarrow0\) uniformly on compact subsets of \(\mathcal{D}\) by a direct calculation. Consequently, \(\lim_{n\rightarrow\infty}\sup_{z\in\mathcal{D}}|s_{n}(z)|=0\) by Lemma 9. Since \(DM_{u}C_{\phi}:\mathcal{Z}\rightarrow\mathcal{B}^{\varphi}\) is compact, then \(\lim_{n\rightarrow\infty}\|DM_{u}C_{\phi}s_{n}\|_{\mathcal {B}^{\varphi}}=0\). Moreover, we have
$$ s'_{n}\bigl(\phi(z_{n})\bigr)=0,\qquad s''_{n}\bigl(\phi(z_{n})\bigr)=- \frac{\overline {\phi(z_{n})}}{1-|\phi(z_{n})|^{2}}. $$
Then
$$\begin{aligned} 1 \geq& S_{\varphi} \biggl(\frac{(DM_{u}C_{\phi}s_{n})'(z_{n})}{\| DM_{u}C_{\phi}s_{n}\|_{\mathcal{B}^{\varphi}}} \biggr) \\ \geq&\bigl(1-|z_{n}|^{2}\bigr)\varphi \biggl( \frac{ |u''(z_{n})s_{n}(\phi(z_{n}))+ \frac{-\overline{\phi(z_{n})}u(z_{n})\phi'(z_{n})^{2}}{1-|\phi (z_{n})|^{2}} |}{ \|DM_{u}C_{\phi}g_{n}\|_{\mathcal{B}^{\varphi}}} \biggr). \end{aligned}$$
It follows that
$$ \biggl\vert \frac{\mu(z_{n})|\phi(z_{n})||u(z_{n})||\phi '(z_{n})|^{2}}{1-|\phi(z_{n})|^{2}} -\mu(z_{n})\bigl\vert u''(z_{n})\bigr\vert \bigl\vert s_{n}\bigl(\phi(z_{n})\bigr)\bigr\vert \biggr\vert \leq \|DM_{u}C_{\phi}s_{n}\|_{\mathcal{B}^{\varphi}}. $$
Therefore
$$ \lim_{|\phi(z_{n})|\rightarrow1}\frac{\mu(z_{n})|u(z_{n})||\phi '(z_{n})|^{2}}{1-|\phi(z_{n})|^{2}}= \lim _{n\rightarrow\infty}\frac{\mu(z_{n})|\phi (z_{n})||u(z_{n})||\phi'(z_{n})|^{2}}{1-|\phi(z_{n})|^{2}}=0. $$
(29)
On the other hand, let
$$ t_{n}(z)=\frac{\overline{\phi(z_{n})}z-1}{\overline {\phi(z_{n})}} \biggl[ \biggl(1+\log\frac{e}{1-\overline{\phi(z_{n})}z} \biggr)^{2}+1 \biggr] \biggl(\log\frac{e}{1-|\phi(z_{n})|^{2}} \biggr)^{-1}-c_{n}, $$
where
$$ c_{n}=\frac{|\phi(z_{n})|^{2}-1}{\overline{\phi(z_{n})}} \biggl[ \biggl(1+\log\frac{e}{1-|\phi(z_{n})|^{2}} \biggr)^{2}+1 \biggr] \biggl(\log\frac{e}{1-|\phi(z_{n})|^{2}} \biggr)^{-1} $$
such that \(\lim_{n\rightarrow\infty}c_{n}=0\). By a direct calculation, we may easily prove that \(t_{n}\rightarrow0\) uniformly on compact subsets of \(\mathcal{D}\), and \(\sup_{n\in\mathcal{N}}\| t_{n}\|_{\mathcal{Z}}<\infty\) by the proof of Theorem 4. Since \(DM_{u}C_{\phi}:\mathcal{Z}\rightarrow\mathcal{B}^{\varphi}\) is compact, then \(\lim_{n\rightarrow\infty}\|DM_{u}C_{\phi}t_{n}\|_{\mathcal {B}^{\varphi}}=0\). Moreover, we have
$$ t_{n}\bigl(\phi(z_{n})\bigr)=0,\qquad t'_{n} \bigl(\phi(z_{n})\bigr)=\log\frac{e}{1-|\phi(z_{n})|^{2}},\qquad t''_{n}\bigl(\phi(z_{n})\bigr)= \frac{2\overline{\phi(z_{n})}}{1-|\phi(z_{n})|^{2}}. $$
Then
$$\begin{aligned} 1 \geq& S_{\varphi} \biggl(\frac{(DM_{u}C_{\phi}t_{n})'(z_{n})}{ \|DM_{u}C_{\phi}t_{n}\|_{\mathcal{B}^{\varphi}}} \biggr) \\ \geq& \bigl(1-|z_{n}|^{2}\bigr) \\ &{}\cdot\varphi \biggl(\frac{ |(2u'(z_{n})\phi'(z_{n})+u(z_{n})\phi ''(z_{n}))\log\frac{e}{1-|\phi(z_{n})|^{2}}+ \frac{2\overline{\phi(z_{n})}u(z_{n})\phi'(z_{n})^{2}}{1-|\phi (z_{n})|^{2}} |}{ \|DM_{u}C_{\phi}t_{n}\|_{\mathcal{B}^{\varphi}}} \biggr). \end{aligned}$$
It follows that
$$\begin{aligned}& \mu(z_{n})\bigl\vert 2u'(z_{n}) \phi'(z_{n})+u(z_{n})\phi ''(z_{n}) \bigr\vert \log\frac{e}{1-|\phi(z_{n})|^{2}} \\& \quad \leq\|DM_{u}C_{\phi}t_{n}\|_{\mathcal{B}^{\varphi}} + \frac{2\mu(z_{n})|\phi(z_{n})||u(z_{n})||\phi '(z_{n})|^{2}}{1-|\phi(z_{n})|^{2}}. \end{aligned}$$
(30)
Letting \(n\rightarrow\infty\) in (30) and combining with (29), we can get
$$ \lim_{|\phi(z_{n})|\rightarrow1}\mu(z_{n})\bigl\vert 2u'(z_{n})\phi '(z_{n})+u(z_{n}) \phi''(z_{n}) \bigr\vert \log \frac{e}{1-|\phi(z_{n})|^{2}} =0. $$
(31)
The implication follows from (29) and (31).
Conversely, by Lemma 1(ii), Lemma 2, Lemma 8 and Lemma 9, we can prove the converse implication similar to Theorem 10, so we omit the details. □
Theorem 12
Let \(u\in\mathcal{H}(\mathcal{D})\), ϕ be an analytic self-map of \(\mathcal{D}\) and \(1<\alpha<2\). Then \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is compact if and only if \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded,
$$\begin{aligned}& \lim_{|\phi(z)|\rightarrow1}\frac{\mu(z)|2u'(z)\phi '(z)+u(z)\phi''(z)|}{(1-|\phi(z)|^{2})^{\alpha-1}}=0, \end{aligned}$$
(32)
$$\begin{aligned}& \lim_{|\phi(z)|\rightarrow1}\frac{\mu(z)|u(z)||\phi '(z)|^{2}}{(1-|\phi(z)|^{2})^{\alpha}}=0. \end{aligned}$$
(33)
Proof
Suppose that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is compact. It is clear that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow \mathcal{B}^{\varphi}\) is bounded. By Lemma 2, we have that \(k_{1}, k_{2}, k_{3}<\infty\). Let \(\{z_{n}\}_{n\in\mathcal{N}}\) be a sequence in \(\mathcal{D}\) such that \(|\phi(z_{n})|\rightarrow1\) as \(n\rightarrow\infty\). Without loss of generality, we may suppose that \(|\phi(z_{n})|>\frac{1}{2}\) for all n. Then (33) can be proved as the method of (24) in Theorem 10, so we only need to show that (32) holds. Taking the function
$$ f_{n}(z)=\frac{1}{\overline{\phi(z_{n})}^{2}} \biggl[\frac{(1-|\phi (z_{n})|^{2})^{2}}{ (1-\overline{\phi(z_{n})}z)^{\alpha}}- \frac{1-|\phi(z_{n})|^{2}}{ (1-\overline{\phi(z_{n})}z)^{\alpha-1}} \biggr]. $$
Then \(\sup_{n\in\mathcal{N}}\|f_{n}\|_{\mathcal{Z}^{\alpha }}<\infty\), and \(f_{n}\rightarrow0\) uniformly on compact subsets of \(\mathcal{D}\). Since \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is compact, it gives \(\lim_{n\rightarrow\infty}\|DM_{u}C_{\phi}f_{n}\|_{\mathcal {B}^{\varphi}}=0\). Moreover, we have
$$f_{n}\bigl(\phi(z_{n})\bigr)=0,\qquad f'_{n} \bigl(\phi(z_{n})\bigr)=\frac{1}{\overline{\phi (z_{n})}(1-|\phi(z_{n})|^{2})^{\alpha-1}},\qquad f''_{n} \bigl(\phi(z_{n})\bigr)=\frac{2\alpha}{(1-|\phi(z_{n})|^{2})^{\alpha}}. $$
Then
$$\begin{aligned} 1 \geq& S_{\varphi} \biggl(\frac{(DM_{u}C_{\phi}f_{n})'(z_{n})}{\| DM_{u}C_{\phi}f_{n}\|_{\mathcal{B}^{\varphi}}} \biggr) \\ \geq&\bigl(1-|z_{n}|^{2}\bigr)\varphi \biggl( \frac{ |\frac{2u'(z_{n})\phi '(z_{n})+u(z_{n})\phi''(z_{n})}{\overline{\phi(z_{n})}(1-|\phi(z_{n})|^{2})^{\alpha-1}}+ \frac{2\alpha u(z_{n})\phi'(z_{n})^{2}}{(1-|\phi(z_{n})|^{2})^{\alpha}} |}{ \|DM_{u}C_{\phi}f_{n}\|_{\mathcal{B}^{\varphi}}} \biggr). \end{aligned}$$
It follows that
$$\biggl\vert \frac{\mu(z_{n})|2u'(z_{n})\phi'(z_{n})+u(z_{n})\phi''(z_{n})|}{ |\phi(z_{n})|(1-|\phi(z_{n})|^{2})^{\alpha-1}} -\frac{2\alpha\mu(z_{n})|u(z_{n})||\phi'(z_{n})|^{2}}{(1-|\phi (z_{n})|^{2})^{\alpha}}\biggr\vert \leq \|DM_{u}C_{\phi}f_{n}\|_{\mathcal{B}^{\varphi}}. $$
Therefore
$$\lim_{|\phi(z_{n})|\rightarrow1}\frac{\mu(z_{n})|2u'(z_{n})\phi '(z_{n})+u(z_{n})\phi''(z_{n})|}{ (1-|\phi(z_{n})|^{2})^{\alpha-1}}=0. $$
By Lemma 1(iii), Lemma 2, Lemma 8 and Lemma 9, we can prove the converse implication similar to Theorem 10, so we omit the details. □
Theorem 13
Let \(u\in\mathcal{H}(\mathcal{D})\) and ϕ be an analytic self-map of \(\mathcal{D}\). Then \(DM_{u}C_{\phi}:\mathcal{Z}^{2}\rightarrow \mathcal{B}^{\varphi}\) is compact if and only if \(DM_{u}C_{\phi}:\mathcal{Z}^{2}\rightarrow\mathcal {B}^{\varphi}\) is bounded,
$$\begin{aligned}& \lim_{|\phi(z)|\rightarrow1}\mu(z)\bigl\vert u''(z) \bigr\vert \log\frac{e}{1-|\phi (z)|^{2}}=0, \end{aligned}$$
(34)
$$\begin{aligned}& \lim_{|\phi(z)|\rightarrow1}\frac{\mu(z)|2u'(z)\phi '(z)+u(z)\phi''(z)|}{1-|\phi(z)|^{2}}=0, \end{aligned}$$
(35)
$$\begin{aligned}& \lim_{|\phi(z)|\rightarrow1}\frac{\mu(z)|u(z)||\phi '(z)|^{2}}{(1-|\phi(z)|^{2})^{2}}=0. \end{aligned}$$
(36)
Proof
Suppose that \(DM_{u}C_{\phi}:\mathcal{Z}^{2}\rightarrow\mathcal{B}^{\varphi}\) is compact. It is clear that \(DM_{u}C_{\phi}:\mathcal{Z}^{2}\rightarrow\mathcal {B}^{\varphi}\) is bounded. By Lemma 2, we have that \(k_{1}, k_{2}, k_{3}<\infty\). Let \(\{z_{n}\}_{n\in\mathcal{N}}\) be a sequence in \(\mathcal{D}\) such that \(|\phi(z_{n})|\rightarrow1\) as \(n\rightarrow\infty\). Without loss of generality, we may suppose that \(|\phi(z_{n})|>\frac{1}{2}\) for all n. Then, by repeating the arguments in the proof of Theorem 10 and Theorem 12, (35) and (36) can be proved similarly, so we only need to show that (34) holds. Taking the function
$$ p_{n}(z)= \biggl(1+ \biggl(\log\frac{e}{1-\overline{\phi (z_{n})}z} \biggr)^{2} \biggr) \biggl(\log\frac{e}{1-|\phi (z_{n})|^{2}} \biggr)^{-1}. $$
(37)
Then we have
$$\begin{aligned}& p'_{n}(z)=\frac{2\overline{\phi(z_{n})}}{1-\overline{\phi (z_{n})}z} \biggl(\log \frac{e}{ 1-\overline{\phi(z_{n})}z} \biggr) \biggl(\log\frac{e}{1-|\phi (z_{n})|^{2}} \biggr)^{-1}, \end{aligned}$$
(38)
$$\begin{aligned}& p''_{n}(z)=\frac{2\overline{\phi(z_{n})}^{2}}{(1-\overline{\phi (z_{n})}z)^{2}} \biggl(\log \frac{e}{ 1-\overline{\phi(z_{n})}z}+1 \biggr) \biggl(\log\frac{e}{1-|\phi (z_{n})|^{2}} \biggr)^{-1}. \end{aligned}$$
(39)
It is easy to show that \(\{p_{n}\}_{n\in\mathcal{N}}\) is a bounded sequence in \(\mathcal{Z}^{2}\), and \(p_{n}\rightarrow0\) uniformly on compact subsets of \(\mathcal{D}\). Since \(DM_{u}C_{\phi}:\mathcal{Z}^{2}\rightarrow \mathcal{B}^{\varphi}\) is compact, then \(\lim_{n\rightarrow\infty}\|DM_{u}C_{\phi}p_{n}\|_{\mathcal {B}^{\varphi}}=0\).
From (37), (38) and (39), we can get that
$$\begin{aligned}& \mu(z_{n})\bigl\vert u''(z_{n}) \bigr\vert \biggl[\log\frac{e}{1-|\phi(z_{n})|^{2}}+ \biggl(\log\frac{e}{1-|\phi(z_{n})|^{2}} \biggr)^{-1} \biggr] \\& \qquad {}- \frac{2\mu(z_{n})|\phi(z_{n})||2u'(z_{n})\phi'(z_{n})+u(z_{n})\phi ''(z_{n})|}{1-|\phi(z_{n})|^{2}} \\& \qquad {}-\frac{2\mu(z_{n})|\phi(z_{n})|^{2}|u(z_{n})||\phi '(z_{n})|^{2} [1+ (\log\frac{e}{1-|\phi(z_{n})|^{2}} )^{-1} ]}{ (1-|\phi(z_{n})|^{2})^{2}} \\& \quad \leq\|DM_{u}C_{\phi}p_{n}\|_{\mathcal{B}^{\varphi}}. \end{aligned}$$
Since \(\lim_{n\rightarrow\infty} (\log\frac{e}{1-|\phi (z_{n})|^{2}} )^{-1}=0\), and by (35) and (36), we can get (34).
By Lemma 1(iii) and (v), Lemma 2 and Lemma 8, we can prove the converse implication similar to Theorem 10, so we omit the details. □
Theorem 14
Let \(u\in\mathcal{H}(\mathcal{D})\), ϕ be an analytic self-map of \(\mathcal{D}\) and \(\alpha>2\). Then \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is compact if and only if \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is bounded,
$$\begin{aligned}& \lim_{|\phi(z)|\rightarrow1}\frac{\mu(z)|u''(z)|}{(1-|\phi (z)|^{2})^{\alpha-2}}=0, \end{aligned}$$
(40)
$$\begin{aligned}& \lim_{|\phi(z)|\rightarrow1}\frac{\mu(z)|2u'(z)\phi '(z)+u(z)\phi''(z)|}{(1-|\phi(z)|^{2})^{\alpha-1}}=0, \end{aligned}$$
(41)
$$\begin{aligned}& \lim_{|\phi(z)|\rightarrow1}\frac{\mu(z)|u(z)||\phi '(z)|^{2}}{(1-|\phi(z)|^{2})^{\alpha}}=0. \end{aligned}$$
(42)
Proof
Suppose that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow\mathcal {B}^{\varphi}\) is compact. It is clear that \(DM_{u}C_{\phi}:\mathcal{Z}^{\alpha}\rightarrow \mathcal{B}^{\varphi}\) is bounded. By Lemma 2, we have that \(k_{1}, k_{2}, k_{3}<\infty\). Let \(\{z_{n}\}_{n\in\mathcal{N}}\) be a sequence in \(\mathcal{D}\) such that \(|\phi(z_{n})|\rightarrow1\) as \(n\rightarrow\infty\). Without loss of generality, we may suppose that \(|\phi(z_{n})|>\frac{1}{2}\) for all n. Then, by repeating the arguments in the proof of Theorem 10 and Theorem 12, (41) and (42) can be proved similarly, so we only need to show that (40) holds.
Now let \(q_{n}(z)=\frac{(1-|\phi(z_{n})|^{2})^{2}}{(1-\overline{\phi (z_{n})}z)^{\alpha}}\), then \(\sup_{n\in\mathcal{N}}\|q_{n}\|_{\mathcal{Z}^{\alpha }}<\infty\), \(q_{n}\rightarrow0\) uniformly on compact subsets of \(\mathcal{D}\), and
$$\begin{aligned}& q_{n}\bigl(\phi(z_{n})\bigr)=\frac{1}{(1-|\phi (z_{n})|^{2})^{\alpha-2}}, \\& q'_{n}\bigl(\phi(z_{n})\bigr)= \frac{\alpha\overline{\phi(z_{n})}}{(1-|\phi (z_{n})|^{2})^{\alpha-1}},\qquad q''_{n}\bigl( \phi(z_{n})\bigr)=\frac{\alpha(\alpha +1)\overline{\phi(z_{n})}^{2}}{(1-|\phi(z_{n})|^{2})^{\alpha}}. \end{aligned}$$
Then we have
$$\begin{aligned}& \frac{\mu(z_{n})|u''(z_{n})|}{(1-|\phi (z_{n})|^{2})^{\alpha-2}} \\& \quad \leq\|DM_{u}C_{\phi}q_{n}\|_{\mathcal {B}^{\varphi}} \\& \qquad {}+\alpha\bigl\vert \phi(z_{n})\bigr\vert \mu(z_{n})\biggl\vert \frac{2u'(z_{n})\phi'(z_{n})+u(z_{n})\phi ''(z_{n})}{(1-|\phi(z_{n})|^{2})^{\alpha-1}}+ (\alpha+1)\overline{ \phi(z_{n})}\frac{u(z_{n})\phi '(z_{n})^{2}}{(1-|\phi(z_{n})|^{2})^{\alpha}}\biggr\vert \\& \quad \leq\|DM_{u}C_{\phi}q_{n}\|_{\mathcal {B}^{\varphi}}+ \alpha \mu(z_{n})\biggl\vert \frac{2u'(z_{n})\phi'(z_{n})+u(z_{n})\phi''(z_{n})}{ \overline{\phi(z_{n})}(1-|\phi(z_{n})|^{2})^{\alpha-1}} + \frac{\alpha+1}{2\alpha}\frac{2\alpha u(z_{n})\phi'(z_{n})^{2}}{ (1-|\phi(z_{n})|^{2})^{\alpha}}\biggr\vert \\& \quad \leq\|DM_{u}C_{\phi}q_{n}\|_{\mathcal {B}^{\varphi}} \\& \qquad {}+\alpha \mu(z_{n}) \biggl\{ \biggl\vert \frac{2u'(z_{n})\phi'(z_{n})+u(z_{n})\phi''(z_{n})}{ \overline{\phi(z_{n})}(1-|\phi(z_{n})|^{2})^{\alpha-1}} \biggr\vert + \frac{\alpha+1}{2\alpha}\biggl\vert \frac{2\alpha u(z_{n})\phi'(z_{n})^{2}}{ (1-|\phi(z_{n})|^{2})^{\alpha}}\biggr\vert \biggr\} . \end{aligned}$$
(43)
Since \(\frac{\alpha+1}{2\alpha}<1\), then by (41), (42) and letting \(n\rightarrow\infty\) in (43), we can get (40).
For the converse, by Lemma 1(iii) and (vi), Lemma 2 and Lemma 8, we can prove the converse implication similar to Theorem 10, so we omit the details. □

Acknowledgements

This work is supported by the NNSF of China (Nos. 11201127; 11271112) and IRTSTHN (14IRTSTHN023).
Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors completed the paper, read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Esmaeili, K, Lindström, M: Weighted composition operators between Zygmund type spaces and their essential norms. Integral Equ. Oper. Theory 75, 473-490 (2013) CrossRefMATH Esmaeili, K, Lindström, M: Weighted composition operators between Zygmund type spaces and their essential norms. Integral Equ. Oper. Theory 75, 473-490 (2013) CrossRefMATH
2.
Zurück zum Zitat Li, S: Weighted composition operators from minimal Möbius invariant spaces to Zygmund spaces. Filomat 27(2), 267-275 (2013) CrossRefMathSciNet Li, S: Weighted composition operators from minimal Möbius invariant spaces to Zygmund spaces. Filomat 27(2), 267-275 (2013) CrossRefMathSciNet
3.
Zurück zum Zitat Li, S, Stević, S: Volterra type operators on Zygmund space. J. Inequal. Appl. 2007, Article ID 32124 (2007) Li, S, Stević, S: Volterra type operators on Zygmund space. J. Inequal. Appl. 2007, Article ID 32124 (2007)
4.
Zurück zum Zitat Li, S, Stević, S: Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl. 338(2), 1282-1295 (2008) CrossRefMATHMathSciNet Li, S, Stević, S: Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl. 338(2), 1282-1295 (2008) CrossRefMATHMathSciNet
5.
Zurück zum Zitat Li, S, Stević, S: Products of Volterra type operator and composition operator from \(H^{\infty}\) and Bloch spaces to the Zygmund space. J. Math. Anal. Appl. 345, 40-52 (2008) CrossRefMATHMathSciNet Li, S, Stević, S: Products of Volterra type operator and composition operator from \(H^{\infty}\) and Bloch spaces to the Zygmund space. J. Math. Anal. Appl. 345, 40-52 (2008) CrossRefMATHMathSciNet
6.
Zurück zum Zitat Li, S, Stević, S: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput. 206(2), 825-831 (2008) CrossRefMATHMathSciNet Li, S, Stević, S: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput. 206(2), 825-831 (2008) CrossRefMATHMathSciNet
7.
Zurück zum Zitat Li, S, Stević, S: Integral-type operators from Bloch-type spaces to Zygmund-type spaces. Appl. Math. Comput. 215(2), 464-473 (2009) CrossRefMATHMathSciNet Li, S, Stević, S: Integral-type operators from Bloch-type spaces to Zygmund-type spaces. Appl. Math. Comput. 215(2), 464-473 (2009) CrossRefMATHMathSciNet
8.
Zurück zum Zitat Li, S, Stević, S: Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces. Appl. Math. Comput. 217(7), 3144-3154 (2010) CrossRefMATHMathSciNet Li, S, Stević, S: Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces. Appl. Math. Comput. 217(7), 3144-3154 (2010) CrossRefMATHMathSciNet
9.
Zurück zum Zitat Li, S, Stević, S: On an integral-type operator from ω-Bloch spaces to μ-Zygmund spaces. Appl. Math. Comput. 215(12), 4385-4391 (2010) CrossRefMATHMathSciNet Li, S, Stević, S: On an integral-type operator from ω-Bloch spaces to μ-Zygmund spaces. Appl. Math. Comput. 215(12), 4385-4391 (2010) CrossRefMATHMathSciNet
10.
Zurück zum Zitat Stević, S: On an integral operator from the Zygmund space to the Bloch-type space on the unit ball. Glasg. Math. J. 51, 275-287 (2009) CrossRefMATHMathSciNet Stević, S: On an integral operator from the Zygmund space to the Bloch-type space on the unit ball. Glasg. Math. J. 51, 275-287 (2009) CrossRefMATHMathSciNet
11.
Zurück zum Zitat Stević, S: On an integral-type operator from Zygmund-type spaces to mixed-norm spaces on the unit ball. Abstr. Appl. Anal. 2010, Article ID 198608 (2010) Stević, S: On an integral-type operator from Zygmund-type spaces to mixed-norm spaces on the unit ball. Abstr. Appl. Anal. 2010, Article ID 198608 (2010)
12.
Zurück zum Zitat Stević, S: Weighted differentiation composition operators from the mixed-norm space to the nth weighted-type space on the unit disk. Abstr. Appl. Anal. 2010, Article ID 246287 (2010) Stević, S: Weighted differentiation composition operators from the mixed-norm space to the nth weighted-type space on the unit disk. Abstr. Appl. Anal. 2010, Article ID 246287 (2010)
13.
Zurück zum Zitat Stević, S: Weighted radial operator from the mixed-norm space to the nth weighted-type space on the unit ball. Appl. Math. Comput. 218(18), 9241-9247 (2012) CrossRefMATHMathSciNet Stević, S: Weighted radial operator from the mixed-norm space to the nth weighted-type space on the unit ball. Appl. Math. Comput. 218(18), 9241-9247 (2012) CrossRefMATHMathSciNet
14.
Zurück zum Zitat Stević, S, Sharma, AK: Composition operators from weighted Bergman-Privalov spaces to Zygmund type spaces on the unit disk. Ann. Pol. Math. 105(1), 77-86 (2012) CrossRefMATH Stević, S, Sharma, AK: Composition operators from weighted Bergman-Privalov spaces to Zygmund type spaces on the unit disk. Ann. Pol. Math. 105(1), 77-86 (2012) CrossRefMATH
15.
Zurück zum Zitat Ye, S, Hu, Q: Weighted composition operators on the Zygmund spaces. Abstr. Appl. Anal. 2012, Article ID 462482 (2012) MathSciNet Ye, S, Hu, Q: Weighted composition operators on the Zygmund spaces. Abstr. Appl. Anal. 2012, Article ID 462482 (2012) MathSciNet
16.
Zurück zum Zitat Zhu, X: Volterra type operators from logarithmic Bloch spaces to Zygmund type space. Int. J. Mod. Math. 3(3), 327-336 (2008) MATHMathSciNet Zhu, X: Volterra type operators from logarithmic Bloch spaces to Zygmund type space. Int. J. Mod. Math. 3(3), 327-336 (2008) MATHMathSciNet
17.
Zurück zum Zitat Zhu, X: Integral-type operators from iterated logarithmic Bloch spaces to Zygmund-type spaces. Appl. Math. Comput. 215(3), 1170-1175 (2009) CrossRefMATHMathSciNet Zhu, X: Integral-type operators from iterated logarithmic Bloch spaces to Zygmund-type spaces. Appl. Math. Comput. 215(3), 1170-1175 (2009) CrossRefMATHMathSciNet
18.
Zurück zum Zitat Zhu, X: Extended Cesàro operators from mixed norm spaces to Zygmund type spaces. Tamsui Oxf. J. Math. Sci. 26(4), 411-422 (2010) MATHMathSciNet Zhu, X: Extended Cesàro operators from mixed norm spaces to Zygmund type spaces. Tamsui Oxf. J. Math. Sci. 26(4), 411-422 (2010) MATHMathSciNet
19.
20.
21.
Zurück zum Zitat Li, S, Stević, S: Composition followed by differentiation between Bloch type spaces. J. Comput. Anal. Appl. 9(2), 195-205 (2007) MATHMathSciNet Li, S, Stević, S: Composition followed by differentiation between Bloch type spaces. J. Comput. Anal. Appl. 9(2), 195-205 (2007) MATHMathSciNet
22.
Zurück zum Zitat Li, S, Stević, S: Weighted composition operators from Bergman-type spaces into Bloch spaces. Proc. Indian Acad. Sci. Math. Sci. 117(3), 371-385 (2007) CrossRefMATHMathSciNet Li, S, Stević, S: Weighted composition operators from Bergman-type spaces into Bloch spaces. Proc. Indian Acad. Sci. Math. Sci. 117(3), 371-385 (2007) CrossRefMATHMathSciNet
23.
Zurück zum Zitat Li, S, Stević, S: Composition followed by differentiation from mixed-norm spaces to α-Bloch spaces. Sb. Math. 199(12), 1847-1857 (2008) CrossRefMATHMathSciNet Li, S, Stević, S: Composition followed by differentiation from mixed-norm spaces to α-Bloch spaces. Sb. Math. 199(12), 1847-1857 (2008) CrossRefMATHMathSciNet
24.
Zurück zum Zitat Li, S, Stević, S: Products of composition and integral type operators from \(H^{\infty}\) to the Bloch space. Complex Var. Elliptic Equ. 53(5), 463-474 (2008) CrossRefMATHMathSciNet Li, S, Stević, S: Products of composition and integral type operators from \(H^{\infty}\) to the Bloch space. Complex Var. Elliptic Equ. 53(5), 463-474 (2008) CrossRefMATHMathSciNet
25.
Zurück zum Zitat Liu, Y, Yu, Y: Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball. J. Math. Anal. Appl. 423(1), 76-93 (2015) CrossRefMATHMathSciNet Liu, Y, Yu, Y: Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball. J. Math. Anal. Appl. 423(1), 76-93 (2015) CrossRefMATHMathSciNet
26.
27.
Zurück zum Zitat Sharma, AK: Products of composition multiplication and differentiation between Bergman and Bloch type spaces. Turk. J. Math. 35, 275-291 (2011) MATH Sharma, AK: Products of composition multiplication and differentiation between Bergman and Bloch type spaces. Turk. J. Math. 35, 275-291 (2011) MATH
28.
Zurück zum Zitat Stević, S: Norms of some operators from Bergman spaces to weighted and Bloch-type space. Util. Math. 76, 59-64 (2008) MATHMathSciNet Stević, S: Norms of some operators from Bergman spaces to weighted and Bloch-type space. Util. Math. 76, 59-64 (2008) MATHMathSciNet
29.
Zurück zum Zitat Stević, S: On a new integral-type operator from the weighted Bergman space to the Bloch-type space on the unit ball. Discrete Dyn. Nat. Soc. 2008, Article ID 154263 (2008) Stević, S: On a new integral-type operator from the weighted Bergman space to the Bloch-type space on the unit ball. Discrete Dyn. Nat. Soc. 2008, Article ID 154263 (2008)
30.
Zurück zum Zitat Stević, S: Integral-type operators from a mixed norm space to a Bloch-type space on the unit ball. Sib. Math. J. 50(6), 1098-1105 (2009) CrossRefMathSciNet Stević, S: Integral-type operators from a mixed norm space to a Bloch-type space on the unit ball. Sib. Math. J. 50(6), 1098-1105 (2009) CrossRefMathSciNet
31.
Zurück zum Zitat Stević, S: Norm of weighted composition operators from α-Bloch spaces to weighted-type spaces. Appl. Math. Comput. 215, 818-820 (2009) CrossRefMATHMathSciNet Stević, S: Norm of weighted composition operators from α-Bloch spaces to weighted-type spaces. Appl. Math. Comput. 215, 818-820 (2009) CrossRefMATHMathSciNet
32.
Zurück zum Zitat Stević, S: On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball. J. Math. Anal. Appl. 354, 426-434 (2009) CrossRefMATHMathSciNet Stević, S: On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball. J. Math. Anal. Appl. 354, 426-434 (2009) CrossRefMATHMathSciNet
33.
Zurück zum Zitat Stević, S: Norm of an integral-type operator from Dirichlet to Bloch space on the unit disk. Util. Math. 83, 301-303 (2010) MATHMathSciNet Stević, S: Norm of an integral-type operator from Dirichlet to Bloch space on the unit disk. Util. Math. 83, 301-303 (2010) MATHMathSciNet
34.
Zurück zum Zitat Stević, S: On an integral-type operator from logarithmic Bloch-type spaces to mixed-norm spaces on the unit ball. Appl. Math. Comput. 215(11), 3817-3823 (2010) CrossRefMATHMathSciNet Stević, S: On an integral-type operator from logarithmic Bloch-type spaces to mixed-norm spaces on the unit ball. Appl. Math. Comput. 215(11), 3817-3823 (2010) CrossRefMATHMathSciNet
35.
Zurück zum Zitat Stević, S: On operator \(P_{\varphi}^{g}\) from the logarithmic Bloch-type space to the mixed-norm space on unit ball. Appl. Math. Comput. 215, 4248-4255 (2010) CrossRefMATHMathSciNet Stević, S: On operator \(P_{\varphi}^{g}\) from the logarithmic Bloch-type space to the mixed-norm space on unit ball. Appl. Math. Comput. 215, 4248-4255 (2010) CrossRefMATHMathSciNet
36.
Zurück zum Zitat Stević, S: Characterizations of composition followed by differentiation between Bloch-type spaces. Appl. Math. Comput. 218(8), 4312-4316 (2011) CrossRefMATHMathSciNet Stević, S: Characterizations of composition followed by differentiation between Bloch-type spaces. Appl. Math. Comput. 218(8), 4312-4316 (2011) CrossRefMATHMathSciNet
37.
Zurück zum Zitat Stević, S: On some integral-type operators between a general space and Bloch-type spaces. Appl. Math. Comput. 218(6), 2600-2618 (2011) CrossRefMATHMathSciNet Stević, S: On some integral-type operators between a general space and Bloch-type spaces. Appl. Math. Comput. 218(6), 2600-2618 (2011) CrossRefMATHMathSciNet
38.
Zurück zum Zitat Stević, S: Boundedness and compactness of an integral-type operator from Bloch-type spaces with normal weights to \(F(p,q,s)\) space. Appl. Math. Comput. 218(9), 5414-5421 (2012) CrossRefMATHMathSciNet Stević, S: Boundedness and compactness of an integral-type operator from Bloch-type spaces with normal weights to \(F(p,q,s)\) space. Appl. Math. Comput. 218(9), 5414-5421 (2012) CrossRefMATHMathSciNet
39.
40.
Zurück zum Zitat Zhu, K: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23(3), 1143-1177 (1993) CrossRefMATH Zhu, K: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23(3), 1143-1177 (1993) CrossRefMATH
41.
Zurück zum Zitat Zhu, X: Generalized composition operators from generalized weighted Bergman spaces to Bloch type spaces. J. Korean Math. Soc. 46(6), 1219-1232 (2009) CrossRefMATHMathSciNet Zhu, X: Generalized composition operators from generalized weighted Bergman spaces to Bloch type spaces. J. Korean Math. Soc. 46(6), 1219-1232 (2009) CrossRefMATHMathSciNet
42.
43.
Zurück zum Zitat Cowen, CC, MacCluer, BD: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Roton (1995) MATH Cowen, CC, MacCluer, BD: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Roton (1995) MATH
44.
Zurück zum Zitat Li, S, Stević, S: Weighted composition operators from \(H^{\infty}\) to the Bloch space on the polydisc. Abstr. Appl. Anal. 2007, Article ID 48478 (2007) Li, S, Stević, S: Weighted composition operators from \(H^{\infty}\) to the Bloch space on the polydisc. Abstr. Appl. Anal. 2007, Article ID 48478 (2007)
45.
Zurück zum Zitat Li, S, Stević, S: Composition followed by differentiation between \(H^{\infty}\) and α-Bloch spaces. Houst. J. Math. 35(1), 327-340 (2009) MATH Li, S, Stević, S: Composition followed by differentiation between \(H^{\infty}\) and α-Bloch spaces. Houst. J. Math. 35(1), 327-340 (2009) MATH
46.
Zurück zum Zitat Sehba, B, Stević, S: On some product-type operators from Hardy-Orlicz and Bergman-Orlicz spaces to weighted-type spaces. Appl. Math. Comput. 233, 565-581 (2014) CrossRefMathSciNet Sehba, B, Stević, S: On some product-type operators from Hardy-Orlicz and Bergman-Orlicz spaces to weighted-type spaces. Appl. Math. Comput. 233, 565-581 (2014) CrossRefMathSciNet
47.
Zurück zum Zitat Stević, S: Essential norms of weighted composition operators from the α-Bloch space to a weighted-type space on the unit ball. Abstr. Appl. Anal. 2008, Article ID 279691 (2008) Stević, S: Essential norms of weighted composition operators from the α-Bloch space to a weighted-type space on the unit ball. Abstr. Appl. Anal. 2008, Article ID 279691 (2008)
48.
Zurück zum Zitat Stević, S: Norm and essential norm of composition followed by differentiation from α-Bloch spaces to \(H_{\mu}^{\infty}\). Appl. Math. Comput. 207, 225-229 (2009) CrossRefMATHMathSciNet Stević, S: Norm and essential norm of composition followed by differentiation from α-Bloch spaces to \(H_{\mu}^{\infty}\). Appl. Math. Comput. 207, 225-229 (2009) CrossRefMATHMathSciNet
49.
Zurück zum Zitat Stević, S: On an integral-type operator from logarithmic Bloch-type and mixed-norm spaces to Bloch-type spaces. Nonlinear Anal. 71(12), 6323-6342 (2009) CrossRefMATHMathSciNet Stević, S: On an integral-type operator from logarithmic Bloch-type and mixed-norm spaces to Bloch-type spaces. Nonlinear Anal. 71(12), 6323-6342 (2009) CrossRefMATHMathSciNet
50.
Zurück zum Zitat Stević, S: Products of composition and differentiation operators on the weighted Bergman space. Bull. Belg. Math. Soc. Simon Stevin 16, 623-635 (2009) MATHMathSciNet Stević, S: Products of composition and differentiation operators on the weighted Bergman space. Bull. Belg. Math. Soc. Simon Stevin 16, 623-635 (2009) MATHMathSciNet
51.
Zurück zum Zitat Stević, S: Products of integral-type operators and composition operators from the mixed norm space to Bloch-type spaces. Sib. Math. J. 50(4), 726-736 (2009) CrossRefMathSciNet Stević, S: Products of integral-type operators and composition operators from the mixed norm space to Bloch-type spaces. Sib. Math. J. 50(4), 726-736 (2009) CrossRefMathSciNet
52.
Zurück zum Zitat Stević, S: Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces. Appl. Math. Comput. 211(1), 222-233 (2009) CrossRefMATHMathSciNet Stević, S: Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces. Appl. Math. Comput. 211(1), 222-233 (2009) CrossRefMATHMathSciNet
53.
Zurück zum Zitat Stević, S: Weighted differentiation composition operators from \(H^{\infty}\) and Bloch spaces to nth weighted-type spaces on the unit disk. Appl. Math. Comput. 216, 3634-3641 (2010) CrossRefMATHMathSciNet Stević, S: Weighted differentiation composition operators from \(H^{\infty}\) and Bloch spaces to nth weighted-type spaces on the unit disk. Appl. Math. Comput. 216, 3634-3641 (2010) CrossRefMATHMathSciNet
54.
Zurück zum Zitat Stević, S, Sharma, AK, Bhat, A: Products of multiplication composition and differentiation operators on weighted Bergman spaces. Appl. Math. Comput. 217(20), 8115-8125 (2011) CrossRefMATHMathSciNet Stević, S, Sharma, AK, Bhat, A: Products of multiplication composition and differentiation operators on weighted Bergman spaces. Appl. Math. Comput. 217(20), 8115-8125 (2011) CrossRefMATHMathSciNet
55.
Zurück zum Zitat Stević, S, Ueki, SI: Integral-type operators acting between weighted-type spaces on the unit ball. Appl. Math. Comput. 215, 2464-2471 (2009) CrossRefMATHMathSciNet Stević, S, Ueki, SI: Integral-type operators acting between weighted-type spaces on the unit ball. Appl. Math. Comput. 215, 2464-2471 (2009) CrossRefMATHMathSciNet
56.
Zurück zum Zitat Zhu, X: Weighted composition operators from area Nevanlinna spaces into Bloch spaces. Appl. Math. Comput. 215, 4340-4346 (2010) CrossRefMATHMathSciNet Zhu, X: Weighted composition operators from area Nevanlinna spaces into Bloch spaces. Appl. Math. Comput. 215, 4340-4346 (2010) CrossRefMATHMathSciNet
Metadaten
Titel
On a product-type operator from Zygmund-type spaces to Bloch-Orlicz spaces
verfasst von
Haiying Li
Zhitao Guo
Publikationsdatum
01.12.2015
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2015
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0658-8

Weitere Artikel der Ausgabe 1/2015

Journal of Inequalities and Applications 1/2015 Zur Ausgabe